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Summary
Hubs integrate and distribute information in powerful ways due to the number and positioning of
their contacts in a network. Several resting state functional connectivity MRI reports have
implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-
based approaches to hub identification may have identified portions of large brain systems rather
than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1)
finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial
locations where several systems are represented within a small volume. These methods converge
on a distributed set of regions that differ from previous reports on hubs. This work identifies
regions that support multiple systems, leading to spatially constrained predictions about brain
function that may be tested in terms of lesions, evoked responses, and dynamic patterns of
activity.

Introduction
Hubs are intuitively important features of networks: high-volume airports are more
important than smaller airfields in facilitating air travel, and people with many
acquaintances are more powerful distributors of information than people with few
acquaintances. Hubs, in an intuitive sense, are nodes with special importance in a network
by virtue of their many, often diverse, connections.
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The quantitative importance of hubs has been demonstrated in a series of graph theoretic
studies (Albert et al., 2000; Albert et al., 1999; Barabasi and Albert, 1999; Jeong et al.,
2001; Jeong et al., 2000). Graphs are mathematical models of complex systems (e.g., air
traffic) in which the items in a system become a set of nodes (e.g., airports) and the
relationships in the system become a set of edges (e.g., flights). Hubs are defined as nodes
with many edges or with edges that place them in central positions for facilitating traffic
over a network. The number of edges on a node is called the node’s degree, and degree is
the simplest and most commonly used means of identifying hubs in graphs. Over the past
decade it has become clear that many real-world networks contain nodes that vary by many
orders of magnitude in their degree such that a handful of nodes have very powerful roles in
networks (e.g., Google.com in the World Wide Web) (Albert et al., 1999; Barabasi and
Albert, 1999; Jeong et al., 2000). The loss of such well-connected hubs can be particularly
devastating to network function (Albert et al., 2000; Jeong et al., 2001; Jeong et al., 2000).
Given the role of hubs and their importance to networks, the locations and functions of hubs
in the brain are of clear interest to neuroscientists.

Over the past 15 years, advances in MRI techniques have enabled comprehensive estimates
of structural and functional connectivity in the living human brain, leading to the first
estimates of hub locations in human brain networks. In an influential study, Buckner and
colleagues (Buckner et al., 2009) examined voxelwise resting state functional connectivity
MRI (RSFC) networks, identifying hubs (high-degree nodes) in portions of the default mode
system, as well as some regions of the anterior cingulate, anterior insula, and frontal and
parietal cortex. Other investigations targeting “globally connected” regions in RSFC data
have converged on similar sets of regions (Cole et al., 2010; Tomasi and Volkow, 2011).
These “hubs” have garnered much interest because they are principally located in the default
mode system, a collection of brain regions that are implicated in various “high-level”
cognitive processes and that often degenerate in Alzheimer disease, thereby seeming to fit
ideas about information integration and vulnerability to attack.

In this article we outline reasons to suspect that degree-based hubs reported in functional
connectivity networks may not be hubs in the interesting and intuitive sense outlined at the
beginning of this article, but rather that they might simply be members of the largest sub-
network(s) (systems) of the brain. We follow two separate lines of argumentation to this
conclusion. The first argument demonstrates that in networks formed using Pearson
correlations (RSFC graphs are commonly formed using Pearson correlations between BOLD
timeseries, and unless otherwise specified, “correlation” signifies Pearson correlation in this
paper), node degree is substantially explained by sub-network size. The second argument is
concerned with amplifications of the first argument that can occur when systems are not
modeled at their inherent levels of organization, such as when brains (cortically organized at
levels of columns, areas, and systems (Churchland and Sejnowski, 1988; Felleman and Van
Essen, 1991)) are modeled as voxels (an arbitrary volumetric element).

Since some classic methods of hub identification are confounded in correlation networks, we
develop two alternative methods for identifying hubs that are more suited to RSFC
correlation networks. Both methods aim to identify regions of the brain that are well-situated
to support and/or integrate multiple types of information. Both methods leverage the
correspondence between functional brain systems (e.g., dorsal attention system) and graph
sub-networks observed in recently described RSFC graphs (Power et al., 2011); see also
(Yeo et al., 2011)). First, using a model of the brain at the level of functional areas we
identify nodes that participate in many sub-networks of the brain (e.g., a node that has
relationships with members of multiple brain systems, such as visual, default mode, or
fronto-parietal control systems). These nodes are candidate brain hubs. We identify these
candidate hubs using the established measure of participation coefficients (Guimerà and
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Nunes Amaral, 2005). Second, we examine a high-resolution brain network to identify
spatial locations where many sub-networks are present within a small volume (e.g., finding,
within a small sphere, voxels representing the dorsal attention, visual, fronto-parietal
control, and default mode systems). We call these locations articulation points – they are not
hubs in the traditional graph theoretic sense but they are locations where such hubs might be
situated. Both methods identify similar sets of brain regions in the anterior insula, anterior,
middle and superior frontal cortex, medial superior frontal cortex, medial parietal cortex,
inferior parietal, and temporo-occipital cortex. Notably, these regions do not emphasize the
default mode system.

Results
Argument 1: Degree is a confounded measure for identifying hubs in Pearson correlation
networks

Several influential reports have identified brain hubs in RSFC networks using (variations of)
a measure called degree (or degree centrality), which is the number of edges on a node
(Buckner et al., 2009; Cole et al., 2010; Fransson et al., 2011; Tomasi and Volkow, 2010,
2011; van den Heuvel et al., 2008). Hubs, when identified by high degree, are nodes with
many edges. In weighted networks the analogous measure, strength, is defined as the sum of
the weights of the edges on a node.

Degree (or strength) is usually an appropriate measure for identifying hubs (e.g., an airport
with 200 connections is almost certainly more important than an airport with 20
connections). In the computer network shown in Figure 1A, degree is an accurate means of
identifying hubs.

In correlation networks, however, degree is a problematic means of identifying hubs. We
argue this point using conceptual networks and real RSFC data. Two comments preface the
data. First, the conceptual correlation networks in Figure 1 are presented to illustrate how
the meaning of degree can change in various situations; they are not intended to be full-
fledged models of RSFC signal. Second, our argument is intended to apply to networks
formed using Pearson correlations; our argument may be less relevant to other types of
correlation networks. We return to this topic in the Discussion.

Our argument is first demonstrated using networks of perfect correlations and then relaxed
into a form that is more relevant to the imperfect correlations found in RSFC networks.
Suppose there is a system composed of groups of nodes with perfectly covarying
timecourses. An example is shown Figure 1B, where a system of songbirds segregates into 3
flocks singing different songs. In this example each flock sings a song with no similarity to
the song of the other flock. Such a system is called a “block model” (see the matrix), and
nodes within the blocks (here, flocks), are structurally equivalent, meaning they have
identical sets of connections and are therefore interchangeable (Newman, 2010). All nodes
within a block have identical degree, and this degree is directly related to the size of the
block. Thus, degree will identify hubs in the largest blocks of the graph. If blocks correlate
to any extent, then degree will depend not only on the size of a node’s block, but also on the
sizes of related blocks (Figure 1C). If one relaxes “perfectly correlated” to “more correlated
than average“, blocks become groups of nodes called communities and degree will tend to
identify hubs in the largest communities of a correlation network (Figure 1D).

Degree thus has different meanings in different types of network. In many graphs, such as
the computers of Figure 1A, high degree means that an individual node has many
connections and is probably important. In others, such as the block model in Figure 1B, high
degree means nothing more than that a node is part of a large block. In networks like RSFC
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networks, which are noisy and in which nodes may display individual temporal dynamics
(Chang and Glover, 2010), degree is probably somewhat driven by unique properties of
individual nodes as in Figure 1A, but also somewhat driven by community size as in Figure
1B. The meaning of degree is thus ambiguous in RSFC networks. This ambiguity has
critical implications for studies that have identified hubs in RSFC on the basis of degree,
since such hubs may be identified due to community size rather than important roles in
information processing.

To determine whether these theoretical concerns are evident in reality, two versions of
RSFC graphs were formed using data from 120 healthy young adults (60F, 24.7 ± 2.4 years
old). The graphs were formed using methods consistent with the previous literature, and the
relationship between community size and node strength was quantified for both graphs.
Figure 2A shows the correlation matrix that defines a graph formed of 264 putative areas
(Power et al., 2011), the communities found within this graph, the sizes of these
communities, and node strength at multiple thresholds. Linear fits of strength to community
size are plotted. There is an evident relation between community size and node strength.
Similar analyses performed in a voxelwise network in the same dataset are shown in Figure
2B. In the voxelwise network the relationship between community size and node strength is
considerably stronger. Because there is no “correct” threshold at which to analyze a graph
these analyses were performed at many thresholds (those used in (Power et al., 2011)).
Across thresholds, community size explained 11% ± 4% of the variance in strength in the
areal network and 34 ± 5% of the variance in strength in the voxelwise network.

It is possible that strong relationships between strength and community size are actually
typical of real-world networks. To investigate this possibility, seventeen other real-world
datasets (3 correlation, 14 non-correlation) were analyzed in the manner just described (see
Methods and Figures 3 and S1 for sources and details of the networks). Strong relationships
between strength and community size were observed in real-world correlation networks, but
were generally absent in real-world non-correlation networks, consistent with the theoretical
considerations outlined above.

If the meaning of degree is confounded by community size in correlation networks, one
might wonder whether important nodes could still be identified as nodes with high degree
relative to other nodes within their community. Guimera and Amaral have proposed a
widely-used classification scheme to identify node roles based on such a framework
(Guimerà and Nunes Amaral, 2005). Their approach uses two measures to characterize
nodes: within-module degree z-score and participation coefficient (Figure 4A). Within-
module degree z-score is the z-score of a node’s within-module degree; z-scores greater than
2.5 denote hub status. Participation coefficients measure the distribution of a node’s edges
among the communities of a graph. If a node’s edges are entirely restricted to its
community, its participation coefficient is 0. If the node’s edges are evenly distributed
among all communities, the participation coefficient is a maximal value that approaches 1
(the maximal value depends on the number of communities present). Hubs with low
participation coefficients are called “provincial” hubs because their edges are not distributed
widely among communities, whereas hubs with higher participation coefficients are called
“connector” hubs.

The node role approach indicates that the RSFC networks of Figure 2, relative to other
networks such as communication or metabolic networks, are structured in ways such that
they contain a very small number of hubs, all of which are quite weak by graph theoretic
standards (Figure 4). In the areal network a single node at a single threshold meets criteria
for being a hub. This node, in the precuneus, is a provincial hub with few strong correlations
outside of its community (the default mode system). In the voxelwise network, 90–199
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voxels are identified as hubs across thresholds, mainly as part of a large cluster in the
precuneus. Like the single areal node, these voxels are also provincial hubs - part of the
largest community in the network (the default mode system), with few strong correlations to
nodes outside of their community. This provincial quality of RSFC hubs is similar to the
pattern found in other real-world correlation networks (e.g., the S&P500 network in Figure
4B), but stands in contrast to the patterning of hubs found in many real-world non-
correlation networks, where hubs display a wide range of participation coefficients (Figure
4B). These findings are echoed in Figure S1, where node strength correlates negatively with
participation coefficients in the 3 real-world correlation networks (such that nodes with
many edges are often isolated from other communities) but positively in most real-world
non-correlation networks (such that nodes with many edges often contact many
communities). The RSFC networks have intermediate findings: weakly negative correlations
of node strength and participation coefficients, consistent with our conceptual arguments
above. Importantly, though the node role approach does identify a small number of
provincial hubs in RSFC networks, it still uses degree as the basis of hub identification and
does not address the fundamental uncertainty about what degree signifies in correlation
networks.

The essential points from this section are that 1) degree is normally a good indicator of a
node’s importance in a non-correlation network, 2) degree has an unclear meaning in
Pearson correlation networks due to the influence of community size, and 3) degree-based
RSFC hubs may, to a substantial extent, reflect community size rather than a privileged role
in information processing.

Argument 2: Volume-based graphs distort functional brain properties
Having established that RSFC correlation networks entail strong (confounding) relationships
between community size and node degree, we now discuss a second problem that can
amplify this relationship. Estimates of degree-based hubs in functional connectivity
networks have often used voxel-based networks or approximations of them (Buckner et al.,
2009; Cole et al., 2010; Fransson et al., 2011; Tomasi and Volkow, 2010, 2011; van den
Heuvel et al., 2008). On the face of it, these approaches are sensible because they maximize
the resolution of the analysis and minimize the possibility of conflating unique signals in a
single node (Fornito et al., 2010). However, there are reasons to believe that such
approaches introduce inaccuracies into representations of brain properties. Our second
argument concerns the distortions that accompany volume-based models of brain
organization.

Complex systems, composed of items and their interrelationhips, are modeled as nodes and
edges in graphs. For the properties of a graph to accurately reflect properties of the system it
models, the nodes in the graph need to correspond to the items of the system (Butts, 2009;
Power et al., 2011; Smith et al., 2011; Wig et al., 2011). Consider, for example, the set of
interstate relationships shown in Figure 5A, in which California has relationships to Alaska,
Washington, and Rhode Island. This spatially embedded system, organized at the level of
states, can be represented using nodes of states or nodes of space. An item-based model
(node = state) accurately represents this system, and identifies California as the hub of this
simple network. If the same set of relationships is preserved but this system is instead
represented by land area (node = square mile) the graph acquires a very different structure
and hubs are identified in Alaska.

Analogous arguments apply to RSFC networks. The brain is a spatially embedded functional
network: billions of neurons (in the cortex, at least) are spatially and functionally organized
into columns, areas (e.g., primary visual cortex), and systems (e.g., visual system)
(Churchland and Sejnowski, 1988). Areas have different sizes (Carmichael and Price, 1994),

Power et al. Page 5

Neuron. Author manuscript; available in PMC 2014 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



as do systems (e.g., visual vs. auditory systems). By representing the brain with voxels, a
space-based model rather than an item-based model is adopted such that different areas (and
systems) are represented by variable numbers of voxels. Since voxels within areas tend to
have similar signals, and areas within systems have similar signals, nodes within large areas
will tend to have many high correlations to other nodes within their area, and nodes within
large systems will tend to have many moderate-to-high correlations to other nodes within
their system.

These considerations suggest that voxel degree is driven in substantial part by the physical
size of a voxel’s area and system (Figure 5B). For example, V1 may comprise hundreds of
voxels whereas A1 may comprise only a few dozen voxels. The large number of strong
within-area correlations in V1 will confer higher degree to voxels in this region than to
voxels in A1. Similarly, the visual system spans many thousands of voxels, whereas the
auditory system only includes a few hundred voxels. Voxels in the visual system will
display more within-system correlations and therefore higher degree than voxels in the
auditory system.

Because the locations and sizes of areas in humans are presently unknown, this argument
cannot be fully demonstrated. Note, however, that the variance in node strength explained
by community size rose from 11% in the areal network to 34% in the voxelwise network and
also note that many communities correspond roughly to brain systems (Figure 2), all
consistent with this line of argumentation. The essential point of this section is that using
volumetric elements to form graphs results in network properties that may more closely
represent volumetric properties of brain organization rather than the organization of
information processing.

A renewed search for brain hubs—We have highlighted two difficulties with degree-
based hub identification in RSFC data: the influence of community size on degree in
Pearson correlation networks and the susceptibility of degree to distortion in volume-based
brain networks. The latter problem can be ameliorated by proper network definition but the
former problem suggests that degree has a fundamentally ambiguous interpretation in RSFC
correlation networks. If degree-based methods of hub identification are confounded, can
other methods identify hubs in RSFC correlation networks?

Many other centrality measures based upon combinations of degree and path length exist to
characterize hubs (e.g., betweenness, closeness, eigenvector, and PageRank centralities).
Some of these measures have been used to identify RSFC hubs (Achard et al., 2006; He et
al., 2009; Joyce et al., 2010; Lohmann et al., 2010; Zuo et al., 2011). In many systems, such
as transit networks, these centrality measures, which combine information about path length
and node degree, are appropriate and interpretable. However, in correlation networks, where
degree is a problematic measure, and where path lengths are often created from thresholded
correlation matrices (despite ‘distances’ being already defined by the correlation
coefficient), it is less clear how to interpret these measures. Other authors have used the
node role approach, wherein centrality measures identify hubs (e.g., using within-module
degree z-score or betweenness centrality), and then participation coefficients classify hub
type (He et al., 2009; Meunier et al., 2009; Meunier et al., 2010). Possibly due to the variety
of parcellation strategies employed (AAL atlas parcels, random parcellations), these studies
have produced divergent descriptions of hub locations.

Due to the reservations we have expressed about degree-based measures and our lack of
confidence in interpreting path-based measures in Pearson correlation networks, we have
pursued different ways of identifying hubs.
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Recall that hubs are parts of networks that are critical for integrating and distributing
information. In graph theory, such nodes are often identified by the number of edges a node
has and by the importance of a node’s edges for facilitating network traffic (Newman,
2010). In other words, it is not just the number, but also the qualities of a node’s edges that
establish its importance in a network. Since the brain is composed of systems, we reason that
nodes that are well-positioned to communicate among multiple systems are good candidates
for being brain hubs and we utilize two methods to identify such regions.

Method 1: Hubs as nodes that participate in many functional systems in an areal network
We have recently defined and described a network of 264 putative functional areas (Power
et al., 2011). This graph is a first-draft model of area-level relationships in the brain, and
communities in this network correspond well to functional systems (Power et al., 2011). In
this areal graph, nodes that participate in multiple systems could potentially support or
integrate different types of information. Our first method therefore identifies putative hubs
as nodes in this areal network that have edges to many different communities. To find such
nodes, we alter the node role approach of Guimera and Amaral: we discard the traditional
measure of centrality due to the reservations expressed above, and instead use the
participation coefficient as the sole measure of node importance. Figure 6A shows a network
with 3 communities (yellow, green, and pink) and the participation coefficient of each node.
Nodes in blue have no relationships outside their community and low participation
coefficients whereas the red node has relationships to every community and the highest
participation coefficient in the network. Our approach searches the areal network for nodes
like the red node.

In the first half of this paper, in order to replicate and expand on previous findings related to
degree-based hubs, graphs were formed in ways corresponding to the previous literature. In
the second half of the paper, graphs will be formed using our preferred methodology (Power
et al., 2011), which excludes short-distance relationships (less than 20 mm apart). This
exclusion is performed because short-distance correlations are inflated by unavoidable steps
in image processing (realigning, registration, reslicing), partial voluming, and head motion
(Power et al., 2012). Additionally, short-distance correlations are virtually always high (the
bloom around any seed in a seed map), thus acting as a spatial lattice of high short-range
correlations that provide little distinguishing information between nodes. Eliminating
correlations spanning less than 20 mm removes 4% of the edges in both the areal and
voxelwise graph, and does not alter our observations about the confounding relationship
between community size and degree in RSFC graphs (Figure S1).

An areal network was formed in 120 healthy young adults and community assignments were
obtained over many thresholds (10% to 2% edge density in 1% steps) as in (Power et al.,
2011). Figure 6B shows the participation coefficients in the average network at a single
threshold. The participation coefficients were summed over thresholds to identify nodes that
routinely participate in multiple communities, and the summed participation coefficients are
plotted in Figure 6C.

Several control analyses were performed to establish the robustness of these results.
Identical analyses performed in matched 40-subject sub-cohorts of the main cohort yielded
very similar results (Table S1 and Figure S2; correlations between sub-cohorts = 0.87 ±
0.04). Identical analyses performed without global signal regression also produced very
similar results (Figure S3; r = 0.83). Because short-distance relationships were excluded,
nodes identified by high participation coefficients are not identified simply for being
proximal to nodes belonging to other communities. Because nodes within relatively small
communities tend to have higher participation coefficients (Figure S1), we also counted the
number of communities contacted by each node, and this index, which is not biased by
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community size, identified a similar set of nodes as participation coefficients (Figure S3; r =
0.85).

Method 2: Spatial locations that contain many functional systems in a modified voxelwise
network

We have also proposed a high-resolution modification of voxelwise networks (Power et al.,
2011). Communities in this graph are in good agreement with functional systems and with
communities in the areal network (Power et al., 2011). This graph has excellent spatial
resolution but also some distorted network properties (see Argument 2). We therefore focus
on the spatial properties of this model. Our second method examines the spatial topography
of this graph to identify locations where many communities are present within a small
volume. Such locations, which we call articulation points, would be well-suited for
integrating (or distributing) a variety of types of information represented in different
systems.

Figure 7 outlines our methodology. A modified voxelwise network was formed in the 120-
subject cohort and community assignments were obtained for all voxels in the AAL atlas
(cortical and subcortical) over multiple thresholds (2.5% to 0.5% edge density in 0.5%
steps) as in (Power et al., 2011). Community density was then calculated for each voxel as
the number of unique communities found within some radius of that voxel (see Methods).
Radii of 5 to 10 mm in 1 mm steps were sampled. We use high thresholds because more
communities are detected at high thresholds, yielding more focal community density maps
(often articulations of 4–7 commumities); at lower thresholds, fewer communities are found
(often 4–6), yielding non-focal maps of community density. A representative analysis at
threshold 1% and radius 8 mm is shown in Figure 7A and 7B. To identify peaks in
community density that are reliable across thresholds and sampling distances, results were
summed from analyses performed across these parameter spaces after normalizing the
values within each analysis (Figure 7C). The topography of community density is very
similar in 40-subject sub-cohorts of the main cohort and across parameter spaces (Figure S4;
correlations between sub-cohorts = 0.85 ± 0.04). When calculating community density, each
hemisphere was analyzed separately to avoid contributions from tissue across the midline,
and subcortical structures were excluded from calculations to avoid inflated estimates in the
insula (Figure S5).

Integration and generalizability of these findings—We have developed two
methods aimed at identifying brain regions that support or integrate multiple functional
systems. Figure 8 plots the results of both methods on a single surface and with reference to
the consensus community assignments from (Power et al., 2011) (see Figure S6 for flat
maps). Nodes with high participation coefficients tend to be adjacent to regions of high
community density, though this is not always the case (e.g., left intraparietal sulcus). This
proximity is consonant with our reasoning that brain regions where multiple functional
systems are represented would be good locations for hubs.

This proximity is also consistent with an argument that high participation coefficients arise
from signal blurring due to proximity to several distinct signals. The data were therefore
reanalyzed without spatial blurring as part of functional connectivity processing, yielding
results very similar to those with blurring (r = 0.94, Figure S3).

The subjects studied thus far are mainly university students who met strict inclusion criteria.
To determine whether our results generalize to more typical populations, a 40-subject cohort
(40F, 30.0 ± 3.2 years old) from a prospective twin study in the general population was also
examined, including subjects with psychiatric and neurologic disease and psychotropic
medication use. Analyses identical to those shown in Figure 8 were performed on this
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cohort. Results in the main 120-subject cohort explained 74% of the variance in summed
participation coefficients and 77% of the variance in summed community density in this
accessory cohort (Figure S7).

Discussion
Hubs exist in many real-world networks and they often play critical roles in facilitating
network traffic and maintaining network integrity (Albert et al., 2000; Albert et al., 1999;
Jeong et al., 2001). In this report, we aimed to advance the study of brain hubs by clarifying
some important issues and by providing some conceptually straightforward methods to
identify putative hubs in RSFC correlation networks. We now discuss our findings and their
implications for previous and future work.

Interpreting degree-based hubs
Several points are worth noting when considering how to interpret degree-based hubs. First,
unlike many real-world networks, RSFC networks formed using Pearson correlations do not
tend to contain nodes that are convincing outliers in strength, meaning that any degree-based
hubs in RSFC networks are rather weak hubs from a graph theoretic perspective (Figure 4).
Second, given the block-like structure of correlation networks, these hubs tend to be
provincial, meaning their connections are largely restricted to their community (Figure 4).
This provincial quality stands in contrast to hubs found in many real-world networks, which
often connect strongly to a wide variety of other communities (Figure 4 and Figure S1).
Third, strength in RSFC graphs strongly reflects community size, which is indirectly related
to the physical sizes of areas and systems (Figures 1–5). Fourth, degree can represent the
dynamic and unique couplings of a node to other nodes, a property of great interest that is
clouded by the considerations just discussed.

It is possible that some degree-based hubs (like those in the precuneus) are provincial hubs
that play central roles in particular systems. It is also possible that these hubs do not have
hub-like roles in information processing and that their “hubness” arises from the factors
discussed above. We shall return to this topic.

Interpreting our areal hubs and articulation points
In the areal network, nodes represent our current best estimate of the centers of brain areas
(Power et al., 2011). If a node has a high participation index, it has modest-to-high
correlations with multiple communities. Since these communities correspond reasonably
well to systems (Power et al., 2011), we infer that such nodes likely have access to a variety
of types of different information processing represented among different systems.

In the modified voxelwise network, nodes do not correspond to any “unit” of brain
organization. Here, the peaks in community density represent points of spatial articulation
between multiple brain systems. These peaks do not represent areas but rather locations
where areas from multiple systems exist in close proximity to one another. Cortex in such
regions does not necessarily integrate different types of information but would be well-
situated to perform such integration.

On relationships between community density, participation coefficients, and degree
Regions with high community density tend to have high participation coefficients (Figure
8A). Convergence between measures is especially prominent at some regions in the anterior
insula, dorsal medial prefrontal cortex, dorsal prefrontal cortex, lateral occipito-temporal
cortex, and superior parietal cortex. There are also some regions where the measures
diverge, such as the inferior parietal sulcus (high participation coefficient, low community
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density) or the mid-cingulate (low participation coefficient, high community density).
Differences between the measures in these latter regions may be of eventual interest, but our
present focus is on regions where both measures are congruent.

The methods advocated in this report generally highlight different parts of the brain than
degree-based methods. Indeed, community density and node strength (normalized and
summed across thresholds) are negatively correlated (r = −0.37, Figure S8), as are
participation coefficient and node strength (r = − 0.12, Figure S8). No analogue of
community density exists in the real-world graphs, but the relationship between participation
coefficient and node strength seen across networks in Figure S1 is instructive: it is strongly
negative in the 3 real-world correlation networks, mildly negative in the RSFC networks and
in a few real-world non-correlation networks, but usually positive in real-world non-
correlation networks. This is consistent with the idea that RSFC networks occupy a
conceptual space somewhere between the computer and birdsong networks of Figure 1. The
negative relationship between node strength and our measures of node importance indicates
a spatial complementarity that may be leveraged when trying to discern if and how various
measures (e.g., degree vs. participation coefficient) denote hub-like roles in cognition, as
discussed below.

Evaluating the functional importance of hubs
A challenging topic is how to characterize the functional role of hubs. One approach might
be to study the various systems involved with a hub. However, the functions performed by
systems are often unclear. For example, what functions are performed by the default mode
system or cingulo-opercular systems? There are many ideas but little consensus. Another
approach is to examine the proposed functions of individual hub regions. However, the brain
is everywhere “integrative” in some sense and the “functions” of much non-sensory cortex
are contested or unknown. Defensible conclusions about hub-like processing seem unlikely
to emerge from this approach.

Another approach would be to study the hodology of hub regions and to infer the function
and importance of a hub from the physical projections it sends and receives. This approach
may prove quite fruitful. However, it also has important limitations. First, because detailed
anatomical information is mainly available in non-human primates, inferences in humans
would depend on the similarity between human and non-human primate anatomy (and
function). Our hub regions and degree-based hubs largely avoid unimodal sensory or motor
cortex, making such inferences tenuous. Second, the relationship between the structural and
functional properties of a network are not simple or clear. For example, it is not obvious that
hubs in a structural network should correspond to a degree-based hub in a functional
network, or even a hub of the sort we are advocating (Honey et al., 2009). There is no doubt
that anatomical connections, chemoarchitecture, and cytoarchitecture will eventually inform
our understanding of hub location and function, but they may not be the most fruitful
starting point for creating functional descriptions of hubs at present.

We suggest a lesion-based approach to characterizing hub function. Hubs are interesting
because they are single nodes that exert disproportionate influence over network structure
and dynamics due to of the number and placement of their edges. As such, their elimination
can produce profound effects in a network (Albert et al., 2000; Jeong et al., 2001; Jeong et
al., 2000). Our observations lead to several predictions in the brain. The removal of a
provincial hub should produce effects mainly within a single community, with limited
impact on global network function. The removal of the sort of hubs identified in this report
should produce effects within multiple communities, producing more global effects in the
network. The removal of non-hub nodes should minimally alter community and global
network function. These predictions can be tested by studying spontaneous activity, evoked
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activity, and behavior in the context of transient or permanent inactivation of nodes.
Recently, RSFC results consistent with these predictions were reported by Gratton and
colleagues (Gratton et al., 2012): lesions to nodes with high participation coefficients
decreased network modularity, but lesions to nodes with high within-module degree did not
produce such effects.

Future Directions
Our methods targeted brain regions that may play roles in multiple brain systems. Lesion
studies could offer strong support for this characterization. The large nature of most lesions
makes it difficult to draw firm conclusions along such lines from the literature, but inroads
may be possible using voxel-based lesion symptom studies (e.g. (Bates et al., 2003)).
Studies that target hubs using TMS combined with comprehensive investigations of
cognitive function (e.g., (Pitcher et al., 2009)) may also possess sufficient precision to test
this hypothesis. Alternatively, investigation of temporal dynamics at hub locations using
RSFC, EEG, or MEG could test and refine our observations. We are actively pursuing the
lesion-based and dynamic implications of this work.

This study has outlined some difficulties in using graph theoretic techniques in RSFC data.
Measures like degree, and probably path length, have unclear significance in Pearson
correlation networks. Other properties, like community structure or participation
coefficients, remain relatively interpretable. The Pearson correlation is widely used in RSFC
due to its familarity, its simplicity of interpretation (the linear dependence between
timeseries), and the ability to study large sets of nodes (264 and 40,100 in this study). Future
studies that elaborate on the significance of existing graph theoretic measures in Pearson
correlation networks will improve the ability of the field to utilize and interpret such
networks, as will studies that propose measures designed for use in such networks.
Alternative methods of RSFC edge definition, perhaps based on partial correlations or
generative models, may enable more standard interpretations of graph theoretic measures.
However, experience with such techniques is at present mainly limited to small networks (of
a few dozen nodes or less) and it is not clear how well such approaches can scale to
networks of the size explored in this report. Despite these complexities, the validation of
methods that expand the utility of graph theoretic approaches in RSFC networks will be a
valuable step forward for the field.

Limitations
The present work is based on analyses of RSFC data and shares the general limitations of
this technique. Two limitations are especially worth noting.

First, RSFC is focused on low-frequency fluctuations in BOLD signal that only indirectly
reflect neuronal activity via blood oxygenation. Our characterization of a node’s
“participation” with different systems is inferential, based on correlations in these
spontaneous fluctuations, not demonstrations of causal interactions. However, because
temporal coherence in BOLD activity (in fMRI or RSFC) is typically interpreted to
represent functional relationships, and because our study is essentially exploratory, this
limitation may also be viewed as a strength. By studying spontaneous correlations, we
placed no particular limitations on the types of information processing that might occur,
thereby obtaining a less constrained, more “natural” sampling of interactions between brain
regions than a task-based experiment would provide.

The second principal limitation of this work is spatial resolution. In our RSFC analyses,
BOLD activity is sampled in voxels 3–4 mm on each side. Blurring of data is unavoidable in
the process of data realignment, resampling, registration, and subject averaging. As such,
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nearby voxels share signal for non-biological reasons, hampering accurate estimation of
BOLD correlations between brain regions. In network analyses, this means that spatially
proximal relationships contain artifactual influence, but also that distant relationships (from
node X to node Y) could be influenced (if voxels similar to voxel Y are present near node X
and are blurred into X’s signal). We have made every effort to discount these effects,
including ignoring relationships between voxels or ROIs less than 20 mm apart, reanalyzing
data without blurring, and analyzing hemispheres separately in the modified voxelwise
graphs to avoid the particularly high homotopic correlations that might also reflect local
blurring (though dual-and single-hemisphere results were very similar, Figure S5). However
some blurring of data is unavoidable and one could argue that participation coefficients are
increased near regions of high community density due to blurring of signals.

Although this effect is likely present, several lines of evidence suggest that its impact is
modest and did not drive the present results. First, because we only examined strong
correlations (within the top few percentiles of positive correlations), blurring would have to
induce very large changes in correlations to create edges that would enter our analyses for
spurious reasons (unlike if we had examined thresholdfree graphs). Second, the fact that
nodes with higher participation indices did not have high degree, despite being in the
vicinity of many functional systems, also suggests that blurring did not spuriously induce
widespread correlations to distal nodes in multiple communities at nodes proximal to
multiple systems. Finally, even if high participation coefficients were due to proximity to
multiple community representations, it would not detract from the observation that certain
parts of the brain are densely populated with systems, and the predictions this observation
entails.

Conclusions
In this report we demonstrated that brain regions previously identified as degree-based hubs
in RSFC graphs may have been identified because they are members of large areas or
systems rather than because of special roles in information processing. Guided by the
intuitive notion of what makes hubs important, we developed approaches to search for nodes
that link different communities of areal brain networks and to identify brain locations where
multiple systems exist in close proximity. By re-contextualizing the nature of previously
reported hubs, and by identifying a new set of hub regions with conceptually different
properties, this work generates new, spatially constrained predictions about brain function
that may be tested in a variety of experimental settings.

Experimental Procedures
Subjects

For the main analyses, 120 healthy young adults (60M/60F; 25.0 ± 2.4 years old) were
recruited from the Washington University campus and the surrounding community. All
subjects were native English speakers, right-handed, reported no history of neurological or
psychiatric disease, and were not on psychotropic medications. For sub-cohort analyses,
sub-cohorts were matched on sex, age, and all QC-related measures (see Table S1). For the
generalizability analyses an accessory cohort of 40 subjects from a twin study in the general
population (40F; 30.0 ± 3.2 years old) was examined. These subjects were recruited with
relaxed restrictions on handedness (4 left-handed, 4 ambidextrous), psychotropic medication
use (8 subjects), and reported psychiatric or neurological history (6 subjects). Only one twin
from each twin pair was examined. All subjects gave informed consent and were
compensated for their participation.
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Data Collection and Processing
All subjects were scanned in a Siemens MAGNETOM Tim Trio 3.0T scanner with a
Siemens 12 channel Head Matrix Coil (Erlangen, Germany). A T1-weighted sagittal MP-
RAGE was obtained (TE = 3.06 ms, TR-partition = 2.4 s, TI = 1000ms, flip angle = 8°, 127
slices with 1×1×1 mm voxels). A T2-weighted turbo spin echo structural image (TE = 84
ms, TR = 6.8 s, 32 slices with 2×1×4 mm voxels) in the same anatomical plane as the BOLD
images was also obtained to improve alignment to an atlas. Functional images were obtained
using a BOLD contrast sensitive gradient echo echo-planar sequence (TE = 27 ms, flip angle
= 90°, in-plane resolution= 4×4 mm; volume TR = 2.5 s). Whole brain coverage for the
functional data was obtained using 32 contiguous interleaved 4 mm axial slices. The number
of volumes obtained in the main cohort was 336 ± 121 (range 184–724). In the accessory
cohort: 386 ± 35 (range 264–396).

Functional images underwent standard fMRI preprocessing to reduce artifacts (Shulman et
al., 2010). These steps included: (i) sinc interpolation of all slices to the temporal midpoint
of the first slice, accounting for differences in the acquisition time of each individual slice,
(ii) correction for head movement within and across runs and (iii) within-run intensity
normalization to a whole brain mode value (across voxels and TRs) of 1000. Atlas
transformation of the functional data was computed for each individual via the MP-RAGE
scan. Each run was then resampled in atlas space on an isotropic 3 mm grid combining
movement correction and atlas transformation in a single interpolation (Shulman et al.,
2010).

Functional Connectivity (RSFC) Processing
BOLD runs were obtained from subjects fixating a white crosshair on a black background
for RSFC data. When preparing this data, standard processing steps were utilized to reduce
spurious variance unlikely to reflect neuronal activity (Fox et al., 2009). These steps
included: (i) a multiple regression of nuisance variables from the BOLD data, (ii) a
frequency filter (f < 0.08 Hz) using a 1st order Butterworth filter in forward and reverse
directions, and (iii) spatial smoothing (6 mm full width at half maximum). Nuisance
regressions included ventricular signal averaged from ventricular regions of interest (ROIs),
white matter signal averaged from white matter ROIs, whole brain signal averaged across
the whole brain, six detrended head realignment parameters obtained by rigid body head
motion correction, and the derivatives of these signals and parameters.

Motion scrubbing
Head motion can cause spurious but spatially structured changes in RSFC correlations
(Power et al., 2012; Van Dijk et al., 2012). The data in this report underwent a “scrubbing”
procedure (see (Power et al., 2012; Power et al., 2013)) to minimize motion-related effects.
This procedure uses temporal masks to remove motion-contaminated data from regression
and correlation calculations by excising unwanted data and concatenating the remaining
data. For this report, the data were first processed without temporal masks. Then volume-to-
volume head displacement (FD) was calculated from realignment parameters and volume-
to-volume signal change (DVARS) was calculated from the functional connectivity image.
A temporal mask was formed by flagging any volume with FD > 0.2 mm, as well as
volumes 2 forward and 2 back from these FD-flagged volumes to account for modeled
temporal spread of artifactual signal during temporal filtering. Any volume with DVARS >
0.25% change in BOLD signal was also flagged. The data were then re-processed using
temporal masks that excluded all flagged volumes. Because regressions precede temporal
filtering, the betas generated from the censored regressions were applied to the entire
uncensored dataset to generate residuals, which were temporally filtered, followed by re-
censoring for correlation calculations. In this way, motion-contaminated data contributed to

Power et al. Page 13

Neuron. Author manuscript; available in PMC 2014 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



neither regressions nor correlations, and temporal spread of artifactual signal during
temporal filtering was minimized by augmenting temporal masks. This procedure removed
26 ± 18% (range 1 – 74%) of the data from the 120-subject cohort, leaving 245 ± 107 (range
126 – 715) volumes of usable data per subject. In the accessory cohort, 22 ± 16% (range 4 –
68%) of the data were removed, leaving 300 ± 70 (range 125 – 379) volumes of data per
subject.

Node Definitions
For the areal network, a collection of 264 ROIs defined in (Power et al., 2011) were used as
network nodes (Table S2). These ROIs represent the centers of putative functional areas
defined by task fMRI meta-analyses and by the fc-Mapping technique (Cohen et al., 2008).
All ROIs are modeled as 10 mm diameter spheres centered upon ROI coordinates.

For the voxelwise and modified voxelwise networks, all voxels (N = 40,100) within the
AAL atlas (Tzourio-Mazoyer et al., 2002) were used as in (Power et al., 2011). All voxels
are cubes with sides of 3 mm.

Edge Definitions
The subject-specific temporal masks formed from Motion Scrubbing were applied to each
subject’s reprocessed data, and a correlation matrix was calculated from node RSFC
timecourses (e.g., 264 nodes yields a 264 × 264 correlation matrix in each subject). For the
main analyses, 120-subject average matrices were used. All averages and comparisons of
correlations use Fisher z(r) transformations for calculations, followed by reconversion to
Pearson r values for reporting.

In Figure 2, all correlations were used regardless of the distances between nodes for
consistency with the previous literature. Short-distance correlations can arise from shared
patterns of local neuronal activity, but they can also arise from data processing (e.g.,
blurring, reslicing) and from head motion (Power et al., 2012). To minimize the effects of
questionable correlations on network structure, as in (Power et al., 2011), short-distance
correlations (Euclidean distance < 20 mm) were excluded from graph analyses in Figures 6–
8.

Graph Analyses
Graphs were formed using the nodes and edges described above. Traditionally, analyses of
weighted graphs must ignore negative edges and explore a range of thresholds to
characterize the properties of a network (Rubinov and Sporns, 2010). Proposals have been
made to modify some graph theoretic measures for unthresholded matrices (Rubinov and
Sporns, 2011), but here we follow the traditional approach. Many real-world networks have
edge densities of a few percent or less (see Figure 3) and the graph measures used in this
paper are developed in such networks. Accordingly, we applied thresholds to graphs to bring
them to similar levels of sparseness (~10%−2% for the areal graph, 5%−0.5% for the voxel-
based graphs) as in (Power et al., 2011). In general, results are presented over a range of
thresholds to give the reader a sense of the (lack of) dependence of a property upon
thresholds, and no formal definition of threshold ranges is proposed since it is essentially
arbitrary. Our thresholds matched the ranges used in (Power et al., 2011), which were
chosen to 1) yield complex and interesting community structures (> 4 communities), and 2)
occupy a range of edge densities often seen in the real-world networks in which techniques
like Infomap and measures like participation coefficients were originally developed.

Community detection was accomplished by subjecting thresholded (weights retained) graphs
to the InfoMap algorithm (Rosvall and Bergstrom, 2008), one of the best-performing
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community detection algorithms currently available (Fortunato, 2010), as in (Power et al.,
2011).

Degree (strength) was calculated as the sum of binary (weighted) edges on a node at a given
threshold. Participation coefficients and within-module z-scores were calculated after
(Guimerà and Nunes Amaral, 2005) on thresholded graphs. Relevant formulas are provided
below.

Degree for node i is defined as ki = Σj Aij, where Aij is the adjacency matrix of the graph.

Within-module z-score for node i is defined as , where κi is the number of edges
of node i to other nodes in its module si, κ̄si is the average of κ over all the nodes in si, and
σsi is the standard deviation of κ in si. Participation index for node i is defined as

, where κis is the number of edges of node i to nodes in module s, ki, is
the degree of node i, and NMis the total number of modules in the graph.

In Figure 6, the areal graph was analyzed at 9 thresholds (10% to 2% edge density in 1%
steps) and the participation coefficients arising from InfoMap community assignments were
summed and plotted as the proportion of the theoretical upper bound attainable over
thresholds.

In Figure 7, the modified voxelwise network was analyzed at 5 thresholds (2.5% to 0.5%
edge density in 0.5% steps; these thresholds all displayed complex community structure and
focal articulation points, see Figure S4) and the number of unique communities present
within a certain radius of the center of a source voxel were calculated using InfoMap
community assignments. Radii of 5–10 mm in 1 mm steps were sampled. Thus Figure 7
shows the results pooled from 30 analyses (5 thresholds × 6 radii; each analysis normalized
to its maximal value).

Computations and Visualizations
MRI preprocessing and RSFC processing was performed with in-house software. Network
calculations were performed in Matlab (2007a, The Mathworks, Natick, MA). Brain
visualizations were created with Caret software and the PALS surface (Van Essen, 2005;
Van Essen et al., 2001). Consensus assignments from (Power et al., 2011) are available at:
http://sumsdb.wustl.edu/sums/directory.do?id=8293343&dir_name=power_Neuron11.

Real-world Graphs
The real-world graphs presented in Figures 3, 4, and S1 are publicly available datasets
(www-personal.umich.edu/~mejn/netdata/). The citations for the networks are:

Yeast protein: (Jeong et al., 2000); Network science co-citation: (Newman, 2006); Political
blogs: (Adamic and Glance, 2005); Les Miserables word co-occurrence: (Knuth, 1993);
High-energy theory collaborations: (Newman, 2001); NCAA football: (Girvan and
Newman, 2002); USA power grid: (Watts and Strogatz, 1998); C. elegans neural network:
(Watts and Strogatz, 1998); Karate club: (Zachary, 1977); Dolphins: (Lusseau et al., 2003);
Internet: Mark Newman, unpublished; Macaque: (Harriger et al., 2012); Jazz musicians:
(Gleiser and Danon, 2003); PGP: (Boguñá et al., 2004); GDP: (Frank and Asuncion, 2010)

GDP by country in present day dollars, 1969-present: http://www.ers.usda.gov/data-
products/international-macroeconomic-data-set.aspx

S&P500 2009–2010: http://pages.swcp.com/stocks/#historical%;20data
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US House of Representatives voting patterns, 1984: http://archive.ics.uci.edu/ml/datasets/
Congressional+Voting+Records

For the GDP dataset, one year was removed due to corrupted data. In the HR1984 dataset,
one representative was removed who abstained from every vote. For the S&P500 dataset, if
a stock was off of the S&P for more than 5 of the possible 245 days, it was removed from
the analysis. All other missing days were replaced with within-stock mean values. Real-
world correlation networks were analyzed with and without global signal regression. For
congruence with RSFC results, results with global signal regression are presented. Results
without global signal regression were similar, with even stronger relationships between
community size and node strength.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The impetus to write this paper came from discussions during the 2011 Summer Institute for Cognitive
Neuroscience. We thank Tom Pearce, Steve Nelson, Chris Fetch, and Brad Miller for comments on an earlier
version of the manuscript, and Jessica Church, Joe Dubis, Eric Feczko, Katie Ihnen, Maital Neta, and Alecia Vogel
for data contribution. This work was funded by NIH F30 MH940322 (J.D.P.), NIH R21NS061144 (S.E.P.), a
McDonnell Foundation Collaborative Action Award (S.E.P.), Simons Foundation Award 95177 (S.E.P.), NIH 5R01
HD057076-03-S1 (B.L.S.), NIH R01HD057076 (B.L.S.), and NSF IGERT DGE-0548890 (Kurt Thoroughman).
Data were acquired with the support of NIH K12 EY16336 (John Pruett), NIH K01DA027046 (C.N.L.-S.), the
Barnes-Jewish Hospital Foundation (C.N.L.-S.), the McDonnell Center for Systems Neuroscience at Washington
University (C.N.L.-S.), and the Alvin J. Siteman Cancer Center (via NCI Cancer Center Support Grand P30
CA91842) (C.N.L.-S.). This project was supported by the Intellectual and Developmental Disabilities Research
Center at Washington University (NIH/NICHD P30 HD062171).

References
Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world

human brain functional network with highly connected association cortical hubs. The Journal of
Neuroscience: The Official Journal of the Society for Neuroscience. 2006; 26:63–72. [PubMed:
16399673]

Adamic, LA.; Glance, N. The political blogosphere and the 2004 U.S. election: divided they blog.
Proceedings of the 3rd international workshop on Link discovery; New York, NY, USA, ACM.
2005. p. 36-43.

Albert, Jeong, Barabasi. Error and attack tolerance of complex networks. Nature. 2000; 406:378–382.
[PubMed: 10935628]

Albert R, Jeong H, Barabasi A-L. Internet: Diameter of the World-Wide Web. Nature. 1999; 401:130–
131.

Barabasi, Albert. Emergence of scaling in random networks. Science (New York, N.Y.). 1999;
286:509–512.

Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF. Voxelbased lesion-
symptom mapping. Nat Neurosci. 2003; 6:448–450. [PubMed: 12704393]

Boguñá M, Pastor-Satorras R, Díaz-Guilera A, Arenas A. Models of social networks based on social
distance attachment. Physical Review E. 2004; 70:056122.

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling
RA, Johnson KA. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment
of stability, and relation to Alzheimer's disease. The Journal of Neuroscience: The Official Journal
of the Society for Neuroscience. 2009; 29:1860–1873. [PubMed: 19211893]

Butts CT. Revisiting the Foundations of Network Analysis. Science. 2009; 325:414–416. [PubMed:
19628855]

Power et al. Page 16

Neuron. Author manuscript; available in PMC 2014 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records


Carmichael ST, Price JL. Architectonic subdivision of the orbital and medial prefrontal cortex in the
macaque monkey. The Journal of Comparative Neurology. 1994; 346:366–402. [PubMed:
7527805]

Chang C, Glover GH. Time-frequency dynamics of resting-state brain connectivity measured with
fMRI. NeuroImage. 2010; 50:81–98. [PubMed: 20006716]

Churchland PS, Sejnowski TJ. Perspectives on cognitive neuroscience. Science (New York, N.Y.).
1988; 242:741–745.

Cohen AL, Fair DA, Dosenbach NUF, Miezin FM, Dierker D, Van Essen DC, Schlaggar BL, Petersen
SE. Defining functional areas in individual human brains using resting functional connectivity
MRI. NeuroImage. 2008; 41:45–57. [PubMed: 18367410]

Cole MW, Pathak S, Schneider W. Identifying the brain's most globally connected regions.
NeuroImage. 2010; 49:3132–3148. [PubMed: 19909818]

Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex.
Cerebral Cortex (New York, N.Y.:1991). 1991; 1:1–47.

Fornito A, Zalesky A, Bullmore ET. Network scaling effects in graph analytic studies of human
resting-state FMRI data. Frontiers in Systems Neuroscience. 2010; 4:22. [PubMed: 20592949]

Fortunato S. Community detection in graphs. Physics Reports. 2010; 486:75–174.

Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting
state brain networks. Journal of Neurophysiology. 2009; 101:3270–3283. [PubMed: 19339462]

Frank, A.; Asuncion, A. UCI Machine Learning Repository. University of California, Irvine, School of
Information and Computer Sciences; 2010.

Fransson P, Aden U, Blennow M, Lagercrantz H. The functional architecture of the infant brain as
revealed by resting-state FMRI. Cerebral Cortex (New York, N.Y.:1991). 2011; 21:145–154.

Girvan M, Newman MEJ. Community structure in social and biological networks. Proceedings of the
National Academy of Sciences of the United States of America. 2002; 99:7821–7826. [PubMed:
12060727]

Gleiser P, Danon L. Community Structure in Jazz arXiv:cond-mat/0307434. 2003

Gratton C, Nomura EM, Perez F, D'Esposito M. Focal brain lesions to critical locations cause
widespread disruption of the modular organization of the brain. Journal of cognitive neuroscience.
2012; 24:1275–1285. [PubMed: 22401285]

Guimerà R, Nunes Amaral LA. Functional cartography of complex metabolic networks. Nature. 2005;
433:895–900. [PubMed: 15729348]

Harriger L, van den Heuvel MP, Sporns O. Rich Club Organization of Macaque Cerebral Cortex and
Its Role in Network Communication. PloS One. 2012; 7:e46497. [PubMed: 23029538]

He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC.
Uncovering intrinsic modular organization of spontaneous brain activity in humans. PloS One.
2009; 4:e5226. [PubMed: 19381298]

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P. Predicting human
resting-state functional connectivity from structural connectivity. Proceedings of the National
Academy of Sciences of the United States of America. 2009; 106:2035–2040. [PubMed:
19188601]

Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature.
2001; 411:41–42. [PubMed: 11333967]

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL. The large-scale organization of metabolic
networks. Nature. 2000; 407:651–654. [PubMed: 11034217]

Joyce KE, Laurienti PJ, Burdette JH, Hayasaka S. A new measure of centrality for brain networks.
PloS One. 2010; 5:e12200. [PubMed: 20808943]

Knuth, D. The Stanford GraphBase : a platform for combinatorial computing. New York N.Y: Reading
Mass.: ACM Press ;;Addison-Wesley; 1993.

Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M,
Villringer A, Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in
FMRI data of the human brain. PloS One. 2010; 5:e10232. [PubMed: 20436911]

Power et al. Page 17

Neuron. Author manuscript; available in PMC 2014 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM. The bottlenose dolphin
community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral
Ecology and Sociobiology. 2003; 54:396–405.

Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human
brain functional networks. NeuroImage. 2009; 44:715–723. [PubMed: 19027073]

Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically modular organization of brain
networks. Frontiers in Neuroscience. 2010; 4:200. [PubMed: 21151783]

Newman, M. Networks: An Introduction. Oxford University Press; 2010.

Newman ME. The structure of scientific collaboration networks. Proceedings of the National Academy
of Sciences of the United States of America. 2001; 98:404–409. [PubMed: 11149952]

Newman MEJ. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences of the United States of America. 2006; 103:8577–8582. [PubMed:
16723398]

Pitcher D, Charles L, Devlin JT, Walsh V, Duchaine B. Triple dissociation of faces, bodies, and
objects in extrastriate cortex. Current Biology: CB. 2009; 19:319–324. [PubMed: 19200723]

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in
functional connectivity MRI networks arise from subject motion. NeuroImage. 2012; 59:2142–
2154. [PubMed: 22019881]

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Steps toward optimizing motion
artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage. 2013; 76:439–441.
[PubMed: 22440651]

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin
FM, Schlaggar BL, Petersen SE. Functional network organization of the human brain. Neuron.
2011; 72:665–678. [PubMed: 22099467]

Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure.
Proceedings of the National Academy of Sciences of the United States of America. 2008;
105:1118–1123. [PubMed: 18216267]

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations.
NeuroImage. 2010; 52:1059–1069. [PubMed: 19819337]

Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks.
NeuroImage. 2011; 56:2068–2079. [PubMed: 21459148]

Shulman GL, Pope DLW, Astafiev SV, McAvoy MP, Snyder AZ, Corbetta M. Right hemisphere
dominance during spatial selective attention and target detection occurs outside the dorsal
frontoparietal network. The Journal of Neuroscience: The Official Journal of the Society for
Neuroscience. 2010; 30:3640–3651. [PubMed: 20219998]

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD,
Woolrich MW. Network modelling methods for FMRI. NeuroImage. 2011; 54:875–891.
[PubMed: 20817103]

Tomasi D, Volkow ND. Functional connectivity density mapping. Proceedings of the National
Academy of Sciences of the United States of America. 2010; 107:9885–9890. [PubMed:
20457896]

Tomasi D, Volkow ND. Functional connectivity hubs in the human brain. NeuroImage. 2011; 57:908–
917. [PubMed: 21609769]

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B,
Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. NeuroImage. 2002; 15:273–289. [PubMed:
11771995]

van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE. Small-world and scale-free organization
of voxel-based resting-state functional connectivity in the human brain. NeuroImage. 2008;
43:528–539. [PubMed: 18786642]

Van Dijk KRA, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional
connectivity MRI. NeuroImage. 2012; 59:431–438. [PubMed: 21810475]

Van Essen DC. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral
cortex. NeuroImage. 2005; 28:635–662. [PubMed: 16172003]

Power et al. Page 18

Neuron. Author manuscript; available in PMC 2014 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH. An integrated software
suite for surface-based analyses of cerebral cortex. Journal of the American Medical Informatics
Association: JAMIA. 2001; 8:443–459. [PubMed: 11522765]

Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998; 393:440–442.
[PubMed: 9623998]

Wig GS, Schlaggar BL, Petersen SE. Concepts and principles in the analysis of brain networks. Annals
of the New York Academy of Sciences. 2011; 1224:126–146. [PubMed: 21486299]

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller
JW, Zöllei L, Polimeni JR, et al. The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. Journal of neurophysiology. 2011; 106:1125–1165. [PubMed:
21653723]

Zachary WW. An Information Flow Model for Conflict and Fission in Small Groups. Journal of
Anthropological Research. 1977; 33:452–473.

Zuo X-N, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP. Network
Centrality in the Human Functional Connectome. Cerebral Cortex (New York, N.Y.:1991). 2011

Power et al. Page 19

Neuron. Author manuscript; available in PMC 2014 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

- Reveals confounds in degree-based hub detection techniques in correlation
networks

- Utilizes multiple methods to convergently identify hubs in correlation
networks

- Identifies regions and nodes that support and link different parts of brain
networks

- Generates differential, testable, and spatially constrained hypotheses
regarding hubs
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Figure 1. Degree is a problematic measure of node importance in Pearson correlation networks
A) A computer network with 3 communities is shown. Degree identifies uniquely important
nodes in the graph and there is a weak relationship between degree and community size. B)
A block model corresponding to a birdsong correlation network. Three flocks are present,
each singing a song uncorrelated with the other flock. C) As in (B) except that blocks are
now allowed to correlate. This could correspond to a situation where there was similarity in
the birdsong of different flocks, or where flocks sang the same song for limited periods of
time. D) As in (C) except that the perfect correlations within blocks are relaxed to imperfect
correlations. This could correspond to individual imperfections in birdsong, or individual
birds switching songs occasionally.
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Figure 2. Degree is influenced by community size in RSFC graphs
A) The RSFC correlation matrix of a 264-node graph in 120 young adults. Communities
over a range of thresholds are shown as colors in the second panel. The number of nodes in
the communities and node strengths at every threshold are shown in the third and fourth
panels. A linear fit of node strength to community size is plotted for the 2, 4, 6, and 8% edge
density analyses. Small dots indicate individual datapoints, large dots indicate average
values in a community. Fits excluded communities with fewer than 5 nodes. The threshold
range used corresponds to that used in (Power et al., 2011) and spans thresholds where many
communities are present (higher edge densities such as 20% or 15% yield coarse structure
with 2 or 4 communities) down to thresholds where the graph begins to fragment due to
edge removal. B) Communities were identified in a voxelwise graph formed in the same
subjects. For the 5% edge density analysis, for every voxel, the size of its community and its
strength is shown on a brain surface. The default mode system is the largest community and
contains the voxels with highest degree. Linear fits of node strength to community size at
several thresholds are shown. Fits excluded communities with less than 250 nodes. These
thresholds correspond to those used in (Power et al., 2011). C) R2 of linear fits of node
strength to community size at several thresholds in each network (thresholds are reported in
terms of edge density and the threshold used on the correlation matrix to produce the desired
edge density).
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Figure 3. Degree is influenced by community size in Pearson correlation networks
The table lists the properties of 19 real-world networks, 5 of which are correlation networks
(red text). For each network Infomap was used to identify communities, and the the r and R2

values for linear fits of community size vs. node strength are shown. The bar graph plots the
R2 values. The plots at right depict several of the linear fits (depicted networks have squares
in the first column). For the correlation networks, several thresholds were analyzed (the edge
densities from Figure 2 for the RSFC graphs, and r > 0, 0.2, 0.4, 0.6, and 0.8 for the 3 other
correlation networks). For correlation networks, the top numbers are for the lowest threshold
and the bottom numbers (in parentheses) are for the highest threshold, conveying the range
of values the networks displayed; the R2 values are the mean over all analyses. As in Figure
2, fits for all graphs excluded communities with fewer than 5 nodes (and fewer than 250
nodes for the voxelwise graph). Reported graph properties reflect the properties of the nodes
qualifying for the fits (small communities excluded). See Figure S1 for further details and
graph properties.
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Figure 4. Degree-based hubs are weak and provincial in RSFC graphs but not in other real-
world graphs
A) A model network depicting how (Guimerà and Nunes Amaral, 2005) define node roles.
B) Node role plots for several real-world networks. C) Node roles were calculated in the
areal RSFC graph for each threshold in the 10-2% threshold range. Only a single hub ROI
was found (this is true across all positive thresholds: 44%-1% edge density). This node, in
the precuneus, is a provincial hub (the black sphere). One other node immediately anterior to
this node approaches but does not meet hub classification criteria (the gray sphere). D) Node
roles were calculated in the voxelwise RSFC graph for each threshold in the 5-1% threshold
range. Node roles at 5% edge density are plotted; this plot is typical of the other thresholds.
The surfaces show locations of voxels that, across thresholds, are identified as hubs in at
least 3 of 5 analyses. These voxels are provincial hubs located in the precuneus.
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Figure 5. Volume-based models of brain organization may distort information processing
properties of the brain
A) Assume a spatially embedded economic system in which California (CA) is a hub of
interstate commerce and Alaska (AK), Washington (WA), and Rhode Island (RI) play more
peripheral roles. A graph in which nodes represent states correctly identifies CA as a hub.
However, if states are represented by their areas (e.g., nodes of square miles), Alaska
dominates the graph structure and is identified as the seat of hubs in the network simply by
being the largest physical entity in the system. B) The parallels to RSFC are straightforward:
areas contain voxels in proportion to their volume, and nodes within larger areas (and by
extension members of larger systems) will tend be identified as hubs by degree simply
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because they are part of a large physical entity. Self-connections are allowed in the state
graphs to emulate how voxels can and will correlate strongly to other voxels within the same
area or system.
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Figure 6. Putative hubs in the areal network identied by high participation coefficients
A) A graph with several communities (yellow, green, pink) illustrates the meaning of
participation coefficient. B) Surface and spring-embedded plots of communities in the areal
graph at 5% edge density, with nodes colored by participation coefficient at right. C)
Summed participation coefficients across thresholds. See Figures S2–S3 for replicability
over sub-cohorts and the robustness of these calculations to data smoothing and global
signal regression.
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Figure 7. Articulation points: brain locations that are densely populated by functional systems
A) Communities in the 1% edge density analysis is shown; colors represent communities.
All communities with fewer than 125 voxels are colored white (and are treated as a single
community in community density calculations). B) Community density is calculated as the
number of unique communities present within some distance of a source node (here, within
8 mm of a source voxel, in the 1% edge density analysis). C) Summed community density.
See Figures S4–S5 for analyses of the influence of subcortical and contralateral tissue on
these calculations, replicability in sub-cohorts, and stability over the parameter spaces of
thresholds and sampling radii. The data in this figure and subsequent figures are derived
from single-hemisphere community analyses of all voxels within the AAL atlas, followed by
community density calculation excluding subcortical structures.
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Figure 8. Areal participation coefficients plotted over community density, with consensus
communities for reference
A) Overlaid data from Figures 6 and 7. The correlation between the two measures is r = 0.57
(calculated in ROIs where at least 10/19 voxels were defined in the community density
analysis, 245/264 ROIs). B) The consensus community assignments from (Power et al.,
2011) are provided as a reference to illustrate the communities present near areas of high
community density. Positions and MNI coordinates for peaks in community density are
shown. See Table S2 for ROI locations and summed measures. See Figure S6–S8 for flat-
map illustrations of the same data, similar findings in a separate cohort, and plots of the
interdependence of participation coefficient, community density, and degree.
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