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ABSTRACT The proposed equivalence of maximizing re-
productive value and fitness is examined for two model life
histories. In the first instance, it is assumed that offspring are
fledged before the start of the next breeding season. In this case
the proposed equivalence is verified. In the second model,
parents care for their progeny for more than 1 year. In this case
the optimal reproductive expenditure at a particular age is
shown to depend on both current reproductive value and the
diminution in survival rates of previously conceived young still
dependent on parental protection.

Recently, there has been considerable theoretical interest in the
evolution of life history phenomena (1-8). The problem, first
stated explicitly by Gadgil and Bossert (4), is as follows. Consider
an organism with limited (i.e., finite) resources at its disposal.
Further suppose that there exists heritable variation with regard
to the manner in which these resources are allocated. Then, one
wishes to determine the schedule of allocation-to growth, to
reproduction, and to maintenance-that maximizes the indi-
vidual's contribution to subsequent generations.

In attempting to answer this question, several authors (5, 6,
8, 9) have proposed that the allocation schedule in question is
that which maximizes reproductive value (10) at all ages. More
recently, however, this view has been questioned (1, 2). In
particular, it has been suggested that maximizing fitness and
reproductive value and fitness are equivalent only under the
restrictive circumstance that trade-offs between current fe-
cundity and subsequent survival and growth are confined to
operate within (and not between) age classes. The purpose of
the present paper is to examine this question in detail. Specif-
ically, it is argued that maximizing fitness and reproductive
value is indeed equivalent, provided that increased expendi-
tures for reproduction at age x do not adversely affect fecundity
and survivorship at previous ages y (y < x). This assumption
would appear to be met in nearly all cases, save those in which
there is extended parental care. In such instances, offspring as
yet unfledged can suffer increased mortality if the parents
breed a second time and turn their attention to the more recent
litter. Mathematically, this is equivalent to reducing the parents'
fecundity at earlier ages and, in such cases, natural selection can
be expected to maximize reproductive value plus a weighted
sum of prior years' reproduction. An analysis of this case is
given.

ANALYSIS
Preliminaries. Consider an organism with the life cycle

depicted in Fig. 1. The population is censused once a year
during the breeding season, nx(t) being the number of x-
year-old individuals alive in year t. Let mx be the number of
offspring produced by an x-year-old individual. Of these, cx
survive to be counted as young of the year (yearlings) the fol-
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FIG. 1. Schematic representation of a population in which indi-
viduals reproduce at discrete (yearly) intervals. The number of in-
dividuals in each age class present during the breeding season is xi.
Each of these produces mi offspring of which ci survive to the breeding
season in their first year of life (zeroth age class). The product cimi
= Bi is termed the effective fecundity of an i-year-old individual. The
pi are postbreeding survival probabilities. Thus, po is the probability
that a 0-year-old individual alive during the breeding season at time
t survives to become a 1-year-old individual during the breeding
season the following year.

lowing year. Furthermore, let Px be the probability that an
x-year-old individual survives to breed again at age x + 1 in
year t + 1. On achieving stable age distribution (11, 12), this
population will multiply annually at rate XI. Xi is the positive
root of the "stable age" equation (13):

w

1 = L X-(x+ 1) xBx.
0

[1]

Here, Bx = cxmx lo = 1, and lx = Hl `1 Pk, x > 1. More gen-
erally, if N(t) is a vector whose elements are the numbers of
individuals in the various age class at time t,

w+l
n(t)Z=E atiXitNi.

1
[2]

Here, Xi and Ni are the ith eigenvalues and eigenvectors (13)
of the so-called Leslie (11, 12) matrix which maps N(t) into N(t
+ 1). The as are constants chosen to reflect initial condi-
tions-i.e., so that N(O) = E; aiNi. Eq. 1 is thus the characteristic
equation of the Leslie matrix. Note that, because it is generally
true (14) that

Xl > IXj'lI,
we have in the limit as t - co, N(t) - N1, which is therefore
called the stable age distribution. Additionally, note that the
population comes to multiply each year at rate XI.
Now, suppose that individuals can allocate resources to re-

production, growth, or maintenance. For the present, we con-
sider the allocation schedule shown in Fig. 2. In each year, re-
sources are harvested (or produced, in the case of plants) in
amount rx, x being the age of the individual in question. The
total amount of resources available at age x, which we will call
Rx,: is thus equal to rx plus whatever has been accumulated
during preceding years. Of this total, a fraction, Ex, is allocated
to reproduction. The rest goes to maintenance and growth. Ex
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FIG. 2. Schematic representation of age-specific availability of resources that can be allocated to reproduction, maintenance, and growth.
At each age class, resources are produced in amount r.. Of the total, R., available at that age, one fraction, EXRX, is devoted to reproduction,
and another, MXRX, is used for maintenance. The remainder (1 - EX - Mi), is used for growth, and some of it will be available for future repro-
duction at ages j > x.

is often termed the reproductive expenditure or effort (4, 5, 8,
14-16) at age x. Notice that, under the allocation scheme shown
in Fig. 2, increasing Ex will affect fecundity and survival at ages
y 2 x but not at younger ages. For most organisms, this as-
sumption seems inescapable.

Charlesworth (17) and Charlesworth and Williamson (18)
have pointed out that both the rate of spread of a rare mutant
and its ultimate probability of fixation vary positively with Xi.
Accordingly, the question of characterizing an optimal life
history becomes one of determining the set of age-specific ex-
penditures E = (Eo, ... , Es,) that maximize XI. This fact was
first appreciated by Gadgil and Bossert (4) who explored the
problem numerically. At about the same time, Hamilton (19)
and Emlen (3) published results that can be used to solve the
problem analytically. Specifically, these authors showed that

(bXl/bBx) = Ix/X1xVT [31
and

(bX1/(Px) = (lX/X1xVT)(vx+ 1/vo). [4]
Here, vX/vo is the reproductive value (10) of an x-year-old in-
dividual, and VT is the total reproductive value of the popu-
lation (13).

Eqs. 3 and 4 suggest two conclusions which had been antic-
ipated by Cole (20) and Lewontin (21). First, from Eq. 3 we
note that increased reproduction at earlier ages confers greater
improvements in XI than do comparable increases at later ages.
Second, Eq. 4 suggests that the advantages accruing from im-
proved survivorship at a particular age depend on the following
year's reproductive value. In the case of man and other verte-
brates with deterministic growth, reproductive value is a uni-
modal function of age, peaking roughly at the first reproduction
(3, 10).* This suggests that mortality is either best postponed
until late in life or experienced early on, or, more precisely, that
selection will most likely "tolerate" increased mortality when
reproductive value is low if, in exchange, something else is
gained-for example, increased survival among sibs, enhanced
parental fecundity, etc. In such cases, the interests of the off-
spring will often be at variance with those of the parent (23).

Equivalence of Maximizing Reproductive Value and
Fitness. Let us now proceed to combine the notion of trade-offs,
as expressed in Fig. 2, with the sensitivity analysis of Emlen (3)
and Hamilton (19). We consider the selective advantage of a
mutant with increased fecundity at age x. We assume that this
increase is due to an increase in the allocation, E., of resources
to reproduction at that age. Suppose the fecundity of the mutant
is Bx + dBx in which Bx is the fecundity of the rest of the
population. Then the selection advantage, s(Bx), of the mutant
is given by the expression

s(B,) = r(BX + dB,) - r(Bx) [5]

in which r = ln XA. Expanding this expression about Bx, the
population average, we obtain

s(Bx) = r(Bx) + dBx(dr/dBx) + . .. - r(Bx) - dBx(drIdBx)
or, substituting r = In XI,

s(Bx) - (dBx/Xi) (dX,/dBx). [6]
From our model of resource allocation (Fig. 2), we note that

increasing reproductive expenditure at age x affects the fol-
lowing entries in the life table: (i) BX, which will generally in-
crease in value; (ii) Px, which will generally decline (i.e., fewer
resources allocated to maintenance); and (iii) BY > X and py > x,
which will also usually decline. Thus, we can write

(dX,/dBx) = (b~X/bBx) + (6Xi/bpx) (dpx/dBx)
rbXjdB adX'dp1E [f+ Y AF . [71

y=x+l @BY dBX apydBX
Substituting for (bXj/aBx), (aXu/Iapx), (bA1/6By), and
(bX1/6p.) yields
s(Bx) = (lx/Xlx+lVT) i[dBx + (vx+ 1/vo)dpx]

+ (px/lXi) [dBx+1 + (Vx+2/vo)dpx+ ]

+ (PxPx+ 1/X,2)[dBx+2 + (V.+3/vo)dpx+ 2]
+ 1. [8]

Now, suppose that Bx = BX, a value that maximizes XI. In this
case, it can be shown that

d(vx+ 1/vo) = (1/Xi)f[dBx+ 1 + (Vx+2/vo)dpx+ 1]

+ (px+1/Xi)[dBx+2 + (vX+3/vo)dpx+2]
+ (Px+ IPx+ 2/X,2)[dBx+s3 + (Vx+4/vo)dpx+3]

+. ... [9]
If we compare this expression with Eq. 8, it is immediately
obvious that

S(bx) = (lX/lX+lVT)[dBx + (vX+ i/vo)dpx
+ pxd(vx+ I/vo)IBx] = 0. [10]

In other words, a reproductive expenditure at age x, Ex, that
maximizes X1 also maximizes the quantity Bx + Px(VX+ 1/
VO).

This result was first offered without proof by Williams (9).
Other authors (5, 8) have given alternative derivations. In
particular, Schaffer (5) showed that the stable age equation can
be rewritten in the form
Xx+ 1 - B0Xx - poBXx-l 1..-x-Bx-

- lx[Bx + Px(Vx+ Il/Vo)] = 0. [11]
From this equation, it automatically follows that maximizing
Bx + Px(Vx+ i/vo) maximizes XI. In a quite different vein,

* For analysis of the consequences to life history theory when growth,
and hence increases in fecundity, continues through life, see Michod
(22).
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Taylor and his associates (8) used the methods of control theory
to reach the same conclusion. We observe further from the
definition of reproductive value

(vx/vo) = (B./ A1) + (pxBx+ 1/X12)
+ (pxpx+,Bx+2/X13) + ....

that
XI(vx/vo) = Bx + Px(vx+ 1/vo).

Then, we have
SO.) = (1./XIx+ IVT)[d(Xl vx/vo)]Ibx.

But, since at Bx = Ix, dXj = 0, the above simplifies to

SA) = (lx/XlXVT)[d(vx/vo)] = 0. [12]
We have thus shown that E. also maximizes (vx/vo).

Notice that Eqs. 10 and 12 characterize conditional op-
tima-that is, the expenditures at other ages EY are consid-
ered to be fixed. To calculate the global optimum, one considers
a(w + l)-dimensional space whose axes are (Eo, . . ., Em). The
conditional optima, E.(Ey) = Ex(Eo . . . , Ex-1, Ex+ 1, * * *, Ew)
describe w dimensional surfaces in this space. The global op-
timum E = (Eo, . .. , Ew) is the point at which these surfaces
intersect. Because for each surface (vx/vo) is maximal for fixed
EY X. it follows that, at the point of intersection, reproductive
value is simultaneously maximized for all the age classes.
[Schaffer and Rosenzweig (6) examined the shapes of the con-
ditional optima for organisms with three age classes; they
pointed out that, depending on the nature of the trade-off be-
tween Bx and Px (vx+ 1/vo), there can obtain one or several
values of E = (E0o, . . ., E) corresponding to local maxima in
Xl.]
The preceding results appear to be useful on two counts: First,

Eq. 10 gives a criterion for the maximization of X, in terms of
quantities which on biological grounds can be expected to trade
off against each other. For most mutations affecting the life
table, it is reasonable to suppose that an increase in fecundity
at a particular age is achievable only at a cost to subsequent
survival and reproduction. Eq. 10 shows exactly how the ben-
efits and costs are assessed. Moreover, by plotting Bx(pxvx+ 1/vo)
against px(vx+ I/vo), the circumstances favoring the evolution
of semelparity, iteroparity, or some combination of the two can
be described (6, 7, 24, 25).

In addition, by pointing out the equivalence of maximizing
reproductive value and X, for a wide class of life history prob-
lems, Eq. 12 places current theory on a conceptual footing
which is in harmony with the assumptions of previous au-
thors-for example, Fisher (10) and MacArthur (26).
Consequences of Extended Parental Care. The preceding

discussion assumes that increasing reproductive expenditure
at a given age has no effect on fecundity and survival at pre-
vious ages. For the majority of cases, this would appear rea-
sonable. Consider, however, the situation in which the period
of parental care extends beyond the first year of life. Then,
when computing the optimal reproductive effort at age x, it
must be remembered that previous years' offspring may still
depend on their parents (e.g., for food and protection). As a
consequence, increasing parental investment in new offspring
can result in resources being denied their older sibs. The result
will be to lower the survival of the older offspring. This is
equivalent to reducing the fecundity of the parents in previous
years.
To see this, consider a life history in which young do not

become independent until age r. Let cTx be the probability that
the progeny of an x-year-old individual survive until age T.
Then the stable age equation becomes

w
1 = X --(x+l)lxBx [13]

in which we define Bx = cTXmX, T = 1, and lx = II Px, x>

r. Clearly, increasing expenditure on young produced at age
x can be viewed as reducing fecundity at ages y < x through
the effect on the survival of previously produced progeny.
To calculate the selective advantage accruing to a mutant

with an increase dBx in fecundity at age x, we proceed as in the
preceding section. Thus,

s(Bx) = xE T~|t dY\
+

| By dBS + ?idBx| [14]1?B dB ?Py d~

Notice that the second sum (from age x to w) is the same as
before. Eq. 14 thus simplifies to

s(BA) = AlV |d(vx) +- X-Yl1dB] = 0. [15]

The implications of this result are obvious. Suppose that, in
the absence of extended parental care, the optimal reproductive
effort at age x is Ft. If we now suppose that there is extended
parental care, we find that the optimum expenditure, EXV1l
under the new conditions 'is less than that previously calculated.
This is because current value, vxjvo, is now being traded off
against the contributions from prior reproduction. As might be
expected, the reduction in these contributions, dBy < 0, is
weighted by (ly/lx) and Xx-y-the first because the parent has
a greater chance of surviving to age y < x; the second because
offspring produced one or more years ago are always worth
more than today's progeny in a population with XI > 1 (10).
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