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ABSTRACT A procedure for the dynamical simulation of
activated processes, such as ligand binding and enzymatic re-
actions, in a globular protein is outlined. Preliminary calcula-
tions of the transition state geometry and barrier crossing tra-
jectories are presented for a model reaction, the rotation of an
aromatic ring in the bovine pancreatic trypsin inhibitor. The
results show that repulsive nonbonded interactions between the
ring atoms and the atoms in the surrounding protein matrix
determine the dynamical character of the reorientation process;
the nonbonded interactions are the source of the rotational
barrier and of the impulses that speed up or slow down the ring
motion during the barrier crossings.

Activated processes play an important role in enzymatic reac-
tions and more generally in the dynamics of protein molecules
(1). In an activated process, the observed rate is limited by an
energy barrier between the initial and the final state. Most
processes in native proteins that take place on a time scale of
microseconds or longer are likely to involve such an activation
step. Measurements have yielded information concerning the
free energy barriers associated with a variety of activated
processes in proteins; these include the rotations of aromatic side
chains (2-4), the motion of diatomic ligands through the globin
of heme proteins (5, 6), and the interconversion of substrate and
product in enzymes such as triosephosphate isomerase (7). For
the cases listed the number and magnitudes of the free energy
barriers involved have been determined (4-7). Further, mea-
surements of the temperature dependence of the rates have
demonstrated that there are large entropies of activation that
point to the participation of the protein degrees of freedom in
the activated process (3-6).
The availability of these and other data suggests that an in-

vestigation of the detailed dynamics of activated processes in
proteins is in order. Of primary interest are the protein con-
tributions to the barriers and the dynamics of the motion across
the barriers in the interior of a protein. In some cases (e.g., en-
zymatic reactions) the protein-substrate interactions may act
to lower the activation barrier, whereas in others (e.g., ligand
penetration) the interactions are themselves the source of the
barrier. Because of the mobility of the interior of a protein (8),
the measured barriers correspond to an average over a range
of instantaneous interactions. Transient relaxation effects due
to concerted displacements of the protein atoms may signifi-
cantly lower the effective barriers. Because the density of
proteins is high (9), frictional damping can occur during the
transition and lead to diffusional rather than inertial barrier
crossings (10-12).
To provide a microscopic description of activated processes

in proteins, it will be necessary to carry out a detailed analysis
of the dynamics of the atoms involved. In one approach to the
problem, which is essentially static in character, empirical en-
ergy functions have been used to estimate the activation barriers

for 1800 rotation ("flips") of the rings of the eight aromatic side
chains of the bovine pancreatic trypsin inhibitior (PTI) (13, 14).
Such studies have demonstrated the essential role of protein
structural relaxation in the rotation of the rings. Only by min-
imizing the protein energy for each ring orientation were the
calculated rotation barriers in good agreement with the NMR
measurements (3, 4); the barriers obtained for a rigid protein
matrix were much too large. From these static treatments it is
clear that to determine the rate of an activated process inside
a protein it is necessary to include the correlated atomic dis-
placements that can occur.
The alternative approach to motion in proteins is dynamic

in character. The trajectories for the component atoms are
determined by solving the simultaneous classical equations of
motion with forces evaluated from empirical energy functions
and with average kinetic energies corresponding to a given
temperature. The atomic motions that take place in the inte-
gration period of 10-100 ps have been analyzed in a study of
PTI (8, 15). The simulation revealed a wide variety of motional
phenomena that occur at ordinary temperatures. In particular,
the orientation fluctuations of two tyrosine rings in the neigh-
borhood of their local minima were analyzed in some detail
(16). It was shown that the torsional motion is significantly
damped by nonbonded interactions of the rings with the sur-
rounding atoms of the protein matrix. This suggests that fric-
tional effects can be large enough to influence the nature of
activated structural transitions and that they might be detected
in the 1800 rotations of aromatic rings.
A dynamics simulation of the type described above does not

allow one to study activated processes directly because they are
by their nature rare events. It is impossible to obtain many
barrier crossing trajectories for an activated process with a rate
constant less than -1011 s-1 in a simulation of length 10-100
ps. Although static reaction-path studies do provide an ap-
proximate value for the energy barrier, they cannot give in-
formation concerning the dynamics of the activated process.
To overcome the limitations of standard reaction path and
molecular dynamics calculations, a synthesis of these techniques
with the widely used concepts of transition state theory can be
employed. Such an approach has been applied to small-mole-
cule collision dynamics (17, 18) and more recently to vacancy
diffusion dynamics in regular solids (19). The first step in such
a calculation is the determination of a transition region in which
a dividing surface between reactants and products can be de-
fined. It is then necessary to generate a set of configurations in
this region with coordinate values (other than the ones speci-
fying the region) in accord with a Boltzmann distribution for
the temperature under consideration. Given the transition-state
configurations, two quantities have to be evaluated. The first
is the probability that a system composed of reactants at equi-
librium will be in the transition region (in transition state theory,
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this corresponds to the equilibrium constant between the acti-
vated complex and the reactants), and the second is the prob-
ability that the transition-state configurations with appropriate
atom velocities will go on to give product (in transition state
theory, this corresponds to the transmission coefficient, K). Al-
though various aspects of this procedure (sometimes referred
to as "phase-space/trajectory calculations") can be done ana-
lytically in simple cases, the complexity and multidimension-
ality of a protein reaction requires that the problem be solved
numerically by appropriate combinations of Monte Carlo and
molecular dynamics techniques.

In this paper, a preliminary attempt is made to apply the
phase-space/trajectory technique to the model problem of the
1800 rotation of a tyrosine ring in PTI. The system studied
consisted of the 454 heavy (nonhydrogen) atoms of PTI and four
internal water molecules; hydrogen atoms were included im-
plicitly by a suitable adjustment of heavy atom parameters. The
calculations were based on an empirical energy function
composed of a sum of terms associated with bond lengths, bond
angles, dihedral angles, hydrogen bonds, and nonbonded (van
der Waals and electrostatic) interactions (13, 16, 20). We focus
here on the determination of the transition region, the gener-
ation of configurations in that region, and the ring reorientation
dynamics of these configurations. For specific study we chose
Tyr-35, whose aromatic ring is buried in the interior of PTI.
Because the rotational barrier is known to be dominated by
nonbonded interactions between ring atoms and those of the
surrounding protein (13, 16), this case is an ideal example for
examining the dynamics of a process in which the effects of
protein relaxation and frictional damping are important.

TRANSITION STATE SAMPLING
Sets of transition state configurations were generated by a
combination of molecular dynamics (21) and Monte Carlo
procedures (22). Because the arrangement of atoms around the
tyrosine is expected to vary significantly due to the normal
fluctuations that occur at equilibrium in the native protein, two
sets of coordinates were chosen from a molecular dynamics
simulation (16) at T = 308 K. The first of these was from the
beginning of the run (after 4.9 ps of equilibration) and the
second from the end of the run (9.8 ps later). The average root
mean square atomic position fluctuation was 0.9 A, which
provides an indication of the variation of the tyrosine envi-
ronment in the protein at room temperature. To obtain a con-
figuration in the transition region from the first coordinate set,
the Tyr-35 ring was rigidly rotated until the dihedral angle Xa5
= 180°; this would be near the barrier maximum due to the
local dipeptide potential (20) (X2 = 710 in the starting coor-
dinates). Close nonbonded contacts in the resulting structure
were relaxed by a modified Metropolis Monte Carlo method
(22) in which trial conformations were generated by randomly
displacing successive atoms within a cube of side 0.09 A. Atoms
which were within 10 A of C3L in the initial coordinates were
sampled more frequently than the remaining atoms (70% of
the trial displacements involved one of these atoms, compared
to 40% if all atoms were sampled with equal probability); this
procedure speeds up relaxation, but still yields a Boltzmann
distribution of configurations. To hold the ring in its unstable
orientation in the transition region, trial conformations in which
|X5- 1800 1 > 2.5° were rejected. With T = 300 K, approxi-
mately half of the trial conformations were accepted. The po-
tential energy of the protein fell rapidly from an initial value
of about 750 kcal/mol (1 kcal = 4.18 kJ) during the first 10,000
steps and decreased more gradually during the subsequent
200,000 steps (see Fig. la). At this point, trial trajectory calcu-
lations were performed (see Trajectory Calculations) for two
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FIG. 1. Potential energy of successive configurations of PTI
generated by the Monte Carlo calculations. Points are plotted at in-
tervals of 10,000 steps. Angles above segments of plots indicate values
near which X35 was constrained. Arrows indicate configurations used
in trajectory calculations. (a) The "A" series. (b) The "B" series.

relaxed conformations with x2 180°. These trajectories,
which failed to exhibit barrier crossings by the ring, suggested
that the actual barrier in the ring rotational potential due to the
protein contacts was located at X2 < 180°. The Monte Carlo
calculations were therefore continued by rigidly rotating the
ring to X2 = 160° and carrying out further computations as
described above with a rejection criterion X| - 16001 > 2.50.
Because trial trajectories again failed to exhibit barrier crossings
by the ring, the Monte Carlo calculations were continued with
X2 ;z- 1400. In this region, successful trial trajectories were
obtained, so that this region was chosen as a transition state.
Constrained Monte Carlo calculations were continued in the
region to generate configurations for detailed trajectory study
(set "A"). The potential energy variations during the sequence
of Monte Carlo calculations is shown in Fig. la.
The second set of transition state configurations (set "B") was

generated by a corresponding procedure from the later dy-
namic coordinates. The transition region angle was found to
be X2 z 2000; this second Monte Carlo series is summarized
in Fig. lb.

TRAJECTORY CALCULATIONS
To compute a trajectory that passes through a given transition
state configuration, it is necessary to assign initial velocities to
all of the atoms. With these positions and velocities as initial
conditions, one half of the trajectory (e.g., the ring falling from
the transition state into the final state valley) was determined
by a molecular dynamics calculation including motion of all
of the protein atoms (16). The other half of the trajectory (e.g.,
the ring rising from the initial state valley to the transition state)
was obtained by using the velocities with opposite signs as the
initial conditions, calculating the corresponding trajectory by
the molecular dynamics method and reversing it in time.

For the study reported here, the velocity assignments were
carried out in the following manner. A local reaction coordinate
for ring rotation was defined (16) as the torsional angle of the
best plane through the ring atoms about the axis which passes
through CL and Cs. Reaction coordinate velocities (i.e., tor-
sional angular velocities for the ring) were specified by assigning
velocities perpendicular to the plane of the ring for the atoms
CM, CM, C3,CM ; these velocities had equal magnitudes, and
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the signs were consistent with overall ring rotation. The mig-
nitudes of these velocities were chosen by sampling an effusion
velocity distribution (23) for the torsional motion to obtain the
proper weighting for determining a transition rate (18). Ve-
locities for all other atoms of the protein, and for the in-plane
motions of the above four atoms, were chosen by sampling a
Maxwellian distribution (18, 23). Both distributions corre-
sponded to 300 K. This procedure, which involves separation
of the ring initial torsional velocities from the rest of the protein,
is a simplification corresponding to the assumption that the
protein has infinite mass and moment of inertia, and that the
aromatic ring is effectively rigid (24).
With the procedure outlined above, five trajectories were

calculated for each of the two transition state sets; the config-
urational starting point is indicated as Al-A5, B1-B1 in Fig. 1.
Integration of the simultaneous equations of motion for the
entire protein was performed by means of the Gear algorithm
(16, 25) with time steps of 9.78 X 10-16 s. The kinetic energy
in the transition configuration associated with the angular
motion varied from 0.16 to 1.44 kcal/mol. The total length of
each trajectory was 1.17 ps; it required 10 min of IBM 360/91
computer time.

RESULTS
In this section, we present some of the significant aspects of the
two transition regions and of the trajectories calculated in the
two regions.

Transition regions
The transition configurations generated within each series (set
A or set B) show qualitative similarities, but there are important
differences between the two series. In the A series, the local
density of atoms around the Tyr-35 ring is somewhat higher
than in the B series. The average number of heavy atoms within
5 A of a Tyr-35 ring carbon is close to 20 (excluding atoms di-
rectly bonded to the ring) for series A; the corresponding
numbers for the B series and for the x-ray structure (26) are 17
and 21, respectively.
The substantial difference in Xa, for the two sets of transition

states results from the dominant role played by local backbone
atoms and other nearby atoms of the protein in determining the
shape of the potential energy barrier to ring rotation. The
neighboring protein matrix atoms whose repulsive nonbonded
contacts with the ring atoms are important in determining the
Xss values of the two transition regions are shown in Table 1.
The atoms listed are those that exert the most significant torques
about the Qs-Cis ring axis in the Monte Carlo series from which
the transition configurations were selected. The values of the
torques are obtained by averaging over the final 200,000 steps
of each Monte Carlo series. It can be seen that most of the in-
teractions are with local backbone atoms (C' , C35, N36, C36,
036), but that spatial neighbors (G0, 037, 039) and one of the
internal water molecules contribute as well.

Table 1. Nonbonded interactions in transition states

A series B series
Torque, Torque,

Atom pair kJ/mol Atom pair kJ/mol

C615-010 14.9 C02-N36 -9.2
C35-N36 -13.3 Q315-039 6.7
C'35-W5 5.7 35-C36 -5.4
C35- 35 -4.1 C'35-W5 -3.9
C35-037 3.5 35-C35 -3.0
C('Z35,-W." 2.6 CA -C15 2.5

- ite Carlo averages were calculated also for bond angles
and dihedral angles of Tyr-35 to determine the strains in these
internal coordinates in the two sets of transition states. The re-

sults are compared in Table 2 with those obtained in the en-

ergy-refined geometry (13). Except for Css-C' -C35 in the A
series, the bond angle deformations correspond to increases in
the bond angles of the sequence of atoms comprising C2,C3s,
Ci, C&, C35, N36. These deformations serve to relieve the stress
arising from the nonbonded repulsion between C12 and N36.
The associated bond angle stresses in the Monte Carlo averages
amount to 5-10 kcal/mol, which is similar to the stresses found
in the static barrier calculations (13). The dihedral angle de-
formations (035, 1/35, X1s) seem to involve a more complicated
set of interactions, arising from both near-neighbor (e.g.,
C3-N36) and longer range repulsion.

Trajectories

All of the 10 sample molecular dynamics trajectories resulted
in successful crossing of the potential energy barrier for ring
rotation. The times required for a complete ring reorientation
range from 0.5 to 1.0 ps. In every case the ring torsional angle
increased monotonically with time during the barrier crossing.
However, there are some significant differences in the detailed
time variations of the angle. In seven trajectories, the angular
motion corresponded to that expected for a simple barrier; that
is, the ring slowed down somewhat when the ring was near the
top and then sped up as the ring moved down the far side. Fig.
2a shows the time variations of the ring torsional angle and

torsional angular velocity for one such case, trajectory B5. In
the other three trajectories (two in series A and one in series B),
the torsional motion of the ring was nearly stopped one or more

times during the barrier crossings; an example is trajectory A5
(Fig. 3a).
A detailed analysis shows that the torsional motion of the ring

in every trajectory can be accounted for in terms of nonbonded
repulsions between ring and protein matrix atoms. More spe-

cifically, the total impulse due to the resulting torques that
exceed 1011 erg/mol in magnitude at any instant is nearly equal
to the observed angular momentum change of the ring during
the interval over which these torques act. The time variations
of all such torques acting during trajectories B5 and A5 are

shown in Figs. 2b and 3b, respectively. Analyses of these figures
and corresponding ones for the other trajectories show that most
of these torques have substantial magnitudes only for rather
short intervals (<0.1 ps). Significant roles in promoting and
opposing the ring rotations are played by backbone atoms of
residues 35 and 36 as well as atoms that are more distant in the
primary structure (Table 3). Particular matrix atoms tend to
have similar effects within the trajectories of each set, but some
different atoms are involved in the two sets. Certain matrix
atoms switch from rotation-opposing to rotation-promoting roles
as the ring squeezes by them in a given trajectory (e.g., N36 in
both sets).

Table 2. Structural features of transition states

Internal Angle, °
coordinate ERG* A series B series

Cq5-Ca5-C63 120.7 117.6 116.7

C"- C35-C5 114.5 117.9 120.5

C35-C35-C35 114.1 109.1 118.9

N36-C35-CL5 111.1 113.9 116.5

035 271 258 296
1//35 133 139 115

X35 172 186 164

* Energy-refined geometry (see ref. 13).

W535-C36 1.4al5-036 -1.7

W,5 is a solvent water molecule.
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FIG. 2. Barrier crossing trajectory of Tyr-35 in a low-density
transition region (type A). (a) Ring torsion angle (4)) and torsional
angular velocity (0) as a function of time; (b) torques exerted on the
ring by particular matrix atoms due to nonbonded interactions
(contributions from all atoms for which the repulsion exceeded 0.6
kcal/mol are included).

Fluctuations in the bond angles and dihedral angles of Tyr-35
during the ring rotations correspond to those found in the
transition state structures (Table 2). Certain bond angle fluc-
tuations are correlated with the occurrence of ring-backbone
nonbonded contacts (particularly between C23 and N36). By
contrast, the fluctuations in the dihedral angles OsW, {,ss and Xss
appear to be uncorrelated with the ring rotations; they are

Table 3. Atoms that promote or oppose crossings
Portion of
trajectory A series B series

Ascent P: 01o, NA P: C- , N36
(4 < -300) 0: C35 0: C35, C35

Crossing peak P: 010, C35, N36 P: C35
(-300 <4 < 300) 0: N36 0: N36, W5

Descent P: N36 P: N36
(4 > 300) 0: 0lo, NG1 0: C35, C39

P, atoms that promoted crossings in the indicated region in three
or more trajectories; 0, atoms that opposed crossings in the indicated
region in three or more trajectories.

-1204 -60

FIG. 3. Barrier crossing trajectory of Tyr-35 in a high-density
transition region (type B). (a) Ring torsion angle (4)) and torsional
angular velocity (4)) as a function of time; (b) torques exerted on the
ring by particular matrix atoms due to nonbonded interactions
(contributions from all atoms for which the repulsion exceeded 0.6
kcal/mol are included).

generally similar to what is observed in the equilibrium mo-
lecular dynamics simulations of PTI; e.g., X s fluctuates within
160° + 300 in all trajectories.

DISCUSSION
Although the present study provides only preliminary dy-
namical results for the Tyr-35 ring flips model of an activated
process, a number of conclusions are possible. It is clear that the
barrier is dominated by interactions between the ring atoms and
those of the rest of the protein. A comparison of the two sets of
transition configurations obtained by the combined molecular
dynamics-constrained Monte Carlo calculation shows that they
differ significantly, both in the number of contacts and in the
individual atoms involved in opposing or promoting ring
rotation. Thus, the sample trajectories described in this paper
represent crossings through two local regions of a larger tran-
sition state domain; it is indicated schematically in Fig. 4. A
calculation of the ring flip rate constant would require extension
of the present treatment to include a more complete sampling
of the transition region and of trajectories for different con-
figurations in that region. In addition, as already outlined in the
introduction, an evaluation of the equilibrium probability of
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FIG. 4. Protein energy ridge separating the two valleys that
correspond to stable orientations of the Tyr-35 ring. Trajectories that
cross through two regions (A and B) of this ridge have been sampled;
two such trajectories are indicated by dotted lines. Trajectories
crossing through region A may exhibit some slowing down due to the
nearby bulge, which is the result of nonbonded repulsion between ring
and protein matrix atoms.

each configuration is needed. The latter can be achieved by
sampling successive portions of space that connect the transition
region with that in the neighborhood of the equilibrium ge-

ometry (19).
An important result common to all of the trajectories is that

the stresses arising from nonbonded repulsion (e.g., that be-
tween Ga5 and N36) are relaxed during the dynamics by local
configurational adjustments (such as those reflected in the bond
angle deformations) on a time scale short compared to the ring
reorientation. This provides support for the use of adiabatic
calculations to estimate the potential energy of conformational
barriers and helps to explain why such estimates are in good
agreement with experiment (13, 14). Examination of the tra-
jectories shows further that the torques exerted on the ring act
for very short times, so that an impulsive model may be ap-

propriate as a starting point in an analytical description of the
ring dynamics (16, 27). The essential effect of the interaction
is to suddenly change the angular velocity of the ring atoms
without any displacement during the interaction time.

In the barrier-crossing trajectories, damping or frictional
effects are evident, although they are not strong enough to result
in Brownian behavior. The repulsive nonbonded interactions
between the ring and protein matrix atoms played a crucial role
in producing and subsequently halting rotation of the ring and
in determining the detailed character of the barrier-crossing
dynamics. In several trajectories, particularly those of -the A
series (in which the local density of the matrix is relatively high),
the torsional motion of the ring was nearly halted one or more

times by these nonbonded interactions. These results are in
accord with predictions based on the properties of equilibrium
torsional fluctuations of tyrosine rings in PTI (16). For other
types of activated conformational changes, the relative im-

portance of frictional damping may be expected to increase
with the effective size of the displaced group and with the width
of the barrier.

It is hoped that this preliminary study has provided some
insight into the nature of the dynamics of activated processes
in proteins. More extensive calculations on the ring rotation
problem, as well as applications to enzymatic reactions that
involve bond breaking and formation, will be presented-in fu-
ture publications.
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