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Sub- and ultraharmonic (SUH) ultrasound contrast imaging is an alternative modality to the second harmonic imaging, since,
in specific conditions it could produce high quality echographic images. This modality enables the contrast enhancement of
echographic images by using SUH present in the contrast agent response but absent from the nonperfused tissue. For a better access
to the components generated by the ultrasound contrast agents, nonlinear techniques based on Hammerstein model are preferred.
As the major limitation of Hammerstein model is its capacity of modeling harmonic components only, in this work we propose two
methods allowing to model SUH. These new methods use several Hammerstein models to identify contrast agent signals having
SUH components and to separate these components from harmonic components. The application of the proposed methods for
modeling simulated contrast agent signals shows their efficiency inmodeling these signals and in separating SUH components.The
achieved gainwith respect to the standardHammersteinmodel was 26.8 dB and 22.8 dB for the two proposedmethods, respectively.

1. Introduction

Introduction of contrast agents in ultrasound medical imag-
ing has strongly improved the image contrast leading to a
better medical diagnosis [1–3]. By adapting the transmitting
ultrasound sequences composed of short wave trains to
longer sinusoidal wave trains, it has been possible to enhance
the harmonics detection witnessing of the presence of non-
linear explored media [3–5]. The most prominent example
in echographic imaging is the second harmonic imaging
(SHI) [3, 6] which consists to send a sinusoidal wave train of
frequency 𝑓

0
and to receive the backscattered signal at twice

the transmitted frequency, that is, 2𝑓
0
(see Figure 1).

Although the second harmonic imaging possesses
undoubted advantages compared to standard echographic
imaging, contrast harmonic imaging, however, has image
contrast limitations related to the presence of harmonic com-
ponents of nonlinear nonperfused tissues [7]. This contrast
reduction can be overcome by proposing no more contrast
harmonic imaging but rather contrast subultraharmonic
(SUH) imaging [8, 9]. Under certain conditions of incident

frequency and pressure levels, this solution has been
envisaged as a serious alternative [10, 11] since it has been
shown that only contrast agent is capable of supplying SUH
components sufficient to construct perfused tissue images
with a strong contrast. Contrast SUH imaging consists to
send a sinusoidal wave train of frequency 𝑓

0
and to extract

from the backscattered signal only SUH frequencies at 𝑓
0
/2,

(3/2)𝑓
0
, (5/2)𝑓

0
, . . . (see Figure 2).

To extract such SUH components from the whole spec-
trum, a certain number of approaches called “black box
methods” has been proposed such as those based on themult-
iple input and single output (MISO) Volterra filtering [12–
14]. These recent methods are capable of accurately model-
ing the signal backscattered by the contrast agent with ade-
quate values of order and memory of such models. However,
these methods are quite complex methods, and they do
not give an extraction of harmonic components 𝑓

0
, 2𝑓
0
,

3𝑓
0
, . . . and SUH components (𝑓

0
/2)2, (3/2)𝑓

0
, (5/2)𝑓

0
, . . .

since theymodel all spectral components (𝑓
0
/2)2, 𝑓

0
, (3/2)𝑓

0
,

2𝑓
0
, (5/2)𝑓

0
, 3𝑓
0
, . . ..
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Figure 1: Block diagram of second harmonic imaging.
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Figure 2: Block diagram of subultraharmonic imaging.
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Figure 3: Block diagram of Hammerstein model.

In order to reduce the complexity of suchmethods and to
extract SUH components from all spectral components, we
propose two new original approaches neither based on the
Volterra filtering but based on the Hammerstein filtering.

This paper is organized as follows: after recalling standard
Hammerstein model, the new methods are presented. To
validate our methods, we propose realistic simulations of
contrast agents signals. Then a quantitative and qualitative
comparison ismade between the two proposedmethods with
respect to standard Hammerstein model. Finally a discussion
completed by a conclusion closed the paper.

2. Methods

PolynomialHammersteinmodel is a special type of nonlinear
filters in which a static nonlinear system is followed by a
dynamic linear system [15]. From this model, the nonlinear
system is approximated by a polynomial function, and the
linear part is a finite impulse response (FIR) filter. The block
diagram of Hammerstein model is shown in Figure 3.

As for the Volterra decomposition, the Hammerstein
decomposition is able to model harmonic components, but
it was unable to model sub- and ultraharmonic (SUH) com-
ponents. Before explaining how it was possible tomodel SUH
components, we recall the Hammerstein decomposition.

2.1. Hammerstein Decomposition. The Hammerstein mod-
eled signal �̂�(𝑛) can be seen as the summation of 𝑃 signals
𝑧
𝑝
(𝑛) coming from 𝑃 parallel branches:

�̂� (𝑛) =

𝑝

∑
𝑝=1

𝑧
𝑝
(𝑛) . (1)

In each branch, the signal 𝑧
𝑝
(𝑛) is the output of a linear

filter ℎ
𝑝
(𝑛) of input 𝑤

𝑝
(𝑛):

𝑧
𝑝
(𝑛) =

𝑀

∑
𝑚=1

ℎ
𝑝
(𝑚) ⋅ 𝑤

𝑝
(𝑛 − 𝑚) = w

𝑝
(𝑛)
𝑇h
𝑝

(2)

with h
𝑝
= [ℎ
𝑝
(1), . . . , ℎ

𝑝
(𝑀)]𝑇 and w

𝑝
(𝑛) = [𝑤𝑝(𝑛 − 1), . . . ,

𝑤𝑝(𝑛−𝑀)]𝑇. Note that the input filter signals𝑤
𝑝
(𝑛) = 𝑤𝑝(𝑛)

are obtained from a polynomial function. Finally, ∀𝑛 ∈ [𝑀 +
1,𝑀 + 2, . . . , 𝑁], where 𝑁 is the length of the input signal
𝑤(𝑛) and the vector signal of each branch 𝑝 can be written by

Z
𝑝
= W𝑇
𝑝
h
𝑝

(3)

with Z𝑇
𝑝
= [𝑧
𝑝
(𝑀 + 1), 𝑧

𝑝
(𝑀 + 2), . . . , 𝑧

𝑝
(𝑁)], and W

𝑝
=

[w
𝑝
(𝑀),w

𝑝
(𝑀−1), . . . ,w

𝑝
(𝑁)].The output signal �̂�(𝑛) of the

model could be written in a vector form Ẑ as follows:

Ẑ = WH (4)
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with H = [h𝑇
1
, h𝑇
2
, . . . , h𝑇

𝑃
]𝑇 and W = [W𝑇

1
,W𝑇
2
, . . . ,W𝑇

𝑃
]. To

determine directly the filter parameters H from (4), we have
to minimize the mean square error given by

argmin
ℎ𝑝

(E [(𝑧 − �̂�)
2]) , (5)

where 𝑧 is the output signal of the non linear system and
E is the symbol of the mathematical expectation. The cor-
responding solution is

H = (W𝑇W)
−1

W𝑇Z, (6)

if (W𝑇W) is invertible. Otherwise, regularization techniques
can be used.

Consequently, identifying a nonlinear system of input
𝑥(𝑛) and output 𝑧(𝑛) with an Hammerstein model is equiva-
lent to calculate the signal �̂�(𝑛) using (4) and (5).

2.2. Sub- and Ultraharmonics Modeling. As previously men-
tioned, Hammerstein model is able to model harmonic
components only.This is justified by the steady state theorem
reported in [16] which stipulates that the output response
of the model to a periodic input of frequency 𝑓

0
is also

a periodic signal of fundamental frequency 𝑓
0
. Suppose

that the transmitted signal 𝑥(𝑛) is periodic of frequency 𝑓
0
,

and that the signal backscattered by the contrast agent
has the following spectral components (𝑓

0
/2)2, 𝑓

0
, (3/2)𝑓

0
,

2𝑓
0
, (5/2)𝑓

0
, 3𝑓
0
, . . .. Let 𝑦

11
(𝑛) be the output signal of the

Hammerstein model of input 𝑥(𝑛) (see Figure 4). According
to the theorem reported in [16], the spectral content of the
output signal 𝑦

11
(𝑛) is composed of the following harmonic

components𝑓
0
, 2𝑓
0
, 3𝑓
0
, . . . if and only if the input frequency

is 𝑓
0
.
Thus, modeling SUH components of frequency 𝑓

0
/2,

(3/2)𝑓
0
, (5/2)𝑓

0
, . . . using Hammerstein model is possible

if and only if these components could be seen as integer
multiples of the input frequency to the Hammerstein model.
To do this, somemodificationsmust be performed. Two types
of modifications are proposed in this work, either at the input
or at the output. Based on these two types of modifications,
two methods for modeling and separating the sub- and
ultraharmonic components using Hammerstein models are
described in this section.

Each of the two proposed methods consists of two steps:
one step for harmonic modeling and another step for SUH
modeling. The first method is based on the modification of
the input frequency, while the second one is based on the
modification of the output frequency.

2.2.1. Method 1: Modeling by Input Frequency Shifting. As
previouslymentioned, thismethod consists of two steps; each
step uses one Hammerstein model as presented in Figure 4.

(1) Harmonic modeling: harmonic modeling is done by
identifying the system of input 𝑥

11
(𝑛) = 𝑥(𝑛) and output

𝑦(𝑛)with anHammersteinmodel.The obtained signal 𝑦
11
(𝑛)

has the harmonic components only. Referring to (4), the
harmonic signal 𝑦

11
(𝑛) could be written as

�̂�
11
= 𝑋
11
𝐻
11

(7)

with𝑋
11
and𝐻

11
defined as in Section 1.

(2) sub- and ultraharmonic modeling: the SUH infor-
mation is found in the difference signal 𝑦

21
(𝑛) between the

output signal 𝑦(𝑛) and the harmonic signal 𝑦
11
(𝑛):

𝑦
21
(𝑛) = 𝑦 (𝑛) − 𝑦

11
(𝑛) . (8)

The spectral content of 𝑦
21
(𝑛) is composed of 𝑓

0
/2,

(3/2)𝑓
0
, (5/2)𝑓

0
, . . . by referring to the previous theorem;

these components could be modeled using Hammerstein
model if the input frequency is𝑓

0
/2. Consequently, the initial

input signal 𝑥(𝑛)must be modified in such a way to bring up
the subharmonic frequency 𝑓

0
/2. To do this, the spectrum of

𝑥(𝑛) is downshifted by 𝑓
0
/2 to shift the frequency 𝑓

0
toward

the position of 𝑓
0
/2. The modified input 𝑥

12
(𝑛) is calculated

according to the following equation:

𝑥
12
(𝑛) = R ((𝑥 (𝑛) + 𝑗𝑥 (𝑛, )) ⋅ 𝑒

−2𝜋𝑗(𝑓0/2)𝑛𝑇𝑠)

= 𝑥 (𝑛) cos(2𝜋𝑓
0
𝑛𝑇
𝑠

𝑓
0

2
) + 𝑥 (𝑛) sin(2𝜋𝑛𝑇s

𝑓
0

2
) ,

(9)

where R is the real part, 𝑥(𝑛) = H(𝑥(𝑛)) is the Hilbert
transform of 𝑥(𝑛), and 𝑇

𝑠
is the sampling frequency.

The modified input signal 𝑥
12
(𝑛) could be written in the

following vectorial form:

𝑋
12
= 𝑋
𝐶
+ 𝑋
𝐶
, (10)

with

𝑋
𝐶
= [ 𝑥 (1) cos(2𝜋

𝑓
0

2
𝑇
𝑠
) 𝑥 (2) cos(2𝜋2

𝑓
0

2
𝑇
𝑠
)

⋅ ⋅ ⋅ 𝑥 (𝑁) cos(2𝜋𝑁
𝑓
0

2
𝑇
𝑠
) ] ,

𝑋
𝐶
= [ 𝑥 (1) cos(2𝜋

𝑓
0

2
𝑇
𝑠
) 𝑥 (2) cos(2𝜋2

𝑓
0

2
𝑇
𝑠
)

⋅ ⋅ ⋅ 𝑥 (𝑁) cos(2𝜋𝑁
𝑓
0

2
𝑇
𝑠
) ] .

(11)

Then, the SUH signal 𝑦
12

is the output of a Hammerstein
model that identifies the system of input 𝑥

12
(𝑛) and output

𝑦
12
(𝑛). In the same way, 𝑦

12
(𝑛) is calculated according to the

following equation:

�̂�
12
= 𝑋
12
𝐻
12
. (12)

Finally, the total modeled signal 𝑦(𝑛) is the sum of the
harmonic signal𝑦

11
(𝑛) and the sub- andultraharmonic signal

𝑦
12
(𝑛):

𝑦 (𝑛) = 𝑦
11
(𝑛) + 𝑦

12
(𝑛) . (13)

For this method, note that the maximal frequency that
could be modeled is limited by the order 𝑃 of the Ham-
merstein model. It is well known that the Hammerstein
model of order 𝑃 excited by a signal of frequency 𝑓

0
can

model harmonic components until the 𝑃th harmonic of
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Figure 4: Block diagram of method 1, modeling by input frequency downshifting.

frequency 𝑃𝑓
0
. In the case of ultrasound contrast agent

and for some conditions explained later, the subharmonic
component is (𝑓

0
/2). In the second step of method 1, the

𝑃th harmonic is 𝑃(𝑓
0
/2). For example, modeling 𝑦

21
(𝑛) with

an Hammerstein model of order 𝑃 = 3 and input 𝑥 mod (𝑛)
of frequency (𝑓

0
/2), calculated using (19), can model sub-

and ultraharmonics until (3/2)𝑓
0
. Therefore, to model all the

sub- and ultraharmonic components presented in the signal
𝑦
21
(𝑛), the order of the Hammerstein model must be adjust

by increasing to 𝑃 = 5.

2.2.2. Method 2: Modeling by Output Frequency Shifting. This
method also consists of two steps, on step dedicated for
harmonic modeling and another step dedicated for SUH
modeling. Each step uses one Hammerstein model as pre-
sented in Figure 5.

(1) Harmonic modeling: this step is the same as the first
step of the method 1. The signal 𝑦(𝑛) is modeled with a
Hammerstein model of input 𝑥

21
(𝑛) = 𝑥(𝑛). The obtained

signal is the harmonic signal 𝑦
21
(𝑛) calculated according to

�̂�
21
= 𝑋
21
𝐻
21
. (14)

(2) Sub- andUltraharmonicmodeling: based on the same
idea as reported in method 1, SUH components could be
modeled when they are considered as integer multiples of the
input frequency. In thismethod, we propose to keep the input
signal 𝑥(𝑛) and to change the output signal 𝑦(𝑛) by upshifting
its spectrum of 𝑓

0
/2. Now, the SUH components are shifted

toward the harmonics position, and then they could be
modeled with a Hammerstein model. The modified output
signal 𝑦mod (𝑛) is calculated according to the following
equation:

𝑦mod (𝑛) = R ((𝑦 (𝑛) + 𝑗𝑦 (𝑛)) ⋅ 𝑒
2𝜋𝑗(𝑓0/2)𝑛𝑇𝑠)

= 𝑦 (𝑛) cos(2𝜋𝑛𝑇
𝑠

𝑓
0

2
) − 𝑦 (𝑛) sin(2𝜋𝑛𝑇

𝑠

𝑓
0

2
) .

(15)

In vector form,

𝑌mod = 𝑌
𝐶
+ �̃�
𝐶
, (16)

with

𝑌
𝐶
= [ 𝑦 (1) cos(2𝜋

𝑓
0

2
𝑇
𝑠
) 𝑦 (2) cos(2𝜋2

𝑓
0

2
𝑇
𝑠
)

⋅ ⋅ ⋅ 𝑦 (𝑁) cos(2𝜋𝑁
𝑓
0

2
𝑇
𝑠
) ]

�̃�
𝐶
= [ −𝑦 (1) sin(2𝜋

𝑓
0

2
𝑇
𝑠
) −𝑦 (2) sin(2𝜋2

𝑓
0

2
𝑇
𝑠
)

⋅ ⋅ ⋅ −𝑦 (𝑁) sin(2𝜋𝑁
𝑓
0

2
𝑇
𝑠
) ] .

(17)

Then the signal 𝑦mod (𝑛) is modeled with a Hammerstein
model of input 𝑥(𝑛). The obtained signal 𝑦

22 mod
(𝑛) is calcu-

lated according to the following equation:

�̂�mod = 𝑋𝐻mod . (18)

has SUH components upshifted by 𝑓
0
/2. To recover the

sub- and ultraharmonic signal 𝑦
22
(𝑛), the signal 𝑦

22 mod
(𝑛) is

downshifted of 𝑓
0
/2 according to the following equation:

𝑦
22 (𝑛) = R ((𝑦mod (𝑛) + 𝑗

̃̂𝑦 mod (𝑛)) ⋅ 𝑒
−2𝜋𝑗(𝑓0/2)𝑛𝑇𝑠)

= 𝑦mod (𝑛) cos(2𝜋𝑛𝑇𝑒
𝑓
0

2
)

+ ̃̂𝑦 mod (𝑛) sin(2𝜋𝑛𝑇𝑠
𝑓
0

2
) .

(19)

The final signal 𝑦(𝑛) is the sum of the harmonic signal 𝑦
11
(𝑛)

and the sub- and ultraharmonic signal 𝑦
22
(𝑛):

𝑦 (𝑛) = 𝑦
21
(𝑛) + 𝑦

22
(𝑛) . (20)

3. Simulations and Results

To validate the two proposed methods and to quantify
their performance in ultrasound medical imaging, realistic
simulations are proposed. To achieve these simulations, the
free simulation program Bubblesim developed by Hoff [17]
was used to calculate the scattered echoes for a specified
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Figure 5: Block diagram of method 2: modeling by output frequency shifting.

Table 1: The parameters of contrast agent.

Resting radius 𝑟
0
= 1.5 𝜇m

Shell thickness 𝑑Se = 1.5 nm
Shear modulus 𝐺

𝑠
= 10MPa

Shear viscosity 𝜂 = 1.49Pa⋅s

contrast agent and excitation pulse. A modified version of
Rayleigh-Plesset equation was chosen. The model presented
by Church [18] and thenmodified byHoff [17] is based on the
theoretical description of contrast agents as air-filled particles
with surface layers of elastic solids. In order to simulate the
meanbehavior of a contrast agent cloud,we hypothesized that
the response of a cloud of𝑁 contrast agents was𝑁 times the
response of a single contrast agent with the mean properties.

The incident burst is a sinusoidal wave composed of 18
cycles of frequency 𝑓

0
= 4.5MHz and pressure of 0.6MPa

[13]. (The resonance frequency of the encapsulated contrast
agent of 1.5𝜇m is about 2.5MHz. The emission frequency at
4.5MHz is nearly the double of the resonance frequency.)
Under the previous conditions of frequency and pressure, the
oscillation of the contrast agent is nonlinear with sub- and
ultraharmonic generation. The sampling frequency is 𝑓

𝑠
=

1/𝑇
𝑠
= 60MHz. The parameters of the contrast agent are

given in the Table 1.
In this research work, the performances of the different

methods are evaluated qualitatively and quantitatively.

3.1. Qualitative Evaluation. Figure 6 represents a qualitative
comparison in both time and frequency domains between the
signal backscattered by the contrast agent 𝑦(𝑛) and the signal
obtained with the standard Hammerstein model, method 1,
and method 2. Method 1 is applied with a Hammerstein

model of order 𝑃 = 3 and memory 𝑀 = 30 for the first
step and a Hammerstein model of order 𝑃 = 5 and memory
𝑀 = 30 for the second step. Method 2 is applied with a
Hammerstein model of order 𝑃 = 3 for the two steps and
memory𝑀 = 30.

Figure 6(a) (top) shows that the modeled signal with the
standardHammersteinmodel does not describe correctly the
signal backscattered by the contrast agent. Corresponding
spectra in Figure 6(b) (top) show that the signal modeled
with the standard Hammerstein model has the harmonic
components only (𝑓

0
, 2𝑓
0
, and 3𝑓

0
). Figure 6(b) (middle,

bottom) shows that the signals modeled with methods 1 and
2 perfectly describe the contrast agent signal. Corresponding
spectra on Figure 6(b) (middle, bottom) show that all the fre-
quency components aremodeled: harmonics at (𝑓

0
, 2𝑓
0
, 3𝑓
0
),

subharmonic 𝑓
0
/2, and ultraharmonics ((3/2)𝑓

0
, (5/2)𝑓

0
).

Figure 7(a) (top) shows the different signal between 𝑦(𝑛)
and the harmonic signal (in black) and the sub- and ultra-
harmonic signal obtained withmethod 1 (top) andmethod 2
(bottom). We can see the good agreement between the sig-
nals. Spectra on Figure 7(b). (top) confirms that subharmonic
𝑓
0
/2, first ultra-harmonic (3/2)𝑓

0
, and second ultraharmonic

(5/2)𝑓
0
are well modeled and separated from other harmonic

components. These results confirm the efficiency of the two
proposed methods in modeling and separating the sub- and
ultraharmonics present in contrast agent response.

3.1.1. Quantitative Evaluation. To quantify the performance
of each method and to know which method provides the best
performance, a quantitative study is necessary. The relative
mean square error EQMR defined as

RMSE =
𝐸 [

𝑦 (𝑛) − 𝑦 (𝑛)

2
]

𝐸 [
𝑦 (𝑛)


2
]

(21)
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Figure 6: (a) Comparison between the signal backscattered by the contrast agent 𝑦(𝑛) (in black) and its estimation 𝑦(𝑛) (in green): the signal
modeled with (top) the standard Hammerstein model, (middle) method 1, and (bottom) method 2. (b) Spectra of different signals presented
in (a). Here SNR = ∞ dB.

Table 2: RMSE between the signal backscattered by the contrast
agent and that modeled with the Hammerstein model, method 1,
and method 2.

Standard Hammerstein Method 1 Method 2
RMSE (dB) −8.3 −30.5 −31.1

is evaluated for different noise levels at the system output.
The noise level adjusted as the function of SNR (signal to
noise ratio) is Gaussian and white. Ten realizations are made
to evaluate the fluctuations of RMSE. RMSE for SNR =
∞, 20, 15, 10 dB is reported in Figure 8.

These simulations show that the RMSE achieved with
the two proposed methods 1 and 2 is always less than the
RMSE achieved with the standard Hammerstein model for
the different SNR values.

The gap between the standard model and the two meth-
ods 1 and 2 decreases when the SNR value increases. A gap
ranging from 4 to 26 dB could be obtained depending on
the SNR conditions. These results confirm that the stand-
ard Hammerstein model is not adapted for sub- and ultra-
harmonic modeling. A zoom on Figure 8(d) shows that the

RMSE varies slightly around a mean value. This result shows
that the two methods 1 and 2 are robust toward noise. Note
that the curves of variation of RMSE obtained with the
two methods have the same trend, indicating that the two
methods tend toward the optimal solution.

Table 2 sums up the RMSE values obtained with the stan-
dardHammersteinmodel,method 1, andmethod 2when the
SNR = ∞.

4. Discussions and Conclusions

In this research work the problem of modeling sub and ultra-
harmonics with Hammerstein model is presented. Usually,
the standardHammersteinmodel is able tomodel harmonics
only, which are integer multiples of the input frequency. Sub
and ultra-harmonics could not be modeled.

In this work, we propose for the first time two new
methods that use Hammerstein filters that model sub and
ultra-harmonics.The twomethods are based on the same idea
stipulating that modeling SUH with Hammerstein model is
possible if the input signal or the output signal is modified In
such a way that the SUH components become in the position
of integer multiples of the input frequency.
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Figure 7: (a) Comparison between the backscattered difference signal between the backscattered signal by the contrast agent (black) and the
SUH signal (green)modeled with (top)method 1 and (bottom)method 2. (b) Spectra of different signals presented in (a). Here SNR = ∞ dB.

Eachmethod uses twoHammersteinmodels successively.
Thefirst one is dedicated tomodel harmonic components and
the second one to model the SUH components.

The first method (method 1) applies a spectral down-
shifting of 𝑓

0
/2 on the input signal of the Hammerstein

model. Now, SUH are seen as integer multiples of the input
frequency, and therefore they can be modeled with Hammer-
stein model. In this step, the order of Hammerstein model is
an important parameter that need to be adjusted to ensure the
modeling of all SUH. For the second method (method 2), a
spectral upshifting of 𝑓

0
/2 is applied on the output signal to

move the SUH components toward the harmonic positions.
Then, SUH components can be modeled with Hammerstein
model excited with the input signal of frequency 𝑓

0
. Finally,

a last spectral downshifting is performed to recover the SUH
signal.

The two proposed methods are characterized by its
simplicity. The originality of these methods is that they allow
for the first time both the modeling of contrast agents signals
and the separation of SUH components of the contrast agent
response.

However, the two methods do not present the same
advantages and disadvantages.

Method 1, which is based on themodification of the input
signal, is less sensitive to the noise compared to method 2,
which is based on the modification of the output signal. This
is due to the fact that all the noise generated in the different
parts of the non linear procedure are added to the out-
put.

On the other hand, although method 1 has a more simple
structure, it is slower than method 2. This is due to the fact
that the second step ofmethod 1 requires an order higher than
method 2, the order of the first step being fixed. And as the
computation time is related to the order of the model, higher
the order, the slower the method.

The application of the proposed methods for model-
ing the contrast agents response shows their efficiency in
modeling and in separating SUH components from other
harmonic components. Gains of 25.8 dB and 22.8 dB in term
of the RMSE are achieved with methods 1 and 2, respectively,
compared to the standardHammersteinmodel.The achieved
error (RMSE) gain by the two methods is related to the sub
and ultraharmonics energy initially presented in the output
signal of the non linear system. The more important the
energy of the sub- and ultraharmonics, the more important
the gain. Although in this paper, the two methods works well
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Figure 8: Variation of RMSE in dB between the backscattered signal by the contrast agent and that modeled with (blue) the standard
Hammerstein model, (black) method 1, and (green) method 2 as a function of the memory of Hammerstein model in presence of output
noise: SNR = ∞ dB, SNR = 20 dB, SNR = 15 dB, and SNR = 10 dB.

for 𝑓
0
/2, (3/2)𝑓

0
, (5/2)𝑓

0
, these methods can be extended for

other orders.
The two proposed methods find theirs applications in the

field of sub and ultra-harmonic contrast imaging in order
to produce high contrast images. This work opens a new
research axis for new modeling techniques of SUH using
Hammerstein model or any other non linear models.
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