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Abstract
Progesterone is a key hormone in the regulation of uterine function. In the normal physiological
context, progesterone is primarily involved in remodeling of the endometrium and maintaining a
quiescent myometrium. When pathologies of the uterus develop, specifically, endometrial cancer
and uterine leiomyoma, response to progesterone is usually altered. Progesterone acts through
mainly two isoforms of the progesterone receptor (PR), PRA and PRB which have been reported
to exhibit different transcriptional activities. Studies examining the expression and function of the
PRs in the normal endometrium and myometrium as well as in endometrial cancer and uterine
leiomyoma are summarized here. The clinical use of progestins and the transcriptional activity of
the PR on genes specific to endometrial cancer and leiomyoma are described. An increased
understanding of the differential expression of PRs and response to progesterone in these two
diseases is critical in order to develop more efficient and targeted therapies.

I. Introduction
The progesterone receptor (PR) has been the focus of extensive analysis over the past few
decades given its significance in reproductive tissues. The uterus is one of the most highly
responsive organs to progesterone. Based on PR function, certain modalities of treatment for
uterine pathologies have involved synthetic progestins or selective progesterone receptor
modulators (SPRM). These compounds have proven to be effective in certain cases of
endometrial cancer or uterine leiomyoma. Studies investigating the expression of PRs, and
action of progesterone through its receptor in endometrial cancer and leiomyoma are
summarized here. A brief description of PR expression and progesterone action in the
normal endometrium and myometrium followed by a description of the clinical studies using
progestins and SPRMs and the transcriptional activity of the PR on genes specific to
endometrial cancer and leiomyoma will be presented.

II. The Uterus
The uterus is the major female reproductive organ where the fetus develops during
pregnancy. During development, the uterus develops from the middle to upper portion of the
paramesonephric duct, also known as the Mullerian ducts.1 The uterus further organizes into
distinct layers: the outer-most layer which consists of smooth muscle is the myometrium and
the innermost layer which lines the uterine cavity is the endometrium (Fig. 1A). The
endometrium consists of a layer of columnar luminal epithelium supported by cellular
stroma containing tubular glands (Fig. 1B). The luminal and glandular cells of the
endometrium originate from the paramesonephric duct epithelium while the stroma
originates from the mesenchyme surrounding the urogenital ridge. It is also from this
mesenchyme that the myometrium forms. The myometrium consists of an organized
network of smooth muscle cells with supporting stromal and vascular tissue (Fig. 1B).
During pregnancy, the myometrium stretches by expanding the size and number of the
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smooth muscle cells and contracts in a coordinated fashion during labor. After pregnancy
the uterus returns to its nonpregnant size. Both the endometrium and myometrium are highly
responsive to the steroid hormones, estrogen and progesterone, and represent one of the
most dynamic sites of hormone action during the menstrual cycle and pregnancy.

III. Progesterone Action on the Endometrium and Myometrium
A. Physiological Response to Progesterone

The ovary is the major source of estrogen and progesterone in the human, synthesizing and
secreting these hormones in a cyclical fashion.2 Granulosa cells from developing primary
follicles biosynthesize and secrete estrogen and after ovulation these granulosa cells mature
to form the corpus luteum which actively secretes progesterone and estrogen during the
secretory phase of the menstrual cycle. If there is no pregnancy, the corpus luteum regresses
resulting in the decline of estrogen and progesterone levels. If there is a pregnancy, the
corpus luteum continues to grow and function for several months, after which time, it will
regress as the placenta begins to synthesize estrogen and progesterone.

The endometrium undergoes extensive remodeling in response to ovarian steroid hormones.
Estrogen promotes proliferation and growth of the endometrial lining while progesterone
antagonizes estrogen driven growth as well as promotes differentiation in preparation of an
impending implantation.3 Specifically, when progesterone levels are high during the luteal
phase of the menstrual cycle, the glandular epithelium transforms from relatively inactive
cells full of free ribosomes to very active polarized cells, containing giant mitochondrial
profiles, intracellular deposits of glycogen/glycoprotein-rich material, and a complex
intranuclear channel system.4 Morphologically, the glands become tortuous and have large
lumens due to increased secretory activity. In parallel, the underlying stroma becomes very
edematous as a result of increased capillary permeability and the cells begin to appear large
and polyhedral, a transformation process termed decidualization. Decidualization begins in
the stroma around the spiral arteries when progesterone levels are high during the midluteal
phase, and spreads to the upper two-thirds of the endometrium.5 If embryo implantation
occurs, the reaction is intensified and becomes the decidua of pregnancy. The decidualized
cell biochemically expresses new proteins and two of the most abundantly secreted proteins
are insulin-like growth factor binding protein-1 (IGFBP1) and prolactin (PRL) and as a
result are considered markers of decidualization.6 If there is no pregnancy, levels of estrogen
and progesterone decline due to the regression of the corpus luteum causing the upper two
thirds of the endometrium to be shed.

The overall effect of progesterone on the myometrium is to maintain quiescence in both the
pregnant and nonpregnant uterus. The nonpregnant uterus contracts throughout the
menstrual cycle.7 During the late follicular phase, a progressive increase in uterine
contractility parallels the rise in estradiol levels. After ovulation, during the luteal phase, the
uterus undergoes a characteristic period of quiescence, strongly implicating progesterone as
a mediator of this quiescence. At menses, after circulating levels of progesterone decrease,
contractility increases and participates in the emptying of the uterine contents. In the
pregnant uterus, it is well accepted that progesterone keeps the myometrium quiescent in
order to promote and sustain pregnancy. Progesterone promotes myometrial relaxation and
thought to actively block the transformation of the myometrium to a contractile phenotype.
Although circulating levels of progesterone do not decrease before labor onset,8-10 the
withdrawal remains a principal mechanism for the control of human parturition. Synthetic
progesterone antagonists, such as RU486 initiate myometrial contractions at all stages of
pregnancy.11,12
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B. Progesterone Receptors
The physiologic actions of progesterone are mediated by interaction with the PR, a member
of the nuclear hormone receptor superfamily of ligand-activated transcription factors.13,14

There are two predominant PR isoforms, designated PR-A and PR-B, transcribed from the
same gene by two distinct promoters, with the only difference being that human PR-B is
larger by an additional 164 amino acids at the amino terminus15-17 (Fig. 2). As a result, PR-
A and PR-B have distinct transcriptional activities.18-25 Three activation function (AF)
domains have been identified in PR as AF1, AF2, and AF3. In many contexts, PRB
functions as an activator of progesterone-responsive genes, while PRA is transcriptionally
inactive. In addition, PRA also functions as a strong transdominant repressor of PRB as well
as the human estrogen receptor (ER) transcriptional activity.23 The precise mechanism
underlying the differential activities of the two PR isoforms is not fully understood. Studies
have suggested that PRA and PRB adopt different conformations within the cell which may
contribute to its different transactivation functions. Tetel et al.19 demonstrated that the
interaction of the amino terminus to the carboxyl terminus in PRB and PRA is different.
Giangrande et al.24 demonstrated that PRA is unable to efficiently recruit the coactivators
SRC-1 and GRIP1 upon agonist binding despite the fact that both PRA and PRB contain
sequences within the LBD that binds coactivators. In addition, PRA interacts efficiently with
the corepressor SMRT permitting it to function as a transdominant repressor.24

At the promoter level, PR binds to a palindromic consensus sequence called the
progesterone response element (PRE). It is thought that multisite PREs promote a more
stable complex.23,26 Surprisingly, a survey of proximal promoter regions of endogenous
genes regulated by PR reveal a lack of tandem palindromic PREs and an abundance of PRE
half-sites. This suggests that additional mechanisms are in place for PR recruitment to
specific sites and activation of genes. Reports have shown that for the glucocorticoid
receptor (GR), “composite” response elements which consist of a single hormone response
element in tandem with heterologous binding sites leads to synergy between the GR and a
variety of factors, including Sp1, NF1, CACCC-box, and AP1.27-29

C. Coregulators of PR
Nuclear receptors recruit the coregulators that perform all of the subsequent reactions
needed to induce or repress expression of genes. Coactivators, such as the SRC family
(steroid receptor coactivator) and CBP/p300, enhance transcription by liganded receptors
while corepressors (such as SMRT and NCOR) repress transcription.30 These coregulators
exist and function in large multiprotein complexes which are recruited to the target gene in
rapid sequence by nuclear receptors. This complex contains many enzymes that are required
for gene expression. Such enzymatic reactions for transcription include chromatin
modification and remodeling, initiation of transcription, elongation of RNA chains, RNA
splicing, and termination of the transcriptional response. Consequently, it is suggested that
genes encoding for coregulators of hormones receptors are the true master genes of
eukaryotes.30

It has been shown that upon ligand treatment, PR interacted preferentially with SRC-1,
which recruited CBP and significantly enhanced acetylation at K5 of histone H4.31 In
contrast, activated GR preferentially associated with SRC-2 (TIF-2/GRIP-1), which
subsequently recruited pCAF and led to specific modification of histone H3, suggesting that
specific coactivators are differentially recruited by different steroid hormone receptors
which then recruit distinct histone acetyltransferases to modulate the transcription of steroid-
responsive genes.
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Investigation of the SRC family of coactivators, which consist of SRC-1, SRC-2, and SRC-3
in mice has demonstrated its relevance in steroid responsive tissues. SRC-1 knockout mice,
although viable exhibited decreased responses to steroid hormone treatment.32 Ablation of
SRC-2 resulted in a partial lethal phenotype due to death in the first month of life.33 Those
that survived to adulthood showed slowed growth and hypofertility due to placental defects.
Female SRC-3 null mice have reduced fertility. However, SRC-3 is not expressed in the
mouse endometrium and the uteri of SRC-3−/− mice are able to undergo the artificially
induced decidual reaction.34 Thus, it was concluded that SRC1 and SRC2 are the critical
members of the p160 coactivator family for the regulation of uterine function.34 Recent
studies have demonstrated the role of SRC-2 in the adult uterus using a floxed allele of
SRC-2 crossed to the PR-Cre mouse which abrogated SRC-2 function only in cell lineages
that express the PR.35 Absence of SRC-2 in PR-positive uterine cells was shown to result in
infertility due to an early block in embryo implantation. The uterus of these mice was unable
to undergo the necessary cellular and molecular changes that precede complete
progesterone-induced decidual progression. The expression of a number of decidualization
markers, Bmp2, Cox2, and follistatin was significantly reduced in the partially decidualized
PR(Cre/+) SRC-2(flox/flox) mice. While Bmp2 induction was negligible, Cox2 and
follistatin were partially induced, which was suggested to be due to SRC-2 being essential
for the induction of pathways that lead to Bmp2 expression but that additional coregulators
may be required for elaborating the Cox2 and follistatin expression pathways. The
incomplete decidual response shown in both the PRCre/+SRC-2flox/flox mouse and the
SRC-1KO32 suggests that both SRC coregulators may be required together in PR-mediated
signaling cascades that result in a fully decidualized uterus. To support this hypothesis,
removal of SRC-1 in these PR(Cre/+) SRC-2(flox/flox) mouse uterus resulted in the
complete absence of a decidual response, confirming that both uterine SRC-2 and -1
cooperate in progesterone-initiated transcriptional programs.

It is also widely observed that other transcription factors are able to interact with and
modulate function of nuclear receptors. Reports have shown that for GR, PR, and ER-alpha,
other transcription factors, including members of Sp, NF, CACCC-box, and AP1 families
can bind to response elements that occur in tandem to the nuclear receptor response element
allowing synergy/antagonism between the steroid receptors and the other transcription
factors.27-29 In the absence of canonical PRE sequences, PR can tether to some transcription
factors such as Sp1, Ap-1, Stat5, p65 subunit of NF-κB,36-38 and FOXO1.39,40 Through
mouse models, it has been demonstrated that FKBPs, which are immunophilins interact with
PR and influence its localization.41 Specifically, FKBP4 and FKBP5 interact with PR and
are expressed in the uterine stroma during implantation. Furthermore, the FKBP4 knockout
mice are infertile due to the inability to support implantation or undergo adequate
decidualization.

In one pioneering study, a genome-wide scan of chromosomes 21 and 22 was performed in
order to identify ER binding regions.42 In doing so, the authors discovered that FOXA1 was
necessary for mediating the estrogen response in breast cancer cells. Furthermore, the
FOXA1 binding site was the most conserved motif proximal to the regions that had an ER
element. Another forkhead protein, from a different subfamily, FOXO1 can interact with
steroid hormone receptors such as ER-alpha, retinoic acid receptor, thyroid hormone
receptor, and PR and elicits either repressive or activating effects on nuclear receptor
mediated gene expression.39,43,44 In endometrial fibroblasts, FOXO1 and PR interacted with
each other and bound to tandem DNA sequences in the IGFBP1 promoter.39,40 In addition,
FOXO1 modulated PR transactivation of a PRE responsive reporter.39 Gene array studies
revealed that many of the genes significantly regulated by FOXO1 during decidualization of
endometrial stromal cells are also dependent on PR.40 Given that both transcription factors
are involved in important cellular processes in the endometrium associated with growth
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inhibition and differentiation, the cross talk between these two molecules may be an
important mode of endometrial remodeling.

D. Progesterone Receptors in the Endometrium and Myometrium
Progesterone is central to the remodeling that occurs in the endometrium for uterine
receptivity and acts on both the epithelial and stromal compartments. Studies in mice with
selective ablation of PR isoforms revealed that PR-A is necessary for ovulation and
modulates the antiproliferative effects of progesterone in the uterus while PR-B is required
for normal mammary gland development and function.45,46 Recent evidence has confirmed
the existence of a functional third isoform, designated PR-C, which appears to play a critical
role in the onset of parturition.47 The presence of multiple PR isoforms potentially increases
the specificity and versatility of hormone action in a target tissue. PRs A and B are
expressed in cells of the endometrium and its expression is dependent on the hormonal
status and cell type. In the glandular epithelium, PR expression is stimulated by estrogen
during the proliferative phase but is downregulated by its own ligand in the secretory phase.
Prior to ovulation, PR-A and PR-B levels are approximately equivalent in glandular
epithelium but only PR-B persists in these cells in the mid-secretory phase, suggesting that
PR-B is most important for the progesterone driven phenotypic changes in the glands at this
time. In the stroma, PR-A is the dominant isoform throughout the cycle.48-50 Conditions
associated with endometrial pathology such as endometrial cancer is due to inadequate
progesterone response as subsequently described.

Myometrial expression of PR is less dynamically regulated than the endometrium during the
menstrual cycle. Studies have demonstrated that both PRA and PRB are expressed and
levels are consistent throughout the menstrual cycle.51,52

IV. Endometrial Cancer
Endometrial cancer is the most common cancer of the female reproductive tract, with
estimated 39,080 new cases diagnosed in 2007. Despite the frequent detection of early-stage
cancers and the evolving use of adjuvant chemotherapy for advanced disease, the death rate
from this malignancy has increased and currently claims 7400 lives among US women per
year.53 The incidence of endometrial cancer is rising as life expectancy increases and as key
risk factors, including obesity, become more prevalent. A better understanding of the
pathophysiology underlying endometrial cancer is the first step to identifying key
biomarkers that can improve diagnostic efforts and prevent development of this disease.

Endometrial cancer is diagnosed by pathological examination. Approximately 80% of all
endometrial carcinomas are endometrioid type, which arise from endometrial glands (Fig.
3A). The malignant phenotype and the varying degrees of differentiation are easily
recognizable by microscopy.54 Endometrioid carcinoma is graded histologically from grade
1 to grade 3 depending on the percentage of solid nonsquamous areas and cytological
atypia.55 Most endometrioid carcinomas are well to moderately differentiated and present
alongside hyperplastic endometrium. These tumors, also known as type 1 endometrial
carcinomas, are associated with chronic exposure to estrogen and a lack of opposing
progesterone. One source of estrogen is fat tissue, in which peripheral androgens act as
aromatase substrates to produce estrone. Estrone is then converted to estradiol by 17-
hydroxysteroid dehydrogenase.56 Through the androgen-to-estrone pathway,
postmenopausal women produce approximately 100 mg of estrone per day, or more if they
are obese.57 Chronic estrogen exposure is also exacerbated by comorbid conditions in obese
women, namely hypertension and diabetes. Polycystic ovarian syndrome (PCOS) is also
associated with higher levels of estrogen and androgen, as well as low levels of opposing
progesterone, leading to a higher risk of endometrial cancer in these patients. Finally, the

Kim et al. Page 5

Prog Mol Biol Transl Sci. Author manuscript; available in PMC 2013 November 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



long-term use of tamoxifen, with its paradoxical estrogen agonist effect in the uterus, can
also lead to type I endometrial cancer.58

Type II endometrial cancer occurs primarily in elderly postmenopausal women, and is
neither related to estrogen nor preceded by endometrial hyperplasia. Type II tumors are high
grade tumors with serous or clear-cell morphology and carry a poor prognosis. Other
morphological variants of endometrial cancer are placed into this category but occur at much
lower rates.58,59 At the molecular level, type 1 tumors are commonly associated with
abnormalities of DNA-mismatch repair genes, including k-ras, PTEN, and beta-catenin.
Type 2 tumors are associated with abnormalities of p53 and HER2/neu, although they are
not present in all cases.58

V. Progesterone Receptor Action in Endometrial Cancer
A. Progestin Therapy in Women

Studies have proven the efficacy of progesterone in protecting the endometrium against the
hyperplastic effects of estradiol by inducing glandular and stromal differentiation.60

Accordingly, progestins play an essential and effective role in the management of
endometrial hyperplasia.61,62 In a study of 52 postmenopausal women diagnosed with
atypical hyperplasia or hyperplasia without atypia, 90% of patients had complete remission
after treatment with 40 mg megestrol acetate per day for 42 months.63 However, close
follow-up is usually recommended in women who are treated with progestins especially for
atypical hyperplasia since there is a significant increased risk of progression to carcinoma.64

Progestins have been used as adjuvant for endometrial cancer in hopes to prevent
recurrence. However, several studies have shown that progestin treatment is not beneficial to
the overall survival of women postsurgery.65,66 Progestins are also used as primary therapy,
especially for premenopausal women as a fertility-sparing treatment. Approximately 25% of
endometrial cancer cases affect premenopausal women, particularly in the setting of obesity,
chronic anovulation, and polycystic ovary syndrome.62,67-70 Progestin therapy would only
be given when the tumor is well differentiated with positive receptors. There are few studies
looking at the efficacy of progestin treatment in these women with the majority of published
studies being case reports. In a review of articles published between Jan 1966 and Jan 2007
describing patients with endometrial cancer treated with hormonal therapy, 133 patients
were identified, who were treated for an average duration of 6 months, and who
demonstrated an average response time of 12 weeks.71 Of these 133 patients, 51%
demonstrated a lasting complete response, 25% showed a temporary response, and 24%
never responded to treatment. It is evident that a larger study is required to demonstrate the
true benefit of progestin therapy in endometrial cancer. In regards to sparing fertility, there
is no doubt that progestin therapy can be used;72 however, close follow-up is required
because of the substantial rate of recurrence.

B. Progesterone Receptors in Endometrial Cancer
Morphological and biochemical evaluations demonstrated that in endometrial cancer, PRA
is localized to the nucleus, even in the absence of progesterone.73 In contrast, a large
proportion of PRB is cytoplasmic in the absence of ligand, but is rapidly translocated to the
nucleus in the presence of progesterone. All endometrial cancer specimens demonstrated
cytoplasmic PRB in 50% or more of the cells, and five of the seven tumors that were
moderately to poorly differentiated demonstrated no PRB staining in the nuclei. Nuclear
PRB was thus significantly associated with increasing tumor differentiation. PRA and PRB
exhibit different activating properties and mediate the transcription of different sets of genes
in endometrial cancer cells. Smid-Koppman et al.74 demonstrated that in the presence of
progesterone, PRB expressing Ishikawa cells displayed almost complete inhibition of cell
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growth, while PRA expressing Ishikawa cells only displayed 50% inhibition of cell growth.
In an additional study by Hanekamp et al.,75 it was demonstrated that while PRB expressing
Ishikawa cells caused more tumor growth in vivo than PRA expressing Ishikawa cells,
tumor growth was inhibited after administration of MPA only in the tumors expressing PRB.
There is an ongoing debate as to the PR status in endometrial tumors with one study
suggesting that PRB is predominant in advanced endometrial tumors,76 another study
pointing to the loss of both isoforms in advanced endometrial cancer,77 and a third study that
indicates only PRA is expressed in poorly differentiated endometrial carcinoma cell lines.78

C. Genes Regulated by Progestins in Endometrial Cancer
Nevertheless, in vitro studies have clearly demonstrated the efficacy of progestins to
influence endometrial cancer cell behavior. When endometrial cancer cells are transfected
with specifically PR-A or PR-B, progesterone can promote cell cycle inhibition, endometrial
cancer cell invasion, differentiation to a secretory phenotype, induction of replicative
senescence, and can down-regulate the expression of cellular adhesion molecules.79,80

Regulation of genes such as cyclin D1, matrix metalloproteinase-1 (MMP-1), -2, -7, and -9,
and Ets-1 in response to progestins have been implicated to mediate the inhibition of cell
growth and invasiveness.81 Primary cells from endometrial tumors also respond to
progestins by significantly reducing proMMP-9, proMMP-2, and MMP-2 release.82

Progestins have been shown to induce glycodelin expression in Ishikawa cells83-85 which
causes inhibition of G1/S progression and upregulation of CDKIs thereby reducing cell
proliferation.86 Progestins can increase FOXO1 protein levels in Ishikawa cells, specifically
through PRB87 and promote cell cycle arrest and apoptosis in these cells. Interestingly,
levels of FOXO1 protein are dramatically lower in 77%88 or 95.9%87 of endometrial tumor
tissues studied compared to normal tissues from cycling endometrium. Shiozawa et al.89

reported that p27 expression in hyperplastic epithelia was negligible before MPA treatment,
whereas it was greatly increased after treatment. Watanabe et al. demonstrated that it is
through PRB that p21 and p27 expression increases.90 Microarray studies revealed that short
term (4 h) and high dose (30 μg/ml)) exposure of Ishikawa cells to progesterone result in
247 differentially expressed genes of which 126 were upregulated and 121 were
downregulated. Of these, 135 genes were involved in biological processes like cell cycle,
cell proliferation and differentiation, developmental processes, immune responses,
intracellular protein traffic, and transport.91 Hanekamp et al.92 reported that MPA inhibits
expression of several metastasis-related genes in a set of endometrial cancer cell lines.
Treatment of Hec50co cells transfected with PR with progesterone for 12 h significantly
regulated genes associated with cell signaling, DNA remodeling, apoptosis, tumor-
suppressor, and transcription factors. Interestingly, there was a consistent modulation of
cytokines consistent to an antiinflammatory environment. Specifically, proinflammatory
genes such as TNFalpha, IL-1beta, and MCP-1/MCAF-1 were downregulated and
antiinflammatory genes such as TRAP1 and SMAD4 were induced93. Progestins have been
shown to modulate proteins in the apoptotic cascade in human endometrial precancers.
Women with hyperplasia treated with either system MPA or a levonorgestrel intrauterine
device exhibited increased apoptosis in the glandular cells with decreased expression of the
antiapoptotic genes, Bcl-2 and BAX.94 Overexpression of PRA and PRB in endometrial
cancer cells resulted in a significant progesterone-dependent inhibition of expression of a
cadre of cellular adhesion molecules, including fibronectin, integrin alpha3, integrin beta1,
integrin beta3, and cadherin 6.79,95 Thus, it is apparent that progesterone, through PRA and
PRB modulate genes that are involved in processes associated with cell cycle, apoptosis, cell
adhesion, differentiation, and inflammation in order to regulate endometrial cancer cell
behavior.
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D. Transcriptional Activity of Progesterone Receptors in Endometrial Cancer
It has been demonstrated that transcriptional activation by progesterone can involve other
transcription factors. For example, liganded PR decreases the transcriptional activity of the
activating protein-1 (AP-1) transcription factor family, and in particular, c-Jun. In addition,
progesterone strongly inhibited total AP-1 as well as c-Jun recruitment to the cyclin D1
promoter, whereas it enhanced AP-1 occupancy on the p53 and p21 promoters, as shown by
chromatin immunoprecipitation assays. This study concluded that in endometrial cancer
cells, modulation of AP-1 activity is a potential pathway of progesterone-induced growth
inhibition in endometrial cancer cells.96

Another mechanism of progesterone action has been proposed to involve inhibition of
NFkappaB transcriptional activity. Specifically, expression of A20 and ABIN-2 were
induced through PRB and these factors bind in a complex and inhibit NFkappaB
transcriptional activity.97 EMSAs revealed the complete inhibition of NFkappaB dimer
binding to DNA by both PRA and PRB. The inhibition of NFkappaB and its tumorigenic
inflammatory and antiapoptotic effects by PR may be one pathway by which progesterone
treatment is effective against endometrial hyperplasia and cancer.

Glycodelin (GdA) is a progesterone induced gene in normal endometrial epithelial cells and
endometrial cancer cells. Studies have shown that ligand-activated PR stimulates GdA
promoter activity through functional Sp1 sites.98 As on numerous other genes, PR can tether
to Sp1 to regulate promoters that do not have PRE sequences.

In another study, it was shown that progesterone upregulated COMT protein expression in
Ishikawa cells primarily through PRA. COMT converts genotoxic catecholestrogens to
anticarcinogenic methoxyestrogens (2-ME2) in the endometrium. COMT promoter activity
was differentially regulated by the three half-site PREs. Accordingly, high doses of 2-ME2
inhibited Ishikawa cell proliferation.99

A novel mechanism for PR-A and PR-B mediated gene transcription in the uterus has been
proposed to involve selected KLF members. Specifically, Kruppel-like factor 9 (also known
as BTEB1) interacts with ligand-activated PRB to increase PRB transactivity. This
facilitates the recruitment of the transcriptional integrator CREB-binding protein within the
PR dimer, and is dependent on the structure of the ligand bound by PRB. By contrast,
BTEB1 does not influence agonist bound PRA transactivity, but augments PRA inhibition of
PRB-mediated transactivation. Also, BTEB1 potentiates ligand-independent PRA
transcriptional activity in the presence of CREB-binding protein. Similar observations were
made with the BTEB1-related family members Krüppel-like family (KLF) 13/FKLF2/
BTEB3 and Sp1 on PRB transactivity.100

VI. Conclusions and Perspectives of Progesterone Action in Endometrial
Cancer

Endometrial adenocarcinoma is highly associated with unopposed estrogen action. The
significance of progesterone in preventing estrogen-driven proliferation is underlined by its
efficacy in eradicating endometrial hyperplasia and some endometrial cancers. While its role
in preventing endometrial cancer may involve independent mechanisms to those that
promote tumor cell death and regression, it is obvious that progesterone action is complex
and involves numerous pathways and players. Despite the limitations of in vitro systems,
which utilize endometrial cancer cell lines that have been propagated over many years,
endometrial cancer cell behavior in response to progestins and the specific genes that are
regulated have proven to be remarkably similar in these cell lines as those grown in
xenograft models as well as in the tumor behavior from women. Thus far, in vivo and in
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vitro studies have shown that progesterone, through its receptor can regulate genes
associated with cell cycle, apoptosis, cell adhesion, differentiation, and inflammation.
Progesterone binds to either receptor A or B, which can then bind to specific sequences on
promoters, in the presence of numerous other coregulators. Depending on the PR isoform
and the predominant coregulators it associates with, progesterone can enhance or repress
transcription of genes. The complexity of PR action is demonstrated by its differential action
depending on the promoter region, length of progesterone exposure, and cell type. Further
investigation is required to elucidate mechanisms of PR action in endometrial cancer.

It is also noteworthy that progesterone is key in differentiating the endometrial stroma.
While many studies have focused on progesterone action in the stroma in the normal cycling
uterus as it pertains to pregnancy and fertility, very little is known on its role in the stroma as
it pertains to endometrial cancer. Evidence is strong that progestins are effective in treating
endometrial hyperplasia and some endometrial cancers and studies have demonstrated that
progestins can regulate endometrial cancer cell behavior. Given the significant role that
progesterone plays in the stroma, it would be worth investigating how progesterone acts
through the stroma to influence endometrial cancer cells. Thus, progesterone responsiveness
may be dictated not only by the hyperplastic or malignant epithelium but also by the stroma.

VII. Uterine Leiomyoma
Uterine fibroids, also known as leiomyomas, are benign tumors originating from the
myometrium. They are composed of smooth muscle cells and large amounts of extracellular
matrix (ECM) (Fig. 3B). These tumors can range from a few millimeters to over 20 cm in
size. Leiomyomas are common and can occur in up to 77% of women.101 The incidence in
African-American women is 60% at age 35 and over 80% by age 50 whereas Caucasian
women have an incidence of 40% by age 35 and almost 70% by age 50.102 Although the
tumors are considered benign, they cause significant morbidity, pain and discomfort, and
excessive menstrual bleeding. Risk factors for leiomyomas include early menarche, family
history, ethnicity, increased body mass index, and tissue injury. Leiomyomas are the
primary indication for over 200,000 hysterectomies in the USA.103 Studies have identified
possible factors responsible for the development of leiomyomas, including chromosome
rearrangements, congenitally elevated ERs, hormonal changes, and injury.104 Once the
disease has set in, hormones and growth factors play a prominent role in the growth and
expansion of leiomyomas.

To date, medical treatments for leiomyomas are limited and this is due to the fact that the
mechanisms regulating the development and growth of these tumors remain unclear. There
exists only one FDA approved drug for the treatment of uterine leiomyoma and thus there is
a desperate need for new treatments for one of the most prevalent chronic public health
problems in US women. It is hoped that a better understanding of leiomyomas at the
molecular level would lead to a more effective treatment of this disease.

VIII. Progesterone Receptor Action in Leiomyoma
A. Relevance of Progesterone in Uterine Leiomyomas

Although the initial steps in the pathogenesis of uterine fibroids are most likely due to
chromosomal aberrations and/or the effects of specific genes,105 their development is highly
dependent on ovarian steroid hormones. Traditionally, estrogen has been considered the
major mitogenic factor in the uterus. However, a growing body of evidence from
biochemical, histological, clinical, and pharmacological studies indicates that progesterone
and PR play a key role in uterine fibroid growth and development.106 Several investigators
have shown an increased concentration of both PR-A and PR-B in leiomyoma tissue
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compared with adjacent myometrium.51,107,108 Furthermore, there was an increase in
mitotic activity in fibroid tissue relative to the adjacent myometrial tissue during the luteal
phase109 and after treatment with medroxyprogesterone acetate.110 Increased expression of
the proliferation marker Ki67 in leiomyoma compared with the normal myometrium has
also been described, and its upregulation was linked to progesterone.107 Epidermal growth
factor (EGF) mRNA was increased in leiomyomata only during the secretory phase of the
cycle, suggesting that progesterone, not estrogen, controls the expression of this important
growth factor.111 In addition, in vitro studies showed that progesterone suppresses apoptosis
and stimulates proliferation of leiomyoma cells.112-116 Progesterone markedly increased
BCL2 protein expression in primary leiomyoma cell cultures.112-116

Clinical studies with both progestins and RU486 indicate that progesterone may be at least
as important as estrogen for regulating fibroid growth. When used as add-back therapy in
combination with GnRH agonists, the synthetic progestins medroxyprogesterone acetate and
norethindrone attenuate or reverse the inhibitory effects of GnRH agonists on leiomyoma
size.117,118 The effects of pregnancy on leiomyoma size have been studied as a possible
model for in vivo exposure to high levels of progesterone.119-122 The greatest increase in
volume of uterine leiomyomata occurred before the 10th week of gestation.119 Those
investigators who followed the leiomyoma size longitudinally after the first trimester,
however, did not observe a further difference between the second and third trimester.120-122

The strongest current evidence for possible in vivo mitogenic effect of progesterone on
leiomyoma growth comes from clinical trials indicating that four different antiprogestins,
RU486, asoprisnil, proellex, and CDB2914 consistently reduced tumor size.123-131 The
original studies of Murphy and coworkers in the 1990s suggested that RU486 might be used
in the medical management of uterine leiomyomata. Pilot studies indicated that the size of
leiomyomata decreased significantly after treatment with RU486.123-125 Early studies
indicated that different doses of RU486 decreased leiomyoma size as well as associated
excessive uterine bleeding.126 A similar endometrial histology, characterized by
hyperplastic glands and stroma, was observed in patients treated with the antiprogestins
RU486 and asoprisnil.127 It was subsequently shown that asoprisnil also acts primarily as a
progesterone antagonist in the endometrium.132 A number of investigators have attempted to
avoid the side effect of endometrial hyperplasia by decreasing the dose of RU486 to 5 mg/
day; this dose has been shown to successfully decrease leiomyoma size and uterine bleeding
associated with these tumors.125,130,131 Importantly, treatment with RU486 given at a dose
of 5 mg/day did not cause endometrial hyperplasia.131 Despite the number of mechanisms
proposed for these effects,133-143 a full understanding of the pathophysiology responsible for
progesterone-dependent growth and the mechanisms underlying the observed therapeutic
effects of antiprogestins remain unclear.

B. Progesterone Action on Genes Associated with Proliferation, Apoptosis, and ECM
Deposition

Although data focusing on the genes regulated in leiomyoma by progesterone are limited,
studies investigating differential gene expression in leiomyomas during the menstrual cycle
have provided groundwork for identifying those that are influenced by steroid hormones. In
one study, the temporal and spatial expression of proliferative and proapoptotic molecules
that could participate in leiomyoma pathogenesis was determined.144 For example, levels of
Fas ligand (FasL) protein, which is associated with apoptosis, was higher during the
secretory phase compared with the proliferative phase in the leiomyoma. Furthermore,
higher expression of FasL was found in the leiomyoma compared to myometrium. Levels of
proliferating cell nuclear antigen (PCNA), which is associated with cell proliferation, was
higher during the proliferative phase in leiomyoma and levels were higher than that of
paired myometrium. Lower PTEN expression, which is the phosphatase that is associated
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with the PI3K/AKT pathway, was detected in the leiomyoma compared to the myometrium.
In this study, it was speculated that the higher FasL level in the leiomyoma may correspond
to suppression of local immunity by inducing apoptosis of immune cells, while a higher
level of PCNA and a lower level of PTEN may be related to increased mitogenesis and
decreased apoptosis in leiomyoma. Other studies have demonstrated that leiomyoma tissues
have higher PCNA levels than myometrium throughout the menstrual cycle.145 Furthermore,
treatment with estradiol or progesterone increases PCNA expression in leiomyoma cells
compared to controls.112 Asoprisnil, a SPRM decreased the PCNA positive rate in cultured
leiomyoma cells with no difference in myometrial cells.146

The antiapoptotic bcl-2 gene in leiomyoma has been investigated by several groups. It has
been demonstrated that bcl-2 is more highly expressed in leiomyoma than
myometrium.115,147,148 Progesterone and estrogen regulate bcl-2 expression differently.
Progesterone upregulates bcl-2 mRNA while estrogen downregulates bcl-2 protein.115

Furthermore, Yin et al.149 found that liganded PR binds to the bcl-2 promoter and enhances
bcl-2 transcription in primary cultured leiomyoma cells. Overexpression of the dominant
negative ER in cultured leiomyoma cells decreased bcl-2.150 It has been speculated that this
reduction in ER activity results in decreased PR expression and hence a decrease in bcl-2
expression. Asoprisnil decreased antiapoptotic bcl-2 with a corresponding increase in
TUNEL staining, cleaved caspase 3, and cleaved PARP supporting a role for PR in
preventing apoptosis in these cells.133,146

ECM components are of high interest in leiomyoma pathology due to large quantities of
matrix proteins found in leiomyoma. It has been demonstrated that certain ECM components
and proteins are regulated by steroid hormones. Collagen type I and III mRNAs were
upregulated in leiomyoma compared to myometrium during the proliferative phase of the
menstrual cycle.151 In concert with this is the higher expression of MMPs in leiomyoma
compared to myometrium during the secretory phase, while tissue inhibitors of MMPs
(TIMPs) are more highly expressed in leiomyoma during the proliferative phase.152

Collagen binding protein fibrododulin (FMOD), which is involved in collagen fibril network
formation, is more highly expressed in leiomyoma and myometrium during the proliferative
phase of the menstrual cycle.153 Levens et al.153 also demonstrated that GnRHa treatments
decreased FMOD. Asoprisnil treatment of primary leiomyoma cultures decreased TIMP1,
TIMP2, collagen I, and collagen III while increasing MMP-1, MT1-MMP, EMMPRIN
supporting that progesterone may be in involved in ECM deposition and turnover.154

Recently, investigators have uncovered that miRNA’s may play a role in leiomyoma
pathogenesis. MicroRNAs are small noncoding RNA’s that inhibit translation mostly
through binding to target mRNA 3′ UTR. Marsh et al.155 and Wang et al.156 suggested that
certain miRNA’s are differentially expressed in leiomyoma compared to myometrium.
Wang et al.156 focused on the let-7 family of miRNA’s and found that certain let-7 family
miRNA’s may be correlated with tumor size. Pan et al.157 also found that miRNA’s are
differentially expressed in leiomyoma compared to myometrium and are regulated by sex
steroids. More research is needed to address target genes of differentially regulated
miRNA’s.

C. Growth Factor Regulation in Leiomyoma by Progesterone
Given the growth properties of leiomyomas, the expression and regulation of growth factors
have been studied. Here, the regulation of these growth factors by both progesterone and
estrogen is highlighted. Steroid hormones can regulate EGF and its receptor (EGFR) which
have been implicated in leiomyoma growth. Both the local growth factor and its receptor are
expressed in leiomyoma and myometrial tissues.158 During the secretory phase of the
menstrual cycle, EGF mRNA is higher in leiomyoma than myometrium.111 Interestingly,
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progesterone does not increase EGF-R while increasing EGF and estrogen increases EGFR
but does not increase EGF.145 This supports previous results159 that progesterone treatment
but not estradiol increased EGF mRNA. In addition, asoprisnil decreased EGF
mRNA.134,146 A dominant negative ER decreased immunoreactive EGF in cultured primary
and immortalized leiomyoma cells.150 These data suggest that in the case of EGF and
EGFR, estrogen and progesterone alter the response to the same growth factor pathway in
different ways.

Insulin like growth factors IGF-I, IGF-II, and IGF-II receptor but not receptor type I have
been detected in leiomyoma tissues at levels higher than the myometrium.160,161 Studies
show that IGF-I treatment can increase leiomyoma proliferation.162-164 IGF-I gene
expression was most abundant in leiomyomata obtained during the late proliferative phase
of the cycle and was undetectable in leiomyomata from hypoestrogenic patients. SPRM,
asoprisnil, decreased IGF-I mRNA in leiomyoma while having no effect in myometrial
cells.134,146 IGF-II mRNA expression did not vary with phase of the menstrual cycle.165

Expression levels of IGF-II receptor were not altered with progesterone and estrogen
treatments in cultured leiomyoma cells.166

Both platelet derived growth factor (PDGF) and receptor are expressed in leiomyoma and
myometrium and have been implicated in leiomyoma growth.167 PDGF is a potent mitogen
for smooth muscle cells and leiomyoma cells.168-170 While it has been shown that
leiomyoma tissues express higher levels of PDGF-A and B chain mRNA levels compared to
matched myometrial tissue,161,171 other studies show conflicting observations.144,172-174

Women treated with GnRHa exhibited a reduction in uterine volume which was statistically
related to the decrease in PDGF expression.165 While estrogen can upregulate PDGF in
cultured leiomyoma cells,164 progesterone has also been implicated in regulating PDGF
expression as shown by the increased expression of PDGF-BB expression during the
secretory phase compared to the proliferative phase of the menstrual cycle in leiomyoma
tissue.171

The transforming growth factor beta (TGF-beta) family increases the expression of ECM
components and are involved in reproductive tissue development and growth.175,176 Since
fibroid tumors are composed mostly of ECM, examining connections between leiomyoma
growth and TGF-beta cytokines and receptors have been of interest. Consistent expression
of TGF-beta receptors type I–II and TGF-beta 1, 2, 3 have been found in myometrium177,178

although expression in leiomyoma remains discrepant. For example, two studies showed
increased expression of TGF-beta 1 mRNA in leiomyoma compared to myometrium, while
another group showed the contrary.168,177,179 In addition, TGF-beta 2, 3, and their receptors
have been found to be more highly expressed in leiomyoma than in myometrium.177 The
expression of TGF-beta 3 has been more consistent demonstrating higher expression in
leiomyoma compared to myometrium.180 Furthermore, highest levels of TGF-beta 3 were
found during the secretory phase of the menstrual cycle suggesting progesterone
involvement.168,181 Accordingly, the SPRM, asoprisnil, decreased TGF-beta 3 mRNA in
leiomyoma cells.134,146 Treatment with estrogen and progesterone differentially altered
TGF-beta levels in myometrium and leiomyoma.139,180

D. Activation of Signaling Pathways in Leiomyoma by Progesterone and Estrogen
The role of nuclear hormone receptors in activating signaling pathways as a mechanism for
leiomyoma tumor growth have been proposed in recent years. In concert with the
hormonally regulated growth factors described in the above sections EGF, FGF, IGF-I,
HGF, and PDGF receptors were found to be highly expressed in leiomyoma tissues
compared to myometrium in a receptor tyrosine kinase array.161 Specifically, expression of
IGF-IR beta was more abundant in leiomyoma as well as phosphorylated IGF-IR and
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downstream effectors were more highly activated in leiomyoma. The mitogen activated
protein kinase (MAPK) pathway regulates a variety of proteins involved in apoptosis and
cell growth.182 Estradiol has been shown to rapidly activate the MAPK pathway in primary
leiomyoma cells, including the rapid protein tyrosine phosphorylation of a subset of
intracellular proteins, such as GAP, PI3K, and PLCgamma.183 Interestingly, activation of
this pathway was related to E2-induced PDGF secretion. In this study, it was proposed that
PDGF, alone or in association with other growth factors, is the main growth factor involved
in the proliferation response of leiomyoma cells to E2 stimulation. In accordance to this,
ER-alpha phosphorylation was higher in leiomyoma tissues derived from patients in the
proliferative phase of the menstrual cycle and this correlated with an increased
phosphorylation of p44/p42 MAPK proteins in leiomyoma.184 In addition, phosphorylated
p44/42 colocalized with ER-alpha phosphorylated on serine 118, suggesting that MAPK can
phosphorylate ER-alpha in leiomyoma. ER-alpha can also bind to the p85-alpha regulatory
subunit of PI3K, allowing for PI3K activation in MCF-7 cells.185

There is increasing evidence that progesterone also has rapid, membrane initiated effects
independent of gene transcription to alter production of second messenger and cell signal
transduction pathway. Some of these rapid nongenomic effects of progesterone have been
shown to be mediated through the same nuclear PR that regulates gene transcription.186,187

Pioneering work by Edwards’ group187 demonstrated that PRB can directly bind to the SH3
domain of Src kinase and thereby activate the kinase. Similarly, progesterone-mediated
regulation of the PI3K/AKT pathway has been demonstrated in breast cancer cells as well as
in rat endometrial stromal cells.186-190 Boonyaratanakornkit et al.187 showed that p85 can
interact with PR in a GST-pull-down system. Recently, it was shown that progesterone can
rapidly phosphorylate AKT in leiomyoma cells.191 AKT phosphorylation was abrogated by
PR antagonist RU 486 and PI3K inhibitor LY290004 in primary leiomyoma cells.
Furthermore, the downstream targets of AKT, FOXO1, and GSK3 beta were phosphorylated
upon progestin treatment indicating activation of down-stream signaling components. In
leiomyoma, protein levels of AKT as well as the phosphorylated form were higher than
myometrium and phosphor-AKT levels dropped in leiomyoma samples taken from
menopausal women.147 In concert with this is deactivated PTEN, a negative regulator of
PI3K which was also increased in leiomyoma compared to myometrium, although these
differences were less dramatic in menopause.192 GnRHa therapy decreased PI3K activity
and AKT phosphorylation supporting that AKT activation is hormone dependent.193 Given
the involvement of the AKT pathway in cell proliferation and survival, its activation by
progesterone may be another mechanism by which this hormone promotes leiomyoma
growth.

Although estrogen and progesterone have distinct functions, the two hormones and their
receptors interact with one another. Hodges et al. found that R5020 and MPA inhibited
estradiol induced proliferation of ELT3 cells and inhibited ER activated gene transcription.
These results suggest that liganded PR transdominantly suppresses ER signaling in
leiomyoma. Of note is that estradiol increased expression of both PR isoforms.194

Accordingly, overexpression of dominant-negative ER decreased PR expression in human
leiomyoma cells.150

IX. Conclusions and Perspectives on Progesterone Action in Uterine
Leiomyoma

The importance of progesterone in promoting leiomyoma growth was initially substantiated
by clinical studies as described above. The effectiveness of antiprogestins and SPRMs in
reducing leiomyoma size provides strong support of progesterone being mitogenic in
leiomyoma. Since the field of progesterone action in leiomyoma is one that has been
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understudied, it remains unclear as to how progesterone promotes growth of these tumors.
Thus far, many studies have demonstrated that expression of genes and proteins are similar
in leiomyoma compared to matched myometrium, however, it is the levels of expression and
regulation during the menstrual cycle that differ. Whether it is demonstrated by the
differential expression of genes during the menstrual phase or in response to progestin or
antiprogestin treatment in vivo and in vitro, it is apparent that progesterone promotes
expression of genes associated with growth and survival of leiomyoma. Regulation of
growth factors and their receptors by progesterone have been proposed as another mode of
progesterone action. At the transcriptional level, there are very few studies investigating the
role of PR on promoters of genes in leiomyoma. Studying the recruitment of coregulators to
various PR binding regions has given insight to how PR functions at the transcriptional level
in leiomyomas. Finally, the rapid effects of progesterone on signaling molecules in
leiomyoma provide yet another mode of progesterone action on leiomyoma growth. The
involvement of classical PR in mediating these rapid effects are physiologically significant
and whether progesterone membrane receptors are involved in progesterone mediated
activation of kinases are unknown. Given the high incidence of leiomyoma in women, the
morbidity that is associated with this disease and the financial burden of over 200,000
hysterectomies per year in the US alone, it is imperative that alternate therapies are
developed. This can only be done with a better understanding of the molecular mechanisms
associated with this disease.

X. Future Directions
The significance of progesterone in the uterus is indisputable. While its action remains
complex and context-specific, it is crucial to decipher how PR works in uterine pathologies
in order to be able to treat these diseases effectively. The stark contrast in the physiological
response to progesterone in endometrial cancer compared to leiomyoma has important
clinical implications when using progestins or antiprogestins as a mode of therapy. A clear
example is the use of RU486 for decreasing leiomyoma size, which although effective, can
promote endometrial hyperplasia. More information is needed on the differential action of
PR in endometrial cancer cells and leiomyoma cells. Comparative studies on the
mechanisms of action of PR in epithelial cells and the mesenchymal-derived fibroblasts
would provide further insight to the differences in PR action in these two diseases.
Alternatively, given the differing response to progesterone in the breast and the
endometrium, it would be worthwhile to conduct studies comparing PR action in breast and
endometrial cancers. At the molecular level, since PR action is dictated by coregulators, an
extensive analysis of proteins that complex with PR on different gene promoters after
specific times of progesterone treatment and then combined with gene expression studies
would be informational. Global analysis of PR binding regions using chromatin
immunoprecipitation techniques, identification of coregulators using mass spectrometry, and
analysis of gene expression using microarray combined together with bioinformatics
analysis would be one effective approach to decipher differential PR action in uterine cells.
Although unraveling the complexity of PR may seem daunting and insurmountable, the
information gathered thus far provides solid groundwork to tackle this challenge. Use of
innovative and state-of-the-art technology will be key in moving this field forward.
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Fig. 1.
(A) The human uterus is comprised of an outer smooth muscle layer termed the
myometrium and the innermost layer which lines the uterine cavity termed the endometrium.
(B) Cross section of human uterine tissue shows distinct morphology of the myometrium
and endometrium. The myometrium consists of smooth muscle cells with supporting stroma
and vasculature. The endometrium consist mainly of epithelial glands and stroma.
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Fig. 2.
Functional domains of PRB and PRA. PRA lacks the 164 amino acids in the N-terminus and
thus the activation function (AF)3 domain. The DNA binding domain (DBD), ligand
binding domain (LBD) AF1 and AF2 regions are present in both PRA and PRB.
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Fig. 3.
Endometrial cancer and uterine leiomyoma. (A) Endometrial adenocarcinoma arises from
the endometrial glands exhibiting malignant behavior. (B) Uterine leiomyomas arise from
benign overgrowth of smooth muscle cells and can range dramatically in size.
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