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Abstract
The interaction of a multitude of transcription factors and other chromatin proteins with the
genome can influence gene expression and subsequently cell differentiation and function. Thus
systematic identification of binding targets of transcription factors is key to unraveling gene
regulation networks. The recent development of ChIP-Seq has revolutionized mapping of DNA-
protein interactions. Now protein binding can be mapped in a truly genome-wide manner with
extremely high resolution. This review discusses ChIP-Seq technology, its possible pitfalls, data
analysis and several early applications of the ChIP-Seq technology.

Regulation of gene expression by transcription factors is one of the major mechanisms for
controlling cell proliferation, differentiation and function. Thus, understanding which
transcription factors (TFs) operate in differentiating cells, how they are regulated at the
molecular level and which genes they regulate is key to unraveling mysteries of the
development of organisms.

There are several approaches to identification of protein-DNA contacts in vivo. These
include computational sequence analysis, various kinds of microscopy as well as
biochemical approaches.

Methods used for the discovery of transcription factor target genes
The simplest approach to discovery of transcription factor binding sites in the genome is
computer analysis of genomic sequence (reviewed in [Wasserman and Sandelin, 2004]).
However binding site consensus sequences or motifs are often short and can be met in the
genomic sequence too often, leading to low statistical significance of the matches and high
false positive rate. Most sites identified in this way would likely not bind the transcription
factor of interest in living cells. At the same time even low significance site might bind a
protein in vivo.

Microscopy on extended chromosome fibers[Sims et al., 2006] also can be used to find
genomic binding sites for proteins of interest. In living cells, microscopy and fluorescence
recovery after photobleaching was used to follow binding of nuclear receptor to tandem
array MMTV promoters in real time[Voss et al., 2006]. While these methods allow for the
analysis of colocalization of various transcription factors and produce beautiful images, the
resolution of these methods is low and is more suited to identification of extended binding
islands rather than individual binding events.

Two biochemical methods that were used for binding site identification in vivo are DAM-ID
and ChIP. For DAM-ID protein of interest is fused to E. coli DNA Adenine
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Methyltransferase (DAM) and expressed in target cell. Dam preferentially methylates
adenosines in the areas of DNA which are bound by the protein. These can be identified by
methylation sensitive restriction digest and microarray analysis[Greil et al., 2006]. The
advantage of DAM-ID is that it does not need specific antibodies. However, it has low
resolution and requires overexpression of a protein of interest which might result in false
positives.

Chromatin immunoprecipitation (ChIP) (Fig. 1A) is a method that allows analysis of direct
interaction of proteins with DNA in vivo with high resolution. First, cells are lysed and
chromatin is fragmented. Fragmentation can be achieved either by digestion with
micrococcal nuclease (MNase) of native chromatin or sonication if cells were crosslinked.

In general, native, MNase-digested chromatin is used for ChIP of histones that stably bind
DNA, whereas for more mobile non-histone proteins it is necessary to crosslink chromatin
using formaldehyde. In case of histone ChIP, MNase digestion is convenient, since it can
result in mononucleosome resolution and at the same time provide information for
nucleosome positioning [Barski et al., 2007b; Schmid and Bucher, 2007; Schones et al.,
2008]. Chromatin is immunoprecipitated (IPed) using antibodies against factor of interest
and protein A or G bound magnetic beads. Unfortunately some DNA fragments can be
trapped and nonspecifically precipitated along with actual binding targets. After
immunoprecipitation, crosslinks (if any) are reversed and DNA is purified. The ChIP DNA
can be analyzed by PCR using gene-specific primers. Concentration of DNA fragments
containing a region of interest are compared to those of known targets and unrelated
sequences. The enrichment of a specific DNA region can vary dramatically depending on
the protein factor, quality of antibody, and region of interest. Typically, ChIP experiments
yield 5–50 fold enrichment of target regions, depending on the site, antibody, protein of
interest ond experimental conditions. This means that there are 5–50 times more fragments
containing real binding sites compared to control DNA regions. In its conventional variant
this method allows to test if a candidate promoter is bound by a transcription factor in living
cells (see [Hecht and Grunstein, 1999]for review ). However, conventional ChIP does not
allow screening for novel targets in an unbiased manner.

Attempts have been made to identify binding sites in an unbiased manner based on ChIP.
Low throughput approaches included combination of ChIP and EMSA[Bigler and
Eisenman, 1994], direct cloning of IPed DNA fragments[Weinmann et al., 2001] and
analyzing them using ChIP Display approach[Barski and Frenkel, 2004]. High throughput
was achieved with the use of microarrays (ChIP-chip). In this approach IPed DNA was
hybridized to microarrays and signal was compared to that obtained from input DNA or
control ChIP. Initially, this technique was used in yeast[Iyer et al., 2001; Ren et al., 2000].
Higher eukaryotic genomes are larger and more repetitive, which presented a challenge to
the technology. In 2002 Weinmann et al.[Weinmann et al., 2002] used CpG island
microarray to identify E2F1 targets. Promoter arrays where ~ 1kb pieces of promoters were
spotted on microarrays were also used [Ren et al., 2002]. While these arrays allowed
identification of genes regulated by TF they still lacked resolution and were biased towards
certain genomic areas. To overcome these limitations, tiling microarrays containing short
regularly spaced DNA fragments covering large genomic areas were developed. Cawley et
al.[Cawley et al., 2004] used Affymetrix tiling microarrays to find targets of p53, c-myc and
Sp1 on chromosomes 21 and 22. Nimblegen later produced custom synthesized microarrays
offering greater flexibility. Kim et al. [Kim et al., 2005] used these arrays to characterize all
active promoters in the human genome. Applications of ChIP-chip are discussed in greater
detail in another review of this series.
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Directly sequencing IPed DNA fragments instead of hybridizing them to microarrays seems
a simple idea, but in the past it was easier said than done. Getting meaningful results
requires large amounts of sequencing. This led to development of approaches based on
sequencing concatenated short pieces of IPed fragments in a way similar to SAGE, which
allowed researchers to bring the amount of sequencing within the realm of possibility.
Several versions of ChIP-SAGE were developed: GMAT was used to identify islands of
histone acetylation in yeast[Roh et al., 2004] and human T cells[Roh et al., 2005], [Roh et
al., 2006]; SACO was used to find targets of CREB[Impey et al., 2004], beta-
catenin[Yochum et al., 2007a] and TFIIB[Yochum et al., 2007b] binding sites, and ChIP-
PET was applied to Oct4 and Nanog [Loh et al., 2006] and p53[Wei et al., 2006]. ChIP-PET
encompasses sequencing both ends of an IPed fragment and allows easier identification of a
binding site. However, the cost of sequencing was still prohibitive and only the most well
heeled laboratories could undertake it. The development of the next-generation massively
parallel sequencing by 454(now Roche), Solexa(now Illumina) and ABI (now Life
Technologies) revolutionized the field. ChIP-Seq, as the combination of ChIP with the
massively-parallel sequencing was named, not only decreased the cost and allowed
replicates, now identification of binding sites genome-wide can be accomplished with
greater sensitivity and resolution than ever before. First applications of ChIP-Seq included
localization of histone modifications in human T cells[Barski et al., 2007a; Wang et al.,
2008] and in mouse ES cells[Mikkelsen et al., 2007], and mapping binding sites of the
insulator binding protein CTCF and RNA polymerase II [Barski et al., 2007a], transcription
factors Stat1[Robertson et al., 2007] and NRSF[Johnson et al., 2007]. Methods for analyzing
genome-wide epigenetic modifications have been reviewed previously [Schones and Zhao,
2008]. In the next sections we will discuss preparation of ChIP-Seq libraries, analysis of
ChIP-Seq data and results obtained in early ChIP-Seq experiments conducted in our and
other laboratories.

ChIP-Seq library construction and sequencing
To construct a ChIP-Seq library (Fig. 1B), the ends of IPed DNA fragments are blunted
using DNA Polymerase I and phosphorylated using T4 kinase. This is followed by the
addition of A (Adenine) using either Taq or Klenow exo- polymerase. An adapter of unusual
structure, that allows for the automatic creation of an asymmetric PCR template, is ligated to
both ends of the DNA fragment. The PCR amplified library is hybridized to a flowcell and
clusters are prepared in a PCR-like process. Following linearization and blocking, clusters
are sequenced in a sequencing-by-synthesis process.

Having a good quality immunoprecipitating antibody is the most important factor for ChIP-
Seq success. There is an almost linear reverse relationship between the amount of
sequencing required to detect a peak and enrichment. Assuming uniform distribution of
background amount of sequencing S required to call a peak with p-value of 10−4 can be
estimated from this relationship (See supplementary note for the derivation and
assumptions): 1

Where G is non-repetitive genome size, w is window size, E is enrichment (ratio of average
tag number in a window containing a binding site to that in an unenriched window) and n is
fraction of total windows that have binding sites.
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Assuming that only a small fraction of genome is enriched (n≪1), the condition for
successful ChIP-Seq becomes:

Of course this relationship is very crude and does not take many considerations into account
(see [Zhang et al., 2008b] or [Feng et al., 2008] for discussion of more advanced statistical
models), but it allows us to make several interesting conclusions:

• If enrichment is twice worse the amount of sequencing should be increased slightly
more than twice in order to be able to call the same peaks.

• For higher resolution (smaller window size, w) more sequencing should be done.

• If there are many peaks (high n) more sequencing needs to be done.

• Minimum enrichment required for calling peaks at 1 tag per window average
coverage is approximately 6.5.

• And the obvious: larger genome needs more sequencing.

In our work we used only Illumina sequencing technology and thus we are not able to
comment on sample preparation for ABI Solid and other sequencers. Technical details of
library preparations for Solexa sequencing were recently discussed in an excellent review
from the Sanger sequencing center[Quail et al., 2008]. We will discuss only tips specifically
applicable to ChIP-Seq.

Usually, the amount of immunoprecipitated DNA is quite low. This often results in
problems during the adapter ligation step: adapters can become self-ligated. If not
completely removed prior to PCR, these adapter-dimers will be amplified and form clusters
on the flowcell. As a result, the number of aligned reads will be strongly decreased. Thus it
is important to decrease the amount of adapters used in a ligation reaction. Illumina
recommends using 0.1 ul of adapter for regular ChIPs. For histone ChIPs amount of IPed
DNA is usually higher than for non-histone ChIPs thus more adapter can be used.

Given the small amount of DNA, cross sample contamination can be a problem. Especially
dangerous is contamination of pre-PCR sample with post PCR library. To avoid this danger,
one can use self-contained precast gels, e.g. E-gels (Invitrogen) in library preparation. Even
when using E-gels, pre-PCR and post-PCR samples should not be run on the same gel.

When performing ChIP-Seq for smaller genomes such as yeast, one lane often produces an
excessive amount of data. To decrease the cost of experiment, it is possible to use barcoding.
For this one can use adapters that have one or more specific nucleotides at the 3′ end. For
example, adapters used for library 1 might have AG at the 3′ end and adapters for library 2
might have CT. After library preparation these two libraries can be mixed and sequenced in
the same lane using the standard primer. After sequencing, those reads that start with AG
will be used in analysis of library 1 and those with CT for library 2. This way experiment
cost can be halved. An alternative way of multiplexing has been recently offered by
Illumina. Barcodes can be integrated in the middle of an adapter and read after hybridization
of a second sequencing primer on a machine with paired-end module.

Paired end sequencing also offers important opportunities. While more expensive, it will
likely allow for easier data analysis especially in respect to TFBS identification and for
nucleosome positioning studies. In addition, it will allow researchers to analyze areas of the
genome that could not be analyzed using single read libraries: one will be able to map
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fragments overlapping with repetitive regions if one end of the fragment belongs to
repetitive and another to non-repetitive sequence. This will be especially beneficial for
analyzing reads in the vicinity of shorter repeats, such as tRNA derived repeats.

Data Analysis
Basic analysis of ChIP-Seq results is relatively straightforward, but requires significant
computational and data storage capabilities. Typically, it can be conducted using the
Illumina Analysis Pipeline within 1–2 days on a computer with at least 8 processors and
large memory. The pipeline measures cluster intensities from images, conducts base-calling
and aligns the sequences to a genome. There are several alternatives to the programs used in
the standard pipeline. Alternative base-calling can be done by Alta-Cyclic[Erlich et al.,
2008] or Rolexa[Rougemont et al., 2008], which claim to produce more alignable reads than
the Illumina pipeline. There are many more alternatives to the standard ELAND[Cox] for
alignment of the short reads to a genome. They differ in speed, maximum read length,
number of allowed mismatches, ability to align with gaps, ability to use base quality scores
produced by sequencer, and treatment of repetitive reads. The list includes RMAP [Smith et
al., 2008] and MAQ(maq.sourceforge.net) that are slower but can use base quality scores
and BowTie (bowtie-bio.sourceforge.net) that is claimed to be several times faster than
ELAND. Also available are RMAP, Novoalign (www.novocraft.com), Seqmap [Jiang and
Wong, 2008], SOAP [Li et al., 2008], ZOOM [Lin et al., 2008] and many others.

Alignment results can then be converted into browser extensible data (BED) or other
browser readable format and displayed in a genome browser. “Summary” files containing
the number of tags in windows of certain size instead of individual tags can be more
convenient for data visualization (Fig. 1C). In order to observe sharper peaks top(bottom)
strand tags can be shifted half of fragment length right(left) when making these files. Read
numbers can be averaged across some genomic elements e.g. all expressed genes to obtain
average tag density profiles. In order to display the data one can use, for example, the UCSC
genome browser on the Internet or as a local mirror. An example of a UCSC browser
showing individual reads(top) and summary display(middle) for H3K4me3 ChIP-Seq in the
vicinity of CD4 gene in T cells is shown in Fig. 1C. Average H3K4me3 tag density profile
for expressed and silent genes is shown on the bottom of the figure. Alternative browsers
can be used: for example Argo[Engels et al., 2006] is a convenient browser for smaller
genomes which can be run on a desktop machine without complicated setup. Other browsers
include Ensembl, CisGenome [Ji et al., 2008], Apollo [Misra and Harris, 2006], Gene-Track
[Albert et al., 2008], EagleView [Huang and Marth, 2008] and Gbrowse [Stein et al., 2002]..

More advanced analysis is far less standardized. Usually researchers are interested in finding
genomic regions that have significantly high number of tags. For this purpose genome can
be divided into windows/bins of certain size. Random distribution of tags into bins can be
described by Poisson distribution and tag number threshold can be calculated for the desired
p-value, window size and number of tags. More advanced background models can also be
used [Zhang et al., 2008b] [Feng et al., 2008].

Early peak finders used in [Robertson et al., 2007] and [Johnson et al., 2007] just searched
for the regions of genome containing high tag number. While this produces general area of
the peak, it does not give exact binding site location. Use of ChIP-Seq tag direction can
deliver higher resolution. This information can be used in several ways. After peak
identification peaks can be trimmed to narrow on binding site (FindPeaks [Fejes et al.,
2008]). Alternatively peaks of (+) and (−) strand tags can be identified separately and
binding site can be called between them (CisGenome [Ji et al., 2008], it also includes a user-
friendly browser). In the QUEST software[Valouev et al., 2008], the tags belonging to a top/
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bottom strand were shifted 1/2 of fragment size right or left respectively, resulting in sharper
peaks. A similar approach is used in MACS [Zhang et al., 2008a], which can also account
for local enrichment biases. Another solution was realized in the SISSRs program [Jothi et
al., 2008]. Since binding site has to be inside each immunoprecipitated fragment, top strand
tags can be only to the left and bottom strand tags can be only to the right of the binding site
(Fig. 1D). To find sites, a net scoring function is calculated as a number of top strand tags
minus number of bottom strand tags in small windows. The binding site is called where the
scoring function crosses zero. SISSRs offers precise identification of binding sites locations,
high sensitivity and resolution of closely located binding sites. Another advantage is that for
SISSRs to correctly map binding sites, the peak does not have to be symmetrical. With
SISSRs, the standard deviation of distance between predicted binding site and actual
consensus position can be as low as 13 bp for high enrichment CTCF sites [Jothi et al.,
2008]. The smaller the size of immunoprecipitated fragments, the lower SD can be achieved.
Use of paired –end sequencing will likely make finding sites easier and will allow for better
resolution of closely located binding sites.

There are several sources of bias in the ChIP-Seq data: One is bias in library construction
which results in under-representation of AT-rich regions with low melting temeperature (See
discussion in [Quail et al., 2008]). Another source is PCR, in which high GC content areas
are not well amplified. For chromatin prepared using micrococcal nuclease preparation of
chromatin bias can result from MNase sequence preferences: for example, it does not like to
cut between G and C bases. Furthermore, microrepetitivness of genome might result in
“dead zones”-positions in the genome to which tags cannot be mapped uniquely and which
might appear unenriched, improperly.

Two more notes of caution: Firstly, some regions of the genome tend to be non-specifically
enriched in ChIP-Seq. This can be a result of preferred fragmentation of “open” chromatin,
non-specific immunoprecipitation, PCR bias or incorrect mapping of repeat derived
sequence. The latter regions are likely to be represented by tags on only one strand. To avoid
identifying these areas as binding sites it might be important to use an IgG or input DNA
control library. Such a library can be sequenced once and used as a control for all future
experiments performed with the same organism and in similar fragmentation conditions.
Most of the programs referenced above can use such library as background. Secondly, while
ChIP-Seq allows identification of enriched regions it does not mean that TF actually binds
DNA there: enrichment can be achieved via protein-protein interactions and looping of
DNA.

Applications of ChIP-Seq
The ChIP-Seq approach can be used for mapping binding sites of any DNA binding protein
[Schones and Zhao, 2008]. What kind of results can be obtained with ChIP-Seq? Our
laboratory used it to map most of histone modifications[Barski et al., 2007a; Wang et al.,
2008] and nucleosome positioning [Schones et al., 2008] in CD4+ T cells. Unlike earlier
methods, ChIP-Seq produces data with nucleosome level or better resolution and genome-
wide coverage. These data has allowed us to make a number of interesting findings. For
example, we found that some modifications such as H3K27me3 and H3K9me3 occupy large
domains, whereas others including H3K4me1/2/3 and H3K9ac are located in small loci
several nucleosomes long (usually at promoters and/or enhancers). H3K4me1/2/3 and other
“positive” marks usually mark active promoters, but some silent promoters also have these
modifications. H3K36me3 and H3K79me2 both occupy gene bodies, but H3K79 peaks near
the promoter and decays into the gene body, H3K36me3 is absent at the promoter but
increases after the TSS. Most of known DNA breakpoints found in T cell cancer are located
within areas marked with H3K4me3 (“open chromatin”), whereas non –T cell cancer
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breakpoints show much lower association with the localization of this modification in T
cells, suggesting that open chromatin is more fragile. Some of these results could have been
obtained using ChIP- chip but the cost for analysis of almost 40 modifications would likely
be prohibitive. Furthermore, nucleosome level resolution obtained in these studies would not
be possible with older methods.

Mikkelsen et al.[Mikkelsen et al., 2007] used ChIP-Seq to analyze genome-wide distribution
of several histone trimethylations in mouse embryonic stem cells, neural progenitor cells and
embryonic fibroblasts. Thanks to the genome-wide coverage of ChIP-Seq, the authors were
able to produce data confirming their hypothesis regarding the role of bivalent domains
(regions where H3K4me3 and H3K27me3 marks co-localize) in plasticity and lineage
commitment [Bernstein et al., 2007]. Our analysis of various histone modifications using
ChIP-Seq during differentiation of human hematopoietic stem cells into erythrocyte
precursors suggests that the direction of resolution of the bivalent modifications upon
differentiation is associated with histone modification patterns at the stem cell stage [Cui et
al., 2009]. We have also observed co-existence of H3K4me3 and H3K27me3 in T cells [Roh
et al., 2006], where they may function to maintain plasticity and reversibility of
differentiated T helper cell subsets [Wei et al., 2009].

Interestingly, the sequencing strategy allows to distinguish alleles using differences at SNPs
and to analyze chromatin modifications at imprinting control regions [Mikkelsen et al.,
2007]. This would have been more difficult to achieve with ChIP-chip due to the possibility
of cross-hybridization.

Of course, ChIP-Seq was also used to map binding sites of transcription factors and other
DNA-associated proteins. Robertson et al.[Robertson et al., 2007] analyzed STAT1 binding
in HeLa cells and compared results with a previous ChIP-chip study. ChIP-Seq confirmed
~70% of sites detected by ChIp-chip, but was much more sensitive detecting almost 4 times
as many sites and authors were quite conservative: our re-analysis of data using SISSRs
software resulted in further 77% increase in the number of detected STAT1 sites.

Johnson et al.[Johnson et al., 2007] studied binding of NRSF(REST) repressor in Jurkat
cells. NRSF is one of the TFs with large binding sites (21bp consensus), which allows
computational identification of its targets with high significance. ChIP-Seq showed that
most of computationally predicted sites indeed bound NRSF. Unexpectedly, however, NRSF
also bound sites that lacked the consensus sequence. Motif finding showed that in some
cases having lower homology “half-site” was sufficient for NRSF binding. Authors note that
motif finding was greatly facilitated by high resolution and low false-positive rate of ChIP-
Seq. Ontology analysis of experimentally determined NRSF transcriptional network
produced more significant results compared to network produced by purely computational
means. As an example of global coverage of ChIP-Seq results authors showed a NRSF
regulatory network related to pancreatic beta cell development

Combining ChIP-Seq data for various DNA associated proteins in the same and in different
cell types allowed us to make interesting conclusions. For example, by combining data for
CTCF and H3K27me3 in three different cell types we were able to establish the role of
CTCF in chromatin domain barrier formation [Cuddapah et al., 2008].

Conclusions and Perspectives
Currently the ChIP-Seq protocol is well developed and relatively easy to perform: ChIP has
been performed for more than a decade and construction of ChIP-Seq library is no rocket
science either. Post-sequencing, one run of Illumina Genome Analyzer produces hundreds of
gigabytes of data per run and basic pipeline analysis on our server takes more than a day.
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Nonetheless, even though performing ChIP-Seq does require significant computational and
data storage resources, basic analysis is relatively standard. The difficult part of ChIP-Seq
experiment is more advanced data analysis. It has now been made easier thanks to peak
calling tools described above, but use of these tools requires more computer expertise than
molecular biologists typically possess. Thus development of user-friendly tools will likely
make ChIP-Seq results more usable. Still simple creation of the long lists of targets is no
longer a great achievement in itself: when embarking on a ChIP-Seq experiment, it is
important to understand how this huge amount of data will be used. Creative processing of
ChIP-Seq data requires close collaboration between biologists and bioinformaticians.

Discovery of all binding sites of transcription factor in a given cell type is a step to
understanding the transcriptional network that regulates gene expression and function of this
cell. Further, since number of tags found at a specific target site reflects strength of
interaction, these data can be used to determine which target sites have higher affinity and
will be occupied first upon the start of transcription factor expression. Target data for a
number of transcription factors combined will enable the construction of predictive models
of transcription control, gene expression and interaction of transcription factors and co-
factor proteins.

Many researchers will likely use ChIP-Seq results to examine just several individual binding
sites. When comparing binding between different samples it is relatively easy to compare
localization of binding. Much more care should be taken when comparing binding levels at
the same site between different samples: enrichment in a given ChIP experiment depends on
many intractable parameters, likely including a phase of a moon. Thus, change in tag
number at certain sites might result not only from “real” binding changes, but also from
experimental irregularities. On a positive side ChIP-Seq offers an internal control in the
form of average tag density profiles for the control sites.

One of the drawbacks of the ChIP approach is the inability to distinguish between a binding
event happening in the whole cell population and an event happening in only a few cells at a
time. To this end, it is important to learn to reduce the number of cells required for ChIP-
Seq. The ability to perform ChIP-Seq on a single cell level will provide answers to many
interesting questions.

ChIP is not the only method that went genome-wide thanks to high-throughput sequencing.
Now almost any method used for analysis of protein-DNA interactions at a single locus can
be combined with sequencing for genome-wide coverage. In fact the new Seq techniques
can be outright easier and retire older, often radioactivity based techniques. A prime
example is DNase footprinting[Boyle et al., 2008]. This method is used to identify regions
of open chromatin, which are considered candidate areas for enhancers, promoters and other
genomic elements. In the past, DNase treatment was followed by indirect end-labeling or
LM-PCR and gel separation or Southern blotting. Now for genome-wide coverage one can
simply sequence the ends of DNase-cut fragments. This approach can be applied to other
types of footprinting including, for example, KMnO4 or DMS footprinting. Chromosome
Conformation Capture (3C) (reviewed by [Simonis et al., 2007]) and its variants are also
likely to benefit from next generation sequencing. 3C-like methods are used to identify areas
of DNA that are brought together in the nucleus, for example as a result of looping.
Deciphering long-range inter- and intrachromosomal interactions will help to understand
how far-away enhancers can contribute to gene regulation.

Another application is mapping of nucleosome positions using footprinting with
micrococcal nuclease. We used this approach to map positions of nucleosomes in human T
cells[Schones et al., 2008]. This approach allowed us to discover specific nucleosomal
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organization of open promoters: unlike closed promoters, the first several nucleosomes in
open promoters are positioned at highly specific distances from the transcription start sites.
The analysis of nucleosome positioning will likely be much easier with the use of paired-end
sequencing.

Currently number of tags produced by a single lane of Illumina GAII is sufficient for
mapping most of narrowly distributed chromatin modifications, such as H3K4me1/2/3, but
is not sufficient for mapping H3K27me3, which occupies larger share of genome or
nucleosomes. Improvements in current sequencing technologies and development of new
ones by Helicos[Harris et al., 2008], Pacific Biosciences [Eid et al., 2008]will make
mapping of such modifications easier. Longer reads, which are being promised by Illumina
and ABI, will make a larger share of the genome mappable. Further, single molecule
sequencing techniques promoted by several companies will eliminate the need for pre-
sequencing PCR thus solving problems of biased coverage. Lastly, introduction of “open
source” Polonator will likely drive down prices of instrumentation and reagents making
ChIP-Seq more affordable.

High-throughput sequencing also revolutionized other areas of research in transcription and
epigenetics. DNA methylation now can be studied using bisulfite sequencing[Cokus et al.,
2008; Meissner et al., 2008]. Expression can be studied using SAGE-like Digital Gene
Expression or RNA-Seq[Mortazavi et al., 2008; Nagalakshmi et al., 2008]. RNA-Seq can
also provide data on alternative splicing and alternative promoter usage. Direct sequencing
can be used to discover novel small RNAs[Stark et al., 2007] and to measure their
concentration. Altogether these novel approaches will help to decipher secrets of gene
regulation in cell function and differentiation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A. Chromatin immunoprecipitation. 1. DNA is bound by a protein of interest in the nucleus.
2. Cells are lysed and DNA is fragmented. 3. Fragments bound by protein of interest
(purple) are bound by antibody bead complexes and precipitated. Some DNA fragments can
be precipitated nonspecifically(gray). 4. Protein-DNA complexes are eluted and DNA is
purified. Relative abundance of specific and non-specific fragments is analyzed by qPCR B.
ChIP-Seq library construction. 1. Specific (colored) non-specific(gray) immunoprecipitated
fragments are shown mapped to genome.2. DNA termini are polished, phosphorylated, A is
added and adapters are ligated. 3. Library is PCR amplified. 4. DNA fragments are
hybridized to flowcell, clusters are synthesized and sequenced. C. Typical view of ChIP-Seq
results. Results of H3K4me3 ChIP-Seq in CD4+ T cells [Barski et al., 2007a] in the vicinity
of CD4 gene are shown. Top track: Individual tags. Bottom track: Summary view- bars
show number of tags in 200 bp windows. Graph below shows average H3K4me3 tag density
profile in the gene body (TSS) for expressed and silent genes. D. SISSRs algorithm. Net tag
count is calculated as a number of sense strand tags minus number of antisense tags in small
windows. The point where net tag count crosses 0 with a negative derivative is considered a
binding site if sense, antisense and total total tag numbers for the site are above certain
threshold. See [Jothi et al., 2008] for details.
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