
Composite Likelihood Modeling of Neighboring Site Correlations
of DNA Sequence Substitution Rates

Ling Deng and
Johnson & Johnson

Dirk F. Moore
University of Medicine and Dentistry of New Jersey

Abstract
Sequence data from a series of homologous DNA segments from related organisms are typically
polymorphic at many sites, and these polymorphisms are the result of evolutionary processes.
Such data may be used to estimate the substitution rates as well as the variability of these rates.
Careful characterization of the distribution of this variation is essential for accurate estimation of
evolutionary distances and phylogeny reconstruction among these sequences. Many researchers
have recognized the importance of the variability of substitution rates, which most have modeled
using a discrete gamma distribution. Some have extended these methods to explicitly account for
the correlation of substitution rates among sites using hidden Markov models; others have
proposed context-dependent substitution rate schemes. We accommodate these correlations using
a composite likelihood method based on a bivariate gamma distribution, which is more flexible
than hidden Markov models in terms of correlation structure and more computationally tractable
compared to the context-dependent schemes. We show that the estimates have good theoretical
properties. We also use simulations to compare the maximum composite likelihood estimates to
those obtained from maximum likelihood based on the independence assumption. We use data
from the mitochondrial DNA of ten primates to obtain maximum composite likelihood estimates
of the mean substitution rate, overdispersion, and correlation parameters, and use these estimates
in a parametric phylogenetic bootstrap to assess the impact of serial correlation on the estimates of
substitution rates and branch lengths.
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1 Introduction
It is well known that the nucleotide substitution rate in DNA varies from site to site due to a
variety of functional or structural constraints (see, for example, Gu and Zhang, 1997), and
this rate variation impacts the estimation of phylogenetic trees. The need to characterize the
distribution of these substitution rates led Yang (1993) to use the gamma distribution, since
the shape parameter α (or, equivalently, the heterogeneity parameter ξ = 1/α) can effectively
index the variability. Yang (1994) showed that a discrete gamma distribution, obtained by
dividing a continuous gamma random variable into K discrete categories, also effectively
accommodates this variation but with less computational burden than is required by the
continuous gamma distribution. Thorne, Kishino, and Felsenstein (1992), in an alternative
approach to substitution rate heterogeneity, proposed a relatively simple model with two
varieties of fragments: one with a low substitution rate and one with a faster substitution
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rate. They used a suitable parameterization of these rates to develop a likelihood-based
sequence alignment procedure.

While most of the methods that use the gamma or discrete gamma distribution to model
substitution rates treat these substitutions as independent at different sites, a few researchers
have attempted to model correlations among sites. Yang (1995) and Felsenstein and
Churchill (1996) both proposed hidden Markov chain models that have similar structure but
that model rate dependence in different ways. Both models assume that substitution rates are
determined by a latent process with K states corresponding to the K components of the
discrete gamma distribution, and that the latent process on these states follows a Markov
model. Both models require that the substitution rates at any two sites are independent when
conditioned on the rates at sites between these positions. Felsenstein and Churchill (1996)
put the hidden Markov structure on the components of the discrete gamma distribution,
using a transition probability matrix for the K discrete states to control the correlation. Its
autocorrelation parameter is defined as the probability that the rate at that site is the same as
at the previous site. Thus, the transition probability and associated mean “patch length” (the
mean number of adjacent unchanged components in a sequence) depend directly on K.
Yang’s method (Yang 1995) assumes that the distribution of the substitution rate at site n is
specified fully given the substitution rate at site n − 1 and the correlation is defined as the
correlation of substitution rates at two directly neighboring sites. Yang’s method also works
with a transition probability between states of the discrete gamma, but the transition
probabilities among the K states are determined by a discrete bivariate gamma distribution.
Since the correlation coefficient is calculated based on the rates of all K categories and the
transition probabilities for a Markov chain of these rate categories, it is less dependent on
the choice of K than is the Felsenstein and Churchill method.

A more complex model, based on context-dependent substitution rates, was proposed by
Jensen and Pedersen (2000). In this model, the substitution rate at a site may depend on the
states of sites in the neighborhood of the site. In particular, the method allows for
substitution rates at a particular position in a codon to depend on the other two positions, and
on neighboring codons. By deriving the stationary distribution of the substitution process
and the ratio of the transition probabilities between two sequences, they can use a
numerically intensive Monte Carlo Markov Chain procedure to perform a maximum
likelihood analysis. They extended their model to accommodate overlapping reading frames
in Pedersen and Jensen (2001). A quite different approach was developed by Morozov
(2000) and Lake (1998), who used orthogonal basis functions based on Fourier and/or
wavelet decompositions to determine site-specific rate profiles. These decompositions are
numerically very intensive, and are most useful when the objective is to determine which
regions of a gene evolve faster or slower than the sequence average.

In this paper, we propose to use composite likelihoods based on a bivariate gamma
distribution (Lindsay, 1988; Varin and Vidoni, 2005; Henderson and Shimakura, 2003) to
accommodate much more complex correlation structures of substitution rates at any
neighboring sites using the number of substitutions at sites inferred from either known or
estimated phylogenetic relationships (Felsenstein, 1981; Nei and Kumar, 2000) and to
provide a direct estimate of these correlation parameters. The correlation of substitution
rates at sites addressed in this paper is similar to the one described by Yang (1995) except
that this paper considers a more general and flexible correlation structure. Composite
likelihoods are pseudo-likelihoods that are typically more tractable than full likelihoods
when modeling non-independent data. Fearnhead and Donnelly (2002) explored their use in
estimating recombination rates, and Fearnhead (2003) studied the consistency of
recombination rate estimates obtained in this fashion. Here we use composite likelihoods to
develop a tractable method to study correlated substitution rates. Following Henderson and
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Shimakua (2003), we construct a pseudo-likelihood based on a product of bivariate negative
binomial probability density functions (p.d.f.s), with one such factor for each pair of sites
that may be correlated. We extend their work by allowing more complex correlation
structures, and we show that estimates obtained by maximizing the resulting pseudo-
likelihood (which is not a full likelihood since it ignores three-way and higher correlations)
are consistent and asymptotically normal under reasonable conditions.

This paper is organized as follows. The bivariate negative binomial composite likelihood is
presented in Section 2, as well as a description of how we generate correlated substitution
rates. We study the performance of the method by simulation in Section 3 and apply the
method to data from mitochondrial DNA from ten primates in Section 4. In this section we
also use a parametric phylogenetic bootstrap to assess the impact of the serial correlation on
the estimates of branch lengths. The last section summarizes the results.

2 Methods
2.1 Notation and assumptions

Yang (1995) showed that the substitution rate at a site is not only related to the rates at its
directly neighboring sites but also to other adjacent sites. Here we make the simplifying
assumptions that the substitution rates at neighboring sites are correlated and the rates at two
sites are independent if these two sites are separated far enough. This results in a banded
correlation matrix. Suppose that N denotes the length of the DNA sequence under
consideration. Let ri and yi denote, respectively, the relative substitution rate and number of
substitutions at site i so the absolute substitution rate at site i can be expressed as μri where μ
denotes the average substitution rate. Furthermore, we suppose that the marginal distribution
of ri is gamma(1/ξ, ξ) with mean 1 and yi | ri ~ Poisson(μri). Marginally, the yi follow a
negative binomial distribution with mean μ and overdispersion parameter ξ. The band-
matrix correlation structure is defined by

where ρi,i+l is the correlation of substitution rates between sites i and i+l and B denotes the
maximum distance of correlated sites. When B = 0 the correlation matrix of substitution
rates reduces to a diagonal matrix, which represents the independent case. When B > 0, the
correlation matrix is a band matrix with bandwidth 2B + 1. Under independence models,
different sites are assumed to evolve independently and the substitution rate at each site is
distributed as an independent univariate gamma distribution. When correlation exists, a
natural extension from the independent to the correlated case is that the substitution rates ri,
ri+1, …, ri+B are jointly distributed as a (B + 1) -variate gamma distribution with correlation
matrix RB for any 1 ≤ i ≤ N − B, where
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Suppose that given ri, ri+1, …, ri+B, yi and yk are independent for any j ≤ i and k > (i + B), so
that unconditionally, the yi, yi+1, …, yi+B are distributed as a multivariate negative binomial,
with marginal mean μ, overdispersion parameter ξ, and correlation determined by RB. The
overall correlation matrix for substitution rates r = (r1, r2, …, rN) can be written as follows:

(2.1)

In practice the correlation structure might be much more involved than the one in (2.1) due
to the functional and structural properties. The composite likelihood can be directly
extended to accommodate more complex correlation structures, but the asymptotic
properties of the estimates obtained from them may be more difficult to determine.

2.2 Composite likelihood for correlated numbers of substitutions
Under the assumptions in Section 2.1, the number of substitutions at the adjacent sites
follows a multivariate negative binomial distribution. The multivariate negative binomial
distribution becomes unwieldy when the dimension is greater than 2. However, the p.d.f. for
the 2-dimensional case is manageable, and we can use a product of bivariate negative
binomial p.d.f’s to form a pseudo-likelihood function known as a composite likelihood.
Composite likelihood methods were proposed by Lindsay (1988) and further developed by
Cox and Reid (2004) and by Varin and Vidoni (2005). Henderson and Shimakura (2003)
used a pairwise composite likelihood based on the bivariate negative binomial distribution
for longitudinal count data. In this section we construct a composite likelihood function
based on the correlation structure given in Section 2.1, and we extend the asymptotic
properties to the situation of a long sequence of count data. The bivariate negative binomial
p.d.f. is given by

where
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Following Henderson and Shimakura (2003), we denote the correlation of substitution rates
between sites j and k as ρjk, and we have

(2.2)

That is, the correlation between yj and yk (the number of substitutions at sites j and k,
respectively) is less than ρjk (the correlation between the corresponding substitution rates at
these two sites). Let ρ = (ρ1, ρ2, …, ρB) denote all the nonzero correlation parameters of
adjacent substitution rates. The pairwise composite log likelihood for the serial correlated
count data can be written as

(2.3)

where

(2.4)

Pr(yi, yi+k | θ) denotes the bivariate negative binomial p.d.f, and θ = (μ, ξ, ρk). Let P denote
the total number of unknown parameters, Θ = {θ = (θ1, θ2, …, θP)} denote the parameter

space, and  denote the true parameter value. Then the composite-

likelihood estimator , defined as the
estimate that maximizes the composite likelihood (2.3), has the following properties, as the
sequence length gets large:

1.
θ̂N is consistent for estimating 

2. θ̂ − θ0 is asymptotically normal with mean 0 and variance Λk,k, where

and J(θ0) = {Jl1l2(θ0)}P×P is defined by
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where .

K(θ0) = {Kl1l2(θ0)}P×P is defined by

Since the correlation parameter(s) ranges from 0 to 1 and the overdispersion parameter is
non-negative, the parameter space is given by

The regularity assumptions underlying these results, as well as the proof, closely follow
those given in Cox and Reid (2004) and Fearnhead (2003) and so are omitted here.

2.3. Simulation of serial-correlated count data
In order to compare results from the composite likelihood method to those from the
independence model, we need to simulate serial count data that follow the correlated
negative binomial distribution. Given initial values of μ (the marginal mean), B (the number
of correlation parameters), and N (the sequence length),

1. Generate zi, i = 1, …, N + B, from N(0, 1) and compute

2. Generate yj from Poisson(μrj), j = 1, …, N.

Clearly, for any j = 1, …, N,

• rj ~ gamma(1/ξ, ξ) with mean 1 and overdispersion parameter ξ = 2/(B + 1).

•

.

• yj ~ negative binomial with mean μ and overdispersion parameter ξ = 2/(B + 1).

The count data generated by the above procedure are serial count data with a band
correlation structure. By selecting B we can control the correlation bandwidth.

2.4 A parametric phylogenetic bootstrap
The re-sampling bootstrap has been used previously in phylogenetics to obtain the
confidence limits of estimated phylogenies (Felsenstein, 1985; Efron, Halloran, and Holmes,
1996). Goldman (1993) proposed a phylogenetic parametric bootstrap, which involves
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repeated sampling of sequences using a specified parametric distribution. Wang, Salter and
Pearl (2002) provided estimates of the parameters in the underlying evolutionary model
jointly with the tree and obtained estimates of their standard errors using a bootstrap
approach. All these methods assume that the sequence sites are independent. Since we need
to obtain repeated sequence sites with a pre-specified correlation structure of substitution
rates at neighboring sites, we modified the Goldman (1993) parametric bootstrap by using
replicated sequences based on the substitution rates from a correlated gamma distribution.

To carry out the bootstrap, we first need a phylogenetic tree for the original set of sequences,
which we obtain using the maximum likelihood program “dnaml” in the PHYLIP package
developed by Felsenstein (2005) which is based originally on Felsenstein (1981). We chose
this program because it provides the topology of the sequence relationships and the branch
lengths and it is convenient to use. We then simulate DNA sequences under the
independence substitution rate assumption based on a pre-specified evolutionary model and
phylogenetic relationship using the computer program Seq-Gen (Rambaut and Grassly,
1997). The substitution rate portion of the program does the following:

Step 1: Simulate the relative substitution rate from a gamma distribution for each site, ri
~ gamma(1/ξ, ξ), i = 1, …, N. The rates at different sites are independent and the
substitution rate at an individual site is μri, where μ is average substitution rate.

Step 2: Simulate nucleotides for each site based on pre-defined evolutionary models and
the corresponding substitution rates.

To generate DNA sequences with correlated substitution rates, we adjust Step 1 of the above
procedure; no changes are needed for Step 2:

Adjusted Step 1: Simulate the relative substitution rate from a gamma distribution gamma(1/
ξ, ξ) for each site, such that substitution rates at neighboring sites are dependent with the
following correlation:

where ρmax is the pre-specified maximum correlation of substitution rates among sites and B
is the number of correlation parameters, which also indexes the bandwidth of correlation
matrix. In order to do this, we first simulate wi ~ gamma(ρmax/(ξB), 1), i = 1, …, N + B − 1

and vi ~ gamma((1 − ρmax)/ξ, 1), i = 1, …, N, then calculate  and ri = ξ(vi + ui)
for i = 1, …, N. Clearly, ui ~ gamma(ρmax/ξ, 1) and r ~ gamma(1/ξ, ξ). Then the simulated
ri, i = 1, …, N, have above specified correlation structure.

By using above adapted version of Seq-Gen (using the adjusted Step 1), the correlation
between substitution rates at two nearby sites will decrease with increasing site distances,
and the correlations will reduce to zero for sites separated by more than B bases. By re-
estimating the maximum likelihood tree for each simulated sequence, which is generated
based on the maximum composite likelihood estimates of mean substitution rate,
overdispersion, and correlation structure of a original sequence, we obtain parametric
bootstrap estimates of the branch lengths and their standard errors.
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3. Simulation Results
We simulated serial count data for μ = 0.35 or 0.7, B = 2 or 5, and N = 300 or 600 using the
simulation procedure defined in Section 2.3. For each combination of above values 350
simulations were done. The estimates based on maximum likelihood (independence case)
and on maximum composite likelihood (correlated case) were used to estimate the
corresponding unknown parameters (Table 1). The simulation results show that

1. The estimates of μ and ξ from these two methods are asymptotically unbiased;

2. The standard error of μ and ξ from the independence model are underestimated
while the composite likelihood method provides unbiased estimates;

3. The estimates of correlation parameters from the composite likelihood method are
asymptotically unbiased and robust;

4. When the correlation is close to 1 or 0 in short sequences, the estimate of the
correlation parameter and the corresponding standard error might be biased due to
the restriction of the correlation parameter space to the interval (0,1). These biases
are particularly noticeable when the average substitution rate μ or substitution rate
heterogeneity ξ is small. This is because corr(yj, yk) becomes small (Equation 2.2)
and the correlation among substitution rates cannot be estimated effectively
through the number of substitutions at neighboring sites. These biases are reduced
for larger N or larger values of μ or ξ.

4 Application to Primate Mitochondrial DNA
To illustrate our methods, we used the protein-coding region ND5 (NADH dehydrogenase
subunit 5) of mitochondrial DNA from 10 primates. The ten primates we considered are
human, chimpanzee, gorilla, orangutan, gibbon, barbary ape, hamadrya baboon, pygmy
chimpanzee, lemur and western tarsier. This choice of coding region and series of species is
similar to one studied by Yang (1995) using current sequence data from the National Center
for Biotechnology Institute; details may be found in the Appendix. Since the substitution
rates at the three codon positions are different, here we estimate the corresponding
parameters for codon position 2 of ND5, so we use a total of 604 (codon 2) nucleotides sites;
Codon positions 1 and 3 yield similar trees but somewhat different rate parameter estimates
(details not shown).

The estimated phylogenetic relationships among these 10 species were generated using the
PHYLIP program DNAML (Felsenstein, 2005) under the independence rate assumption,
and the estimated branch lengths are given in Table 3. The plot in Figure 1 was generated
using the program MEGA (Tamura et al. 2007).

Suppose the estimated tree in Figure 1 represents the true phylogenetic relationship among
these species. The number of substitutions at each site was counted using the DNAPARS
(DNA parsimony) program in PHYLIP (Felsenstein, 2005). Since DNAPARS estimates the
minimum number of substitutions, this number is generally an underestimate. The numbers
of substitutions at codon position 2 of ND5 are displayed in Figure 2. This plot illustrates
that one effect of the serial correlation is to induce clusters of sites with substitutions
interspersed with regions with conserved regions (regions with no substitutions). Figure 3
displays the relationship between the estimated correlation parameter and the distance
between sites, and shows that the serial correlation decreases from approximately 0.73 for
neighboring sites to zero when two sites are 27 sites apart. Our choice of B = 27 for the
mitochondrial data is thus based on the empirical observation that sites separated by 27 or
more base pairs show little correlation. Model selection methods (Varin and Vidoni, 2005)
may provide alternative methods for selecting B.
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Estimates of the average substitution rate, heterogeneity parameter, and correlation of
substitution rates between sites using maximum likelihood methods (for the independence
assumption) and composite likelihood methods (for the correlated assumption) are listed in
Table 2. Also given in Table 2 are corresponding estimates from the hidden Markov model
of Yang (1995) under two evolutionary models where the number of rate categories is
chosen as four. The JC69 (Jukes-Cantor) model ignores the type of substitution, and
corresponds most closely to our model. Estimates from the HKY model (Hasegawa et. al.,
1985), which includes a parameter κ that indexes the transition/transversion ratio, are also
included, since this is the model used by Yang (1995). The estimates for the mean
substitution rate μ are similar across all methods, while the estimates for the overdispersion
parameter ξ are higher for Yang’s methods (2.325 and 2.650 for the JC69 and HKY models,
respectively) than for ours (1.213 and 1.260 for the independence and correlated models,
respectively). The estimates for the correlation parameter for Yang’s methods (0.935 and
0.897, respectively) are somewhat higher than for the corresponding parameter ρ1 (0.73)
from the correlated model.

As discussed earlier, the assumptions underlying Yang’s hidden Markov model likelihoods
differ somewhat from those underlying the substitution rate likelihood and composite
likelihood models based on the inferred number of substitutions at sites. Both methods
provide estimates of the correlation of substitution rates at two directly neighboring sites.
Furthermore, Yang’s method does not provide a standard error or confidence interval for ρ.

An important difference between the independence and correlated models is that the
standard errors are underestimated in the independence as compared to the correlated model
(0.034 vs. 0.099 for μ, and 0.285 vs. 0.480 for ξ, respectively), which underscores the
importance of accounting for correlation in substitution rate models.

To set up the parametric bootstrap, we used the topology given in Figure 1 with branch
lengths given in Table 3. DNA sequences were simulated using the evolutionary HKY
model under both the correlated rate and independence assumptions with ξ = 1.26,
transition-transversion rate 2.5 and base frequencies for A, C, G, T = 0.21, 0.28, 0.11, 0.40,
respectively. For the correlated rate case, ρmax (the correlation of substitution rates between
two directly neighboring sites) was chosen as 0.73 and B (the number of correlation
parameters) was chosen as 27. The simulated sequence length was set at 600 and a total
6,000 simulations were carried out. The transition-transversion rate and base frequencies in
the above evolutionary model were chosen to match the corresponding empirical value of
codon position 2 of the primate ND5 sequences and the values of ξ, ρmax, and B were
chosen to match the corresponding estimates from the composite likelihood approach for the
codon position. Phylogenetic relationships among these species were then re-constructed
using DNAML based on the simulated DNA sequences with either independent or
correlated substitution rates. Among the 6,000 simulations, 76.1% produced a tree topology
exactly identical to the given tree for both independence and correlated cases; 88.9% and
88.5% correctly identified both Clade 1 and Clade 2 while 96.0% and 95.8% produced only
Clade 2, 92.6% and 92.2% produced only Clade 1 in the given tree for the independence and
correlated cases respectively, where the clades are specified in Figure 1. The proportion of
correctly identified phylogenetic relationships and summary statistics of each branch length
are presented in Table 3. Simulations show that there is not much difference in terms of the
proportion of correctly identified topologies and the estimates of branch lengths for this
particular case between two types of rate assumptions. Nevertheless, ignoring the rate
correlation will cause underestimation of the standard error of branch length. In addition, the
branch lengths are somewhat underestimated for both cases, with this underestimation
increasing with branch length. This underestimation is due to the fact that the number of
observed substitutions is generally less than the number of substitutions that actually
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occurred and the bias gets larger when branch length increases. Summary statistics based on
Clades 1 and 2 were very similar with the ones in Table 3, so details are not presented.

5 Discussion
We have shown that a composite likelihood can be constructed to model complex
correlation structures in serial count data arising from comparable DNA sequences. When
the correlation matrix is a band matrix, the parameter estimates are consistent and
asymptotically normal under reasonable conditions as the sequence length gets large. Failure
to accommodate serial correlations had little effect on estimates of the substitution rate, tree
topology, or branch lengths, but it results in underestimates of standard errors and
confidence intervals of these quantities. The methods we have described can be applied to
any set of comparable DNA sequences from related organisms, including those from
bacteria or viruses as well as from higher organisms, provided that the sequences can be
accurately aligned. The methods can also be applied to protein amino acid sequences. The
impact of mis-specifying the correlation pattern or B needs further research.
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Appendix

Accession Numbers of Mitochondrial DNA From NCBI
The gene sequences may be obtained from the Entrez Gene website of the National Center
for Biotechnology Institute at http://www.ncbi.nlm.nih.gov. To obtain the DNA sequence
for the ND5 segment of a particular species, search “Gene” for the relevant accession
number, and then select “ND5.” On the Summary page for ND5, click on the Accession
Number, and select “FASTA.” This will return the ND5 sequence for that species. Here are
the accession numbers that we used:

western tarsier NC_002811 lemur NC_004025

pygmy chimpanzee NC_001644 hamadryas baboon NC_001992

barbary ape NC_002764 gibbon NC_002082

orangutan NC_001646 gorilla NC_001645

chimpanzee NC_001643 human NC_001807
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Figure 1.
Phylogenetic relationship among 10 primates based on ND5 Mitochondrial DNA sequences
(Codon position 2). In the text, we refer to Clade 1 as the subtree consisted of human,
chimpanzee, and pygmy chimpanzee, and Clade 2 as the subtree consisted of gibbon,
barbary ape, hamadrya baboon, lemur, and western tarsier.
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Figure 2.
Number of substitutions vs. site number DNA codon position 2 of ND5, 10 primates.
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Figure 3.
Correlation vs. the number of sites apart DNA codon position 2 of ND5, 10 primates.
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Table 3

Parametric bootstrap estimates of the branch lengths based on ND5 codon position 2 under the independence
and correlated rates assumptions. Sequences with 600 sites were simulated based on the phylogeny shown in
Figure 1 using the branch lengths specified in parentheses in the first column. For the correlated rate case, B =
27, ρmax = 0.73, and in both cases, ξ = 1.26. The total number of simulations = 6,000. Of these, 76.1%
produced a tree topology identical to the given tree for both independence and correlated cases.

Branch (Length) Correlation Type Mean (Se) Se Increase (%) Median (95% CI)

1, 2 (0.0050) IND 0.0061 (0.0032) - 0.0057 (0.0016,0.0120)

CORR B27 0.0062 (0.0035) 9.0 0.0056 (0.0015,0.0126)

1, Orangutan (0.0533) IND 0.0488 (0.0095) - 0.0486 (0.0339,0.0649)

CORR B27 0.0496 (0.0132) 38.8 0.0487 (0.0294,0.0730)

2, 3 (0.0084) IND 0.0084 (0.0039) - 0.0081 (0.0030,0.0154)

CORR B27 0.0084 (0.0040) 3.1 0.0079 (0.0029,0.0158)

2, Gorilla (0.0252) IND 0.0240 (0.0066) - 0.0238 (0.0137,0.0353)

CORR B27 0.0242 (0.0079) 19.6 0.0237 (0.0119,0.0379)

3, 4 (0.0076) IND 0.0076 (0.0035) - 0.0070 (0.0025,0.0140)

CORR B27 0.0076 (0.0040) 11.9 0.0069 (0.0017,0.0149)

3, Human (0.0217) IND 0.0208 (0.0062) - 0.0205 (0.0116,0.0316)

CORR B27 0.0210 (0.0073) 17.2 0.0204 (0.0101,0.0343)

4, Chimpanzee (0.0068) IND 0.0067 (0.0035) - 0.0067 (0.0017,0.0131)

CORR B27 0.0068 (0.0036) 5.3 0.0067 (0.0017,0.0135)

4, Pygmy Chimp (0.0100) IND 0.0098 (0.0041) - 0.0097 (0.0034,0.0170)

CORR B27 0.0099 (0.0046) 11.3 0.0098 (0.0033,0.0182)

5, 1 (0.0133) IND 0.0127 (0.0051) - 0.0123 (0.0050,0.0217)

CORR B27 0.0130 (0.0056) 9.8 0.0125 (0.0050,0.0232)

5, Gibbon (0.0302) IND 0.0282 (0.0073) - 0.0278 (0.0170,0.0408)

CORR B27 0.0285 (0.0089) 22.1 0.0280 (0.0151,0.0436)

6, 5 (0.0252) IND 0.0235 (0.0072) - 0.0231 (0.0122,0.0361)

CORR B27 0.0240 (0.0086) 19.9 0.0233 (0.0113,0.0392)

6, 7 (0.0491) IND 0.0428 (0.0097) - 0.0425 (0.0273,0.0589)

CORR B27 0.0430 (0.0123) 27.4 0.0421 (0.0247,0.0647)

7, Lemur (0.0474) IND 0.0433 (0.0093) - 0.0429 (0.0284,0.0590)

CORR B27 0.0442 (0.0124) 32.4 0.0435 (0.0252,0.0661)

7, Tarsier (0.0626) IND 0.0561 (0.0109) - 0.0556 (0.0392,0.0747)

CORR B27 0.0569 (0.0149) 37.0 0.0555 (0.0344,0.0832)

8, 6 (0.0456) IND 0.0404 (0.0091) - 0.0400 (0.0262,0.0560)

CORR B27 0.0409 (0.0116) 27.6 0.0400 (0.0236,0.0613)

8, Baboon (0.0267) IND 0.0255 (0.0071) - 0.0252 (0.0145,0.0376)

CORR B27 0.0258 (0.0086) 21.4 0.0252 (0.0126,0.0409)

8, Barbary Ape (0.0302) IND 0.0285 (0.0076) - 0.0281 (0.0168,0.0412)
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Branch (Length) Correlation Type Mean (Se) Se Increase (%) Median (95% CI)

CORR B27 0.0288 (0.0093) 22.3 0.0282 (0.0149,0.0451)
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