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Abstract
The CAPRI and CASP prediction experiments have demonstrated the power of community wide
tests of methodology in assessing the current state of the art and spurring progress in the very
challenging areas of protein docking and structure prediction. We sought to bring the power of
community wide experiments to bear on a very challenging protein design problem that provides a
complementary but equally fundamental test of current understanding of protein-binding
thermodynamics. We have generated a number of designed protein-protein interfaces with very
favorable computed binding energies but which do not appear to be formed in experiments,
suggesting there may be important physical chemistry missing in the energy calculations. 28
research groups took up the challenge of determining what is missing: we provided structures of
87 designed complexes and 120 naturally occurring complexes and asked participants to identify
energetic contributions and/or structural features that distinguish between the two sets. The
community found that electrostatics and solvation terms partially distinguish the designs from the
natural complexes, largely due to the non-polar character of the designed interactions. Beyond this
polarity difference, the community found that the designed binding surfaces were on average
structurally less embedded in the designed monomers, suggesting that backbone conformational
rigidity at the designed surface is important for realization of the designed function. These results
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can be used to improve computational design strategies, but there is still much to be learned; for
example, one designed complex, which does form in experiments, was classified by all metrics as
a non-binder.

Introduction
Protein-protein interactions underlie all biological processes. Despite the availability of
many co-crystal structures of complexes, there is still not a complete understanding of the
energetics of protein association, and this limits our ability to consistently predict the
structures of complexes from monomers, predict the energetic effects of mutations at protein
interfaces, and engineer high-affinity and –specificity interactions. An improved
understanding of binding energetics therefore holds the key to resolving some of the most
important problems in protein biophysics and molecular biology.

A recently developed method for de novo binder design produced two proteins that
interacted with a sterically hindered surface on Spanish influenza hemagglutinin (SC1918/
H1 HA; hereafter referred to as HA)1. Following in vitro evolution 2-4 mutations in the
periphery of each of these interfaces improved binding to low nanomolar dissociation
constants and one of the proteins inhibited HA function. However, 71 other designed
proteins predicted to bind did not experimentally interact with HA. The Baker group has had
similar low success rates with other de novo interface design problems (to be published),
highlighting limitations in the understanding of protein-binding energetics and their
repercussions for the ability to design novel protein functions. More sensitive experimental
detection methods could identify additional binders in this set (the current method requires
dissociation constants better than 10μM and binding off-rates less than 10 s-1); but the
ability to computationally generate high-affinity interactions is vital for engineering new
protein functions.

We asked the protein-docking community to help identify what was missing in our protein-
modeling calculations. This paper describes the benchmark tests we established and
summarizes the insights from the many interface-modeling experts who took up the
challenge.

Results
A protein-interface design benchmark

The computational interface design protocol consists of (i) pre-computing a set of high-
affinity amino acid residue interactions with the target surface; (ii) redesigning natural
protein scaffolds to incorporate a number of these amino acids; and (iii) designing the
remainder of the interface to enhance binding affinity1. This protocol can produce protein
complexes with computed binding characteristics that rival natural complexes. For instance,
the distributions of interface buried-surface areas and computed binding energies of
designed and naturally occurring protein complexes overlap (Fig. 1; Table S1). In many
cases, designed protein complexes show more favorable values than do natural complexes.
This is despite the fact that the vast majority of the designed complexes do not
experimentally bind. The discrepancy between prediction and experiment is the focus of this
study: our goal is to identify the missing components in binding-energy calculations to
improve both our ability to design high affinity interfaces and, more generally, our
understanding of protein-association thermodynamics.

We set out to identify thermodynamic components of binding that are poorly modeled and
could be the underlying cause of the low success rate of de novo binder design. In a
preliminary experiment, a set of 20 designed binders of several targets that did not show
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detectable binding to their targets were provided to participants in the community-wide
experiment on the Critical Assessment of Predicted Interactions (CAPRI)3, alongside one
experimentally determined but, at that time, unpublished co-crystal structure of two proteins
that bound with a low-nanomolar dissociation constant4. The participants were asked to rank
the 21 complexes according to their propensity to bind in the modeled or experimentally
determined binding mode. In this preliminary experiment, only two of 28 participating
groups (Groups 1 and 6) clearly identified the co-crystal structure as the true binder –
performance that is not significantly different from chance at 5% confidence (to be
discussed in the next Special Issue on CAPRI). These results suggested that the task of
identifying complexes that are likely to bind is non-trivial, and that a larger scale community
wide investigation could provide considerable insight into this problem.

To set up a benchmark for a more comprehensive community wide investigation into the
elements that are missing in our evaluation of binding thermodynamics, we prepared a set of
87 designed proteins targeting three different proteins of interest (models available as
Supplemental Data and plasmids encoding genes for expressing the designs using yeast cell-
surface display are available through http://www.addgene.com). The three target proteins
were Spanish influenza HA (62% of the designed complexes; chains A and B of Protein
Databank (PDB) entry 3GBN6), the acyl-carrier protein 2 from M. tuberculosis (25%; Mt
ACP2; PDB entry 2CGQ), and the Fc region of human IgG1 antibodies (13%; PDB entry
1L6X7). The structures of the scaffold proteins for binder design were taken from the PDB
and their surfaces were redesigned for binding using the computational method mentioned
above1. As a reference set of solved co-crystal structures we used the docking benchmark
3.08 comprising 120 protein complexes with experimentally determined dissociation
constants9 ranging from 10-5 to 10-14M. These sets of natural and computationally designed
complexes were provided to participants in CAPRI, noting in each case whether a complex
was designed or natural. At the beginning of the experiment 9 designed proteins had not
been experimentally tested for binding and these served as unmarked blind cases.

Each participating group (Table 1) was asked to provide a method for ranking the complexes
according to their binding energy (all of the values provided by participants are available as
Supplemental Data). To get at the underlying physical chemistry of binding, groups were
asked not to train their methods on the data, i.e., the information on whether a complex was
designed or natural could not be used in training the parameters used in the evaluation
strategy. Otherwise, the groups were free to choose which metrics or combinations of
metrics to use. Figure 2 shows a Receiver-operator Characteristic (ROC) curve for each
participating group, plotting the true-positive rate vs. the false-positive rate. The Area Under
the Curve (AUC, in percent units) is marked in each panel. The participating groups were
additionally asked to categorize each complex according to the following criteria: the two
partners (i) bind, (ii) are likely to bind, (iii) are likely not to bind, (iv) do not bind, and (v)
unknown (Figure S1), and were free to choose thresholds to maximize discrimination.

The methods used by participating groups span a wide spectrum. Many groups computed
binding energies, typically dominated by electrostatics, solvation, and knowledge-based pair
terms (Groups 1, 5, 6, 11, 12, 14, 20, 23, 26, 28, 29, 31, 33, and 36); Groups 1 and 6 used
continuum solvation methods to compute binding energies, similar to widely used MM-
PBSA approaches for computing binding afinities10. Others utilized features such as
hydrogen-bonding patterns and buried surface area (Groups 16, 21, 23, 24, 30, 32, 35).
Groups 2 and 22 used machine learning to determine which features discriminate previously
published Rosetta models from natural complexes. Groups 8 and 17 used the low sequence
conservation at the designed interface as a discriminator. Group 10 analyzed low-frequency
dynamics; and Group 7 tested the low-resolution compatibility of the surfaces compared to
randomly docked decoys of the same partners,
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Discrimination between the designed interfaces and some, but not all, categories of
natural ones

Many different metrics provide useful posteriori discriminators between designed and
naturally occurring complexes (Fig. S1), with several groups achieving AUC values above
85% (Fig. 2). However, the ROC curves also point out that even well-performing metrics
suffer from poor discrimination between designs and many native complexes. That is, many
of the best discriminators rank a large fraction of the natural complexes as better binders
than the designed complexes, but still rank many designed and natural ones equally.
Consequently, many of the native complexes were predicted as unlikely to bind or as not
binding by most groups. These results suggest that the designs share some features with a
substantial fraction of the natural complexes but not with all.

To get a more detailed view of the individual features that contribute most to discrimination,
we compared the distributions for designed and natural interfaces of the two most heavily
weighted terms given by several participating groups (Fig. 3A). As with the full metrics
(Figs 2 & S1), the individual-score values for natural complexes span and exceed the range
of designed complexes, and hence no single or indeed pair of scores unambiguously
discriminates designed from natural complexes. Nevertheless, the designed complexes
typically stand out as having on average less optimal values than a majority of the natural
complexes in terms of their van der Waals contacts, solvation self energy, and electrostatic
complementarity. To understand the commonalities between designed and natural
complexes that were predicted not to bind, we analyzed in detail the results from Group 6,
one of the best-performing participants (Fig. 2). We found that those natural interfaces that
scored more favorably than designs according to the two-metric analysis (Fig. 3A) were
typically larger and comprised many saltbridge or backbone-mediated interactions (see per-
group two-metric analysis in Supplemental Data). By contrast, the natural interfaces that
were predicted not to bind were smaller, more hydrophobic, and contained few if any
charges and paired backbone atoms. The de novo designed interfaces share many of the
same features as the latter category of smaller, more hydrophobic interfaces, explaining why
many metrics showed natural complexes to span the range of values for the designs but did
not clearly discriminate the two groups (Figs. 2 & 3A). Many of these natural hydrophobic
protein complexes bind quite strongly, implying that even the best-performing metrics do
not fully reflect binding thermodynamics. This is highlighted by the fact that the natural
complex best separated from the designs (predicted most strongly to be a binder) was a
structure, which after its publication was deemed by several studies to be likely incorrect11,
and was recommended for retraction by the University of Alabama (PDB entry: 1BGX12).
In retrospect, the bias towards hydrophobic interfaces was a failing of our design benchmark
set. We remedied this failing in two ways (below): by adding more polar interfaces to the
design set and by contrasting the designs with the most apolar natural interfaces in the
docking dataset.

Reducing the polarity discrepancy between natural and designed interfaces identifies
methods that discriminate designs based on functional site rigidity

To address the problem of unequal polarities in designed and natural interfaces, we
redesigned the set of 87 designed complexes, increasing the contributions from residue
pairwise-interaction probabilities and Coulomb electrostatics to the energy function used by
RosettaDesign, and selected 29 designs with high buried surface area and computed binding
energies. In these redesigned interfaces, the distributions of contributions to binding from
electrostatic and pairwise-interaction probabilities are comparable to those of natural
interfaces (Fig. 3B). While these new redesigned complexes have many flaws (sidechain
packing is not ideal and their interfaces contain many unsatisfied hydrogen-bond donors and
acceptors), the addition of interfaces with higher charge complementarity reduces the
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polarity discrepancy between designed and natural interfaces in our set and makes the
benchmark more representative of the physical-chemical diversity of natural interfaces. We
have added these new, more polar complexes to the benchmark set (Supplemental Data).
The improved benchmark set should provide an even better test of current understanding of
binding physical chemistry than the original set.

To isolate metrics that discriminate the designs from a set of apolar natural interfaces, we
selected 25 natural interfaces with the lowest electrostatic desolvation penalty according to
the Rosetta all-atom energy (Table S2). As expected, the AUC of many of the metrics
deteriorated in this analysis compared to the results of Figure 2, while a few methods
performed as well on this stricter test as in the one shown in Figure 2 (Table S3). Group 7
(AUC=81% in this analysis) used low-resolution docking and favored those complexes
where close-to-native conformations had lower interaction energies than far-from-native
ones. An analysis of the worst and best-performing designs according to this method showed
that it penalized designs with poor low-resolution shape complementarity, and conversely
favored designs with intricate ‘knobs-into-holes’ features, which allow more residue-to-
residue interactions. Group 10 (AUC=79% in this analysis) used a single feature based on
the compatibility of the low-frequency vibrational modes of the partner proteins. Interfaces
where the vibrational modes of the two partners were incompatible were penalized. An
analysis of the worst-performing designs according to this method showed that it penalized
designs where the binding surface was positioned on loops or secondary-structural elements
that were poorly embedded in the designed monomer, and conversely favored interfaces that
integrated the designed surface through many interactions in the host monomer. Group 10
found that a simpler related metric based on the average degree of connectivity of interfacial
residues on the designed monomer (see methods) performed more poorly than the analysis
of vibrational modes, but was also discriminatory. Indeed, in following up on the Group 10
results we found that most designed proteins with an average degree of less than 8.5 residue
neighbors at the interface (～15% of designs in the set) utilize loops or secondary structural
elements that are poorly anchored to the designed protein and, retrospectively, are unlikely
to form the modeled surfaces in experiment (Fig. 4). That such a high fraction of designs
employ backbones that are poorly anchored in the designed monomer is unsurprising given
that binding to a target surface is typically hindered by other surfaces on the target molecule;
designed surfaces that are less embedded in their host monomers suffer less from such
hindrance. We have implemented this degree of connectivity metric in the Rosetta software
and expect it to improve the likelihood of obtaining active designed binders in future.

Failure to identify an experimentally validated designed binder as such
Of the 87 designed interfaces provided to participants for ranking, 9 designs had not been
tested for binding at the start of the experiment and thus serve as a blind test of the ranking
methods. Of these 9 one has been experimentally confirmed to bind its HA target surface
(herein numbered design 45 or HB80 in ref. 1). In vitro selection of design 45 variants for
higher affinity identified four point substitutions at the periphery of the interface that
together produced an experimentally determined dissociation constant of 38nM, rivaling
many of the affinities in the docking benchmark of naturally occurring binders8. Despite this
high affinity, none of the groups predicted that design 45 binds, and a majority predicted it is
unlikely to bind or that it would not bind (Fig. S2). Design 45 has a small nonpolar interface,
which as noted above confounds discrimination of binders from non binders by most of the
methods reported here. The failure with design 45 and the general difficulty in
distinguishing the designs from non-polar natural interfaces suggest that considerable work
remains in refining models of protein-interface thermodynamics.
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Discussion
Defining the structural and energetic determinants of high-affinity binding is crucial for our
mechanistic understanding of protein-interaction networks and the ability to intervene in
physiologically important systems. Our analysis provides a snapshot of current
understanding of binding energetics. While certain features emerge as discriminators
between designs and a majority of the natural protein complexes in our dataset, all of the
metrics misclassify some natural complexes as non-binders. In many areas of computational
biology, ranging from sequence alignment13 to function annotation14, the availability of
comprehensive benchmarks has provided strong impetus to method development and a
powerful means of gauging progress. The benchmark provided here, the first to contain
complexes that are predicted to associate but have been experimentally determined not to
interact, provides a valuable orthogonal axis for evaluating both the relative and absolute
performance of alternative approaches.

The design discrimination test is complementary to traditional docking tests. In this test,
large-scale sampling of rigid-body or backbone freedom is not needed, allowing more direct
focus on the energy function. On the other hand, it must be kept in mind that the failure of a
computational design to experimentally bind its target could be related not only to
overestimation of the computed binding energy due to energy function inaccuracies, but also
imperfect design at the monomeric protein level: the design may not actually fold to the
target structure. The high likelihood of designed sidechains to adopt binding-incompatible
conformations in the unbound state has been suggested to play a role in the failure of design
calculations to produce active binders15. Here, we find that changes to backbone structure in
designed surfaces might play an equally significant role in compromising designs. Indeed, in
the design of hemagglutinin binders, the two active designs used largely helical and
conformationally restricted surfaces1. Our conclusion that surfaces that are not well
anchored are poor choices for design can be easily used to eliminate such surfaces from
design.

The 28 participating groups found many differences between the designed and natural
complexes. In particular several metrics employing electrostatics and solvation show
promise as discriminators; perhaps unsurprisingly, given that the three surfaces targeted in
the design set were largely hydrophobic, whereas natural interfaces span the range of
hydrophobicity and charge. On the other hand, most all-atom metrics fail to discriminate
native and designed hydrophobic interfaces, even though most of the designs do not bind.
This result underscores the importance of developing improved forcefields for protein
interfaces that are able to discriminate binders from non-binders in all categories. One result
of the community wide testing is that our original benchmark set could be “tricked” because
of its too strong focus on nonpolar interfaces. We have now supplemented the benchmark
with more polar and charged interfaces to remedy this deficiency and by suggesting a subset
of 25 apolar natural interfaces for comparison to designs; we look forward to the improved
metrics that will be developed to solve the discrimination problem posed by this more
inclusive benchmark.

Solving the discrimination problem by all-atom methods may require explicit treatment of
the various conformational-entropy penalties of binding, such as sidechain and backbone
freezing15; 16. Additional aspects such as water molecules at the interface, and the likelihood
that the designed protein adopts its target conformation may also need to be addressed. The
availability of a comprehensive dataset should enable the development of improved energy
functions, yielding a more complete understanding and formulation of the energetic
contributions to binding free energy and increasing the reliability of tools for predicting and
engineering protein interactions.
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Materials & Methods
Experimental materials and methods and the computational methods used in discrimination
are provided in the online supplement.

Computational methods
Preparation of input files

Designed and natural complexes were subjected to the same computational protocol
consisting of full sidechain repacking and refinement of the rigid-body and sidechain
conformations using the local-refine mode of RosettaDock17. All calculations were
conducted in the Rosetta all-atom forcefield (score12), which is dominated by van der
Waals, hydrogen bonding, and solvation terms5. A RosettaScript for complex-structure
refinement is available in the online supplement. Refined structures were provided to the
participants and are available in the online supplement.

Computed binding energy and buried-surface area calculations
The binding energy and buried-surface area (Fig. 1; Table S1) were computed within the
Rosetta software suite. For the natural complexes, the biologically relevant interface was
extracted from information provided with the docking benchmark18. Binding-energy
calculations (using score12) were computed by subtracting the energy in the unbound
complex from the energy in the bound complex, in each state allowing for repacking of
interface sidechains. Binding energies were averaged over three repeats for numerical
stability. A RosettaScript for computing the binding energies and buried surface areas is
available in the online supplement.

Receiver-operator Characteristic (ROC) and the Area Under the Curve (AUC)
The raw scores from each group were numerically sorted from high to low propensity to
bind, irrespective of the type of complex (natural or designed). To plot the ROC, for each
natural complex in the sorted list, a step was taken along the y-axis, and conversely, for each
designed complex, a step was taken along the x-axis. Step sizes were normalized such that
the total lengths of the x- and y-axes were 1.0. The AUC was computed by summing the
area added under the curve for each x-axis increment. Scripts for computing the AUC and
plotting the ROC are available in the online supplement.

Degree of connectivity at the interface
For each interface residue on designed monomers and all interface residues on natural
binders we calculate the number of residue neighbors on the host monomer within 8Å of the
interfacial residue (ignoring the partner protein). We find that below 8.5 residue neighbors
designed surfaces are poorly anchored in their host monomers (examples in Figure 4).
Residues within 8Å of the partner protein were considered to be interfacial. This metric is
implemented in RosettaScripts19 (see Supplemental Data).

Redesign for improved electrostatics
The 87 designed complexes served as starting structures for three iterations of sidechain
design of scaffold interface residues followed by minimization of rigid-body, backbone, and
sidechain degrees of freedom. During design and minimization, the Rosetta all-atom
forcefield was augmented with a Coulomb electrostatic-interaction term with a distance-
dependent dielectric (weight=1.0) and pair potential (weight=0.98, compared to 0.49 in the
default all-atom forcefield). The 29 designs burying the highest surface areas were selected.
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Pairwise and electrostatic contributions to binding (Fig. 3B) were these energetic
components of binding-energy calculations (see above), and were computed assuming
weights of 0.49 for the pairwise potential and 0.25 for Coulomb electrostatics. A
RosettaScript for the design trajectory is available as Supplemental Data.

Source code
The Rosetta software suite is available free of charge to academic users at http://
www.rosettacommons.org. Scripts used in analyzing the data and producing the graphics are
provided in the online supplement.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Natural and designed complexes have similar overall properties. (A) buried surface area at
the interface; (B) computed binding energy. Computed binding energies are reasonably
correlated with experimentally determined dissociation constants (Pearson correlation
r=0.53 ref. 15). All plots were produced using gnuplot 4.4 and enhanced with Adobe
Illustrator. In all figures, native refers to natural complexes in the docking benchmark8.
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Figure 2.
Ability of different methods to discriminate between native and designed complexes.
Receiver-operator Characteristic (ROC) curves are shown for each group, with the true- and
false-positive classification on the y- and x-axes, respectively. The steeper the ascent of the
curve and the larger the Area Under the Curve (AUC) the better the discrimination between
natural and designed complexes. The green diagonal represents the expected output of
random prediction. Percent AUC is noted within each plot. Groups 2 and 22 trained their
metrics, in part, on Rosetta models published in the past, but not on the current set of
designs (see Methods for more details).
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Figure 3.
Individual features that partially discriminate native and designed complexes. (A)
Comparison of native and designs using the two most heavily weighted terms in the scoring
function for each group. The points represent individual natives or designs, and the axes
represent the most heavily weighted scoring terms. The scatter plots provide insight into
some of the discriminatory power of the methods. While the phase-plane occupied by
designs and natives overlap, in these cases, the designs occupy a small fraction of the plane
with many of the natives having more favorable values. The results from Groups 11 and 33
suggest that the van der Waals contacts in designed interfaces are weaker than in natives.
Likewise, Groups 6 and 11 suggest that solvation self energy (ACE) and electrostatics (the
dominant contribution to Rosetta pair energy) are more optimized in natives. See individual
groups' methods for more details. (B) Modification of the design protocol yields
distributions of interface pairwise and Coulomb-electrostatic energies similar to those in
natural complexes. Natural complexes (natives) and designs generated with (redesigns) and
without (designs) an increased pairwise attractive term (weight=0.98) and Coulomb
electrostatic interaction with a distance-dependent dielectric (weight=1.0). The distributions
were calculated using pairwise attractive term and electrostatic interaction of 0.49 and 0.25,
respectively, for all complexes. These designs have many flaws as potential binders, but can
serve as decoys with more native-like distributions of electrostatic interactions.
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Figure 4.
Average number of neighbors (average degree) of interface residues within the designed
monomer discriminates some designed complexes from native complexes. Surfaces with
low average degree (bottom) tend to comprise segments, including unstructured regions,
which are poorly embedded in the host monomer. By contrast, surfaces with high average
degree (top) comprise secondary-structural elements and short loops that are better
structurally connected to the host monomer. Following sequence design poorly connected
surfaces might have altered conformations from those seen in the wild-type protein
structure, providing some explanation for the failure of these designs to experimentally bind
their targets. Average degree is marked on each panel. Clockwise from top-left, the panels
represent designs 47, 59, 78, and 77 (coordinates are available in the online supplement).
The target proteins are rendered in cyan. The backbones of the designed monomers are
colored according to secondary structure (red – helix; yellow – strand; green – loop).
Designed interfacial residues are shown in sticks with carbon, oxygen, and nitrogen, colored
in green, red, and blue, respectively. Molecular representations were produced with
PyMol20.
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