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Abstract
In its most basic form an oscillator consists of a resonator driven on resonance, through feedback,
to create a periodic signal sustained by a static energy source. The generation of a stable
frequency, the basic function of oscillators, is typically achieved by increasing the amplitude of
motion of the resonator while remaining within its linear, harmonic regime. Contrary to this
conventional paradigm, in this Letter we show that by operating the oscillator at special points in
the resonator’s anharmonic regime we can overcome fundamental limitations of oscillator
performance due to thermodynamic noise as well as practical limitations due to noise from the
sustaining circuit. We develop a comprehensive model that accounts for the major contributions to
the phase noise of the nonlinear oscillator. Using a nano-electromechanical system based
oscillator, we experimentally verify the existence of a special region in the operational parameter
space that enables suppressing the most significant contributions to the oscillator’s phase noise, as
predicted by our model.

Advances in time and frequency measurement have closely paralleled technological
progress. However, since the appearance of quartz-crystal-based oscillators [1], very few
conceptual innovations have been introduced. quartz crystal resonators (their frequency-
determining elements) operate at the highest possible signal to noise ratio in order to
minimize phase noise. The resonator is always kept within its linear regime, which results in
oscillator phase noise being inversely proportional to the oscillator carrier power. Ongoing
technological evolution requires a dramatic reduction in the oscillator size and power,
preferably without performance degradation. Micro- and nano-electromechanical systems
[2–4] are increasingly being considered as valid alternatives to quartz as the frequency-
determining element. However, with the reduction in size, their dynamic range also
diminishes because nonlinear effects manifest at lower amplitudes [5,6]. This has proven
interesting for fundamental studies [7–9], but is typically considered detrimental to the
oscillator performance [10,11]. However, several techniques have been proposed to utilize
nonlinear behavior in the mechanical element in order to improve oscillator performance.
These proposals rely on the local elimination of frequency to energy dependence [12],
evasion of amplifier noise [13], use of either parametric feedback [14], nondegenerate
parametric drive [15], or coupling to internal resonances [14,16].

In this Letter, we analyze all the contributions to the phase noise in an oscillator based on a
nonlinear resonator. We predict the existence of a special region in the parameter space,
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above the nonlinear threshold, where the dominant contributions to the phase noise are
suppressed. We construct such an oscillator from a nanomechanical doubly clamped beam
resonator and measure its phase noise. We find good agreement with our theoretical model
and unequivocally confirm experimentally the existence of such a special region, where the
phase noise performance is improved beyond the limitations of the linear regime. Our
findings contravene conventional phenomenological wisdom, which assumes that operation
beyond the threshold of nonlinearity necessarily degrades phase noise. Indeed, by operating
the oscillator in this region, the signal level can be increased to large values without the
conventionally expected performance degradation. It is therefore possible to overcome
fundamental limitations of oscillator performance due to thermodynamic noise.

Because we are interested in slow modulation dynamics of an oscillator constructed from a
high-Q resonator, we introduce a dimensionless slow time scale T = εω0t with ε a small
expansion parameter chosen for convenience as detailed below and ω0 the resonance
frequency of the resonator. The resonator signal amplitude is given by x(t) =
x0Re[A(T)eiω0t] + · · ·, with x0 being a convenient scale factor as detailed below, Re
standing for real part, and the ellipses (…) representing negligible harmonics generated by
the resonator nonlinearity. Our theoretical analysis is based on the dimensionless equation of
motion for the complex amplitude A(T) = a(T)eiφ(T) of the resonator dynamics

(1)

The first two terms on the right-hand side of Eq. (1) arise, respectively, from the linear
dissipation and the essential nonlinearity of the resonator, i.e., the dependence of the
resonance frequency on the amplitude of motion, and α and γ are parameters that depend on
the specific resonator. The third term represents the feedback loop drive projected onto the
slow equation of motion of the resonator. The behavior of the feedback loop is then
described by the gain function F(a) and the phase delay Δ relative to the resonator phase.
Equation (1) relies on the assumption of weak feedback (just sufficient to overcome the
small dissipation of the high-Q resonator); then the amplitude of the motion is small, so that
nonlinear frequency shifts are comparable to the linear resonance line width, but small
compared to the resonance frequency ω0.

Equation (1) is derived from the basic equation of motion using secular perturbation theory
[17], and our results are generally applicable. However, to make the discussion concrete we
will focus on our particular experimental demonstration, based on a nanoelectromechanical
system (NEMS) resonator. The parameters γ and α are related to the quality factor Q and to

the nonlinear coefficient α˜ in the spring constant  and, in our particular
implementation, they are defined by

(2)

with m the mass of the resonator. For the perturbation theory to be consistent γ and α must

be O(1) quantities. Thus we choose scale factors ε = Q−1 and  so that in the
absence of fluctuations γ and α are unity.

We focus our study on a heavily saturated oscillator, that is, one in which the system gain is
designed to keep the feedback magnitude constant regardless of the amplitude of motion.
This scheme is also known as a phase feedback oscillator [13,18], which is commonly used
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to suppress one quadrature of the amplifier noise. It also provides, in principle, a quantum
nondemolition method [19] to track the resonator phase. For saturated feedback, Eq. (1)
reduces to

(3)

with s the saturation level. This equation can be separated into equations for the magnitude a
and phase φ

(4)

For steady state oscillations da/dT = 0, dφ/dT = Ω, with Ω giving the frequency offset of the
oscillations from the linear resonance frequency, in units of the resonator line width. Thus,
Eqs. (4) yield expressions for the oscillation amplitude and frequency offset that define the
limit cycle

(5)

Our experimental demonstration is performed using a piezoelectric NEMS doubly clamped
beam made from an aluminum nitride (AlN) and molybdenum (Mo) multilayer (Fig. 1). In
our experimental implementation [Fig. 1(a)], both the phase delay Δ and the power of the
feedback s can be externally and independently controlled. This permits full exploration of
the input parameter space of the feedback oscillator. We first confirm that the system
behaves according to predictions for a heavily saturated oscillator [Fig. 1(b)]. For periodic
solutions φ = φ0 + ΩT the equation of motion (3) for the heavily saturated oscillator is
identical to the one for an open-loop resonator externally driven with a periodic source of
constant magnitude s; then Δ represents the phase difference between the resonator motion
and the drive. As is known for nonlinear resonators, when the driving force is sufficiently
large, the system can bifurcate into three possible solutions at a given drive frequency. two
of these are stable, and one is unstable [17]. In the case of the heavily saturated oscillator,
the system also presents three possible values for the amplitude of oscillation at a given
frequency above a threshold feedback power. However, in this latter case, the resonator-
drive phase difference is itself determined by the feedback, and both amplitude and
frequency are single-valued functions of this phase. Therefore, all three operating conditions
at the same frequency might be stable [18], and this is indeed confirmed by a stability
analysis using Eq. (3), and by our measurements [Fig. 1(b)].

We now turn to the noise analysis of the feedback-sustained oscillator. In general, the noise,
when projected onto the slow dynamics, is represented by adding a complex stochastic term
ΞR(T) + iΞI(T) to the evolution in Eq. (1). The performance of an oscillator is typically
characterized by the spectral density of its phase noise Sφ or the variance [δφ(T + τ) −
δφ(T)]2 of the phase deviation δφ(T) = φ(T) − ΩT, which can be found by solving Eq. (1)
with the additional stochastic terms.

For our saturated feedback NEMS oscillator it is possible to distinguish two types of noise
affecting the phase diffusion of the oscillator. thermomechanical noise and parameter noise
[20,21]. Thermomechanical noise is caused by the Brownian motion of the resonator. it
enters the equation as a random, perturbative force and affects independently both
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quadratures of the oscillation with the same intensity. Its projection in quadrature to the
displacement (the phase direction) always affects the oscillator performance (hereafter
called the direct thermomechanical contribution), whereas its projection in the amplitude
direction affects the phase noise only through amplitude-phase conversion [21]. This is
typically assumed to be dominant at higher amplitudes when nonlinear resonators are used.
Parameter noise is caused by fluctuations in the parameters pi determining the oscillator
operational point (in our case γ, s, α, and Δ). Each independent noise source n is described
by stochastic terms va,nΞn(T), vφ,nΞn(T) added to the amplitude and phase evolution
equations (4), respectively, where the noise vector (va,n, vφ,n) gives the relative strength of
the nth noise force in the amplitude and phase quadratures.

Two key points lead to our predictions for reducing the frequency precision degradation.
First, for small frequency offsets compared to the amplitude relaxation rate (i.e., the
resonator line width) the time derivative term da/dT can be neglected in calculating the
amplitude fluctuations. Second, the evolution terms fa, fφ in Eqs. (4) do not depend on the
phase φ. this is the basic phase symmetry of the limit cycle when Eq. (1) applies. These lead
directly to a long-time phase diffusion, which is given by

(6)

with

(7)

and with In the noise intensity defined by

(8)

These results can be formally derived using a spectral analysis of the stochastic fluctuations,
or following the methods of Demir et al. [20] for phase diffusion of a general limit cycle.
Although Eq. (8) corresponds to white noise, one can generalize these results to other types
of noise spectra, such as pink noise, i.e., 1/f [21].

The first term in Eq. (7) represents the direct effect of the nth noise source on the oscillator
phase; the second term accounts for phase diffusion due to amplitude-phase conversion.
Furthermore, for noise due to fluctuations in the parameter pi, the noise vector becomes vφ,i
= ∂fφ/∂pi, va,i = ∂fa/∂pi, and, using the stationary amplitude approximation fa ~ 0, the
expression for Dn reduces to

(9)

so that the stochastic phase diffusion can be evaluated immediately from the dependence of
the oscillator frequency on the parameters. Alternatively, for thermomechanical noise that is
purely in the amplitude quadrature (va = 1, vφ = 0), the coefficient that quantifies the
strength of amplitude-phase conversion is
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(10)

whereas for thermomechanical noise that is purely in the phase quadrature (va = 0, vφ = 1/a)
the strength of direct thermomechanical noise contribution to the phase noise is Ddirect = 1/
a2.

Combining the above results, the total phase noise as a function of the offset frequency δν is
given by the sum

(11)

where νc is the carrier frequency and the parameters Dn have been defined above and the
expressions are expanded in Table I. Note that the dependence on δν−2 emerges from the
assumption of the noise terms being white. As we show elsewhere [21], a similar result is
obtained if colored noise is considered.

Equation (11) shows two strategies for oscillator performance optimization. minimization of
either In or Dn. In this Letter, we focus on the latter—both for its general applicability and
because the Dn terms are experimentally controllable parameters, whereas the In coefficients
are dictated by the environment. Further, we pay special attention to the terms that are
typically considered to be dominant. Ddirect, Da, and DΔ.

The direct contribution of thermomechanical noise has been widely analyzed in the literature
and is suppressed by maximizing the oscillator amplitude (a). Noise in the feedback phase
(Δ) can be canceled at the operational points where DΔ = (dΩ/dΔ)2 = 0. Greywall et al. and
Yurke et al. [13,22] proposed the operation at the bifurcation point, where this condition is
satisfied, and showed that near such a Duffing critical point (DCP) the oscillator’s phase is
unaffected by fluctuations in Δ. We extend this understanding further and note that above
the threshold of nonlinearity, for each saturation value, there are actually two values of Δ for
which dΩ/dΔ = 0. At the bifurcation (s = sc), the case considered by Greywall et al. and
Yurke et al. [13,22], both of these DCPs are degenerate at Δ = 120°. However, for larger
feedback powers, one family of DCPs approaches Δ = 90° while the other one tends toward
Δ = 180° (see Supplemental Material, Fig. S2 [23]).

From Eq. (10) we conclude that amplitude-phase converted thermal noise can be canceled at
the points where ∂Ω/∂a = 0 (note that this is not where the total derivative vanishes, i.e., dΩ/
da = 0) [24]. This term has always been considered to be zero when the resonator used is
linear and assumed to be unavoidable when the resonator used is nonlinear. In fact, we show
that for linear resonators this is only true for a particular feedback phase, Δ = 90°, and,
equivalently, for nonlinear resonators there also exists a value of Δ for each feedback power
such that ∂Ω/∂a=0, effectively detaching amplitude and phase. We call this the amplitude
detachment point (ADP). Importantly, according to our model, the location of the ADP turns
out to be very close to the second aforementioned family of DCPs (see Supplemental
Material, Fig. S2 [23]); therefore, this yields a region where two of the major contributions
to phase noise can be drastically reduced.

In order to experimentally verify the predicted behavior, we measure the phase noise of the
heavily saturated oscillator from Fig. 1 for different values of the feedback power s and
phase Δ. Figure 2 shows the results obtained at δν = 1 kHz offset from the carrier (colored
spheres). Solid black lines correspond to the predictions of the model described above (and
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in the Supplemental Material [23]). We find good agreement between the experiments and
theory. In order to perform such a quantitative comparison, we first independently estimate
ITh and IΔ, and subsequently find an upper bound for the value of Is. We then choose the
value for Iω0 to provide good agreement in the region close to the ADP. Finally, we perform
minor adjustments (causing ±3 dBc/Hz in the phase noise) to get the best possible match
(see Supplemental Material [23], Sec. C). Figure 2 indicates that if the resonator is operated
above its onset of nonlinearity (s = sc = 1.433) the phase noise near the conventional
operational point (Δ = 90°) is indeed increased. However, when operating near the second
set of DCPs and close to the ADP, a significant performance improvement beyond what is
possible in the linear regime can be achieved.

Using our model, we also gain insight into the decomposition of the observed phase noise
according to the physical origins of the fluctuations, as can be seen in Fig. 2. We show that
thermomechanical noise and noise in Δ are the dominant contributions for most values of the
phase. For high saturation values, however, it can also be observed that the phase noise at
the minimum is not dominated by either of those contributions. There is a different
component that is only visible around that region (and is hidden otherwise), which
corresponds to fluctuations in the resonant frequency of the mechanical resonator, possibly
arising from environmental noise [24,25] or parametric noise tuning the frequency [26]. The
diffusion coefficient for this parameter is constant over all of the parameter space; hence,
this component of oscillator noise cannot be reduced by tuning the feedback phase. This
specific parameter fluctuation imposes a bound on the phase noise reduction that is
achievable with this NEMS device (see Supplemental Material [23], Sec. D). However, even
with this ultimate limitation the phase noise is rendered significantly lower than is possible
using conventional linear schemes.

In summary, we theoretically predict and experimentally demonstrate a fundamental and
simple oscillator paradigm that harnesses nonlinear stiffness, in which the phase noise is
substantially lower than in linear operation. At the newly identified special points in the s-Δ
parameter space, the effects of fluctuations in the feedback phase are eliminated and
amplitude-phase conversion of the thermomechanical noise is suppressed. This optimization
contravenes conventional wisdom and establishes a new cornerstone for the use of nonlinear
resonators as frequency-determining elements in self-sustained oscillators. We highlight that
these results are applicable not only to NEMS as used here, but can also be used for any type
of resonator (electrical, optical, etc.) that possesses nonlinearity [27–29].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
(color online). (a) Schematic diagram of the feedback system. Motion detection is performed
using metallic piezoresistive effect, the beam is driven by piezoelectric actuation [6].
Components include a phase delay (Δ), a variable limiter (s), a 180° power splitter, variable
attenuators and phase shifters (β). Colored SEM micrograph shows the doubly-clamped AlN
multilayer beam used for experiments (420 nm wide, 9 μm long, 210 nm thick). At 300 K
and 1 mtorr its resonance frequency is f0 = 12.63 MHz and quality factor is Q = 1600. The
scale bar is 500 nm. (b) (Squares and solid lines) Resonant response of the open-loop
(driven) resonator for five different driving powers (s = 0.5, 1.22, 3.06, 4.73, 7.23).
(Spheres) Oscillation amplitude vs oscillation frequency for the closed-loop system in (a),
taken at the same values of s as the open-loop data while sweeping the phase Δ. As predicted
by theory, both responses overlap where the open-loop response is stable. Using the closed-
loop system, access to otherwise unstable operation points is possible. Plotted magnitudes
are scaled following the Supplemental Material [23].
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FIG. 2.
(color online). Experimental phase noise at δν = 1 kHz offset from the carrier, plotted as
10log10[Sφ(1 kHz)], for different saturation power levels (spheres), superimposed on the
total theoretical estimate (black line). The calculated contributions to the total phase noise
from the different sources are also shown. Thermomechanical noise (direct and amplitude-
phase converted contributions plotted together) and noise in Δ dominate most of the phase
range except in the region close to the amplitude-phase detachment point, where fluctuations
in frequency become apparent. Fluctuations in saturation (s), dissipation (γ), and
nonlinearity (α) are plotted jointly for the sake of simplicity. Noise intensity estimates are
detailed in the Supplemental Material [23]. The symmetric behasvior with respect to Δ = 90°
seen at low saturation values (s = 0.5) is lost for higher values of s, where a minimum can be
seen. This minimum corresponds to the simultaneous minimization of noise in δ and
amplitude-phase conversion.
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TABLE I

Diffusion coefficients for different physical mechanisms affecting phase noise.

Type of noise Diffusion susceptibility to a parameter Noise intensity

Thermomechanical-direct ITh

Thermomechanical-A-φ conversion ITh

Parameter noise-Δ IΔ

Parameter noise-s Is

Parameter noise-α Iα

Parameter noise-γ Iγ

Parameter noise-ω0 Iω0
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