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Abstract
The cluster of human neuronal nicotinic receptor genes (CHRNA5/A3/B4) (15q25.1) has been
associated with a variety of smoking and drug-related behaviors, as well as risk for lung cancer.
CHRNA3/B4 intergenic single nucleotide polymorphisms (SNPs) rs1948 and rs8023462 have
been associated with early initiation of alcohol and tobacco use, and rs6495309 has been
associated with nicotine dependence and risk for lung cancer. An in vitro luciferase expression
assay was used to determine whether these SNPs and surrounding sequences contribute to
differences in gene expression using cell lines either expressing proteins characteristic of neuronal
tissue or derived from lung cancers. Electrophoretic mobility shift assays (EMSAs) were
performed to investigate whether nuclear proteins from these cell lines bind SNP alleles
differentially. Results from expression assays were dependent on cell culture type and haplotype.
EMSAs indicated that rs8023462 and rs6495309 bind nuclear proteins in an allele-specific way.
Additionally, GATA transcription factors appeared to bind rs8023462 only when the minor/risk
allele was present. Much work has been done to describe the rat Chrnb4/a3 intergenic region, but
few studies have examined the human intergenic region effects on expression; therefore, these
studies greatly aid human genetic research as it relates to observed nicotine phenotypes, lung
cancer risk and potential underlying genetic mechanisms. Data from these experiments support the
hypothesis that SNPs associated with human addiction-related phenotypes and lung cancer risk
can affect gene expression, and are potential therapeutic targets. Additionally, this is the first
evidence that rs8023462 interacts with GATA transcription factors to influence gene expression.
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1 Introduction
Nicotine dependence (ND) is the leading cause of preventable death in the world
(Albuquerque et al., 2009; CDC, 2010) and is the major risk factor for chronic obstructive
pulmonary disease (COPD) and lung cancer (Young et al., 2008). Genome Wide
Association Studies (GWAS) have implicated the nicotinic acetylcholine receptor (nAChR)
cluster of genes (CHRNA5/CHRNA3/CHRNB4) in risk for ND (Berrettini et al., 2008;
Bierut et al., 2008; Saccone et al., 2009; Saccone et al., 2007; Thorgeirsson et al., 2008;
Weiss et al., 2008), COPD and lung cancer (Amos et al., 2008; Hung et al., 2008; Liu et al.,
2008; Thorgeirsson et al., 2008; Wang et al., 2009c). Recent meta-analyses sustain these
associations (Bierut et al., 2010; Consortium, 2010; Thorgeirsson et al., 2010; Timofeeva et
al., 2012). The most well studied single nucleotide polymorphism (SNP) within the cluster
has been rs16969968, a missense variant that results in a change from aspartic acid (D) to
asparagine (N) in the nAChR α5 subunit and decreased response to agonist when the risk
(398N) allele is present (Berrettini and Doyle, 2012; Bierut et al., 2007; Bierut et al., 2008;
Saccone et al., 2007). Yet, there are other known genetic influences on ND and lung cancer
risk within this region, and variants in the cluster have a complex linkage disequilibrium
(LD) structure, complicating identification of other functional polymorphism(s) (Pergadia et
al., 2009).

Additional molecular experiments are necessary to understand other functional SNPs within
the cluster (Berrettini and Doyle, 2012). At least one locus associated with increased risk for
ND and lung cancer (locus 3 tagged by rs588765), is also associated with significantly
increased α5 mRNA levels in frontal cortex of individuals harboring the risk allele (Wang et
al., 2009c). However, many CHRNA3 promoter or intergenic variants investigated thus far
(See Figure 1 for extent of investigation based on three previous studies) have not been
shown to directly impact transcription (Doyle et al., 2011; Fornasari et al., 1997). A notable
exception is the intergenic SNP rs6495309, which has been shown to influence luciferase
expression in lung cancer cell lines (Wu et al., 2009). The Oct-1 transcription factor (TF)
has been shown to bind the rs6495309 allele A (minor/protective) in the H1299 lung cancer
cell line better than the G allele and decrease expression of a reporter gene in this and other
cell lines (Wu et al., 2009). Thus, a biological mechanism for increased risk of early
initiation of nicotine use and/or ND as well as lung cancer may involve changes in
transcription and expression of the cluster genes influenced by additional genetic variants
that have yet to be studied.

Our human genetic studies identified significant associations between age of initiation for
alcohol and tobacco use and SNPs rs1948 and rs8023462 (minor/risk alleles, T and G
respectively) in the intergenic region between CHRNA3 and CHRNB4 (Schlaepfer et al.,
2008). These SNPs are in high LD with one another (r2>0.74 in European American
samples; (Stephens et al., 2012)), but not with any of the other well-studied loci for ND. A
recent meta-analysis also found that the SNP rs6495309 (in LD with locus 2 tagged by
rs578776) is associated with early age of onset of regular smoking (Stephens et al, in
preparation). Early age of initiation for both alcohol (Guerri and Pascual, 2010; Zucker et
al., 2008) and tobacco use (Hu et al., 2006) is a strong predictor of future abuse and
dependence, so understanding genetic risk factors for early drinking and smoking is
important. Additionally, SNPs involved in early initiation may play a predisposing role by
resulting in differentially susceptible brain neurochemistry that varies by allele. Thus, these
initial studies are focused on possible allele-specific baseline differences in expression.

This paper investigates whether three SNPs, rs1948, rs6495309 and rs8023462, can
influence gene expression in cell lines expressing neuronal proteins, or in small cell lung
cancer (SCLC) cell lines, and whether nuclear proteins interact differentially with alleles of
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each SNP. Because these SNPs reside in a noncoding region upstream of CHRNA3
promoter and inclusive of the 3’UTR of CHRNB4, we sought to determine whether the
minor and major alleles differentially affect gene expression in vitro when placed upstream
of an SV40 promoter and luciferase gene. Use of a heterologous expression system was
preferable in order to assess any potential repressive or enhancing effects of the region under
investigation. Previous work by Fornasari et al. indicated that better expression can be
achieved using the SV40 promoter than the CHRNA3 promoter (Doyle et al., 2011;
Fornasari et al., 1997), and studies using the rat intergenic region have successfully
employed similar heterologous constructs (McDonough and Deneris, 1997; McDonough et
al., 2000). Luciferase promoter/reporter constructs were transfected into two cell lines
expressing neuronal proteins (neuronal-like cell lines), human neuroblastoma SH-SY5Y and
rat pheochromocytoma PC12 cells, under two different treatment conditions, untreated and
differentiated, and two SCLC cells lines, H446 and H69. Gene expression from transfected
cells was assessed at 96 hours (neuronal-like cells) or 48 hours (lung cancer cells) post-
transfection. Only haplotypes known to exist in the current HapMap dataset were reported.
Additionally, electrophoretic mobility shift assays (EMSAs) were performed for each SNP
allele to determine if nuclear proteins interact, and whether any noted interactions between
nuclear proteins and SNP allele might correlate with expression data.

2 Results
2.1 Expression results from luciferase assays

Supplementary Table 1 shows Ns for each of the following transfections.

2.1.1 Neuronal-like cell lines—In the neuronal-like cell General Linear Model (GLM),
all factors assessed, cell line, treatment condition and length had main effects (p≤0.001).
Given these findings and biological justification, separate analyses were conducted within
each cell line, treatment condition and construct length group. Follow-up analyses were
conducted as described in section 4.6, statistical analysis.

2.1.1.1 SH-SY5Y untreated cells: Results for the untreated SH-SY5Y cells are shown in
Figure 2. For 0.8kbp rs1948 constructs, the minor T allele showed decreased (nearing
significance) gene expression in these cells compared to C (t(1,62)=1.9, p=0.06). In the
3.5kbp construct-transfected group a main effect of plasmid haplotype was detected
(F(4,77)=11.48, p<0.001), and follow-up Tukey post-hoc analysis within the 3.5kbp group
comparing all haplotypes indicated that 3.5kbp_CGG reduced expression compared to all
other constructs (CAA, CGA, TGG each p<0.001, and CAG p=0.004). There were no
differences in the 1.7kbp rs1948, 2.7kb and 800bp rs8023462 constructs.

2.1.1.2 SH-SY5Y differentiated cells: Results for differentiated SH-SY5Y cells are shown
in Figure 3. Expression was increased for T compared to C for the 0.8kbp rs1948 length
constructs (t(1,37)=-3.7, p=0.001). The short 800 bp rs8023462 constructs were also
significantly different (F(1,66)=2.1, p=0.043), with the G allele decreasing expression.
Analysis of expression results from 3.5kbp construct transfected cells indicated a main effect
of plasmid haplotype, (F(4,72)=2.68, p=0.039). Follow-up Tukey post-hoc analysis within
the 3.5kbp group comparing all haplotypes indicated that 3.5kbp_CGA decreased expression
compared to TGG (nearing significance, p=0.055). There were no differences in the 1.7kbp
rs1948 or 2.7kb constructs.

2.1.1.3 PC12 untreated cells: Luciferase expression results for untreated PC12 cells are
shown in Figure 4. Expression was significantly increased for 1.7kbp rs1948 T versus C
(t(1,25)=-2.5, p=0.022). For the 3.5kbp length construct group a significant main effect of
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plasmid haplotype was detected (F(4,75)=5.85, p<0.001). Tukey post-hoc analysis within
the 3.5kbp group comparing all 5 different construct haplotypes indicated that 3.5kbp_CGG
reduced expression compared to both CAG (p=0.013) and TGG (p<0.001) and 3.5kbp_CAA
reduced expression compared to TGG (p=0.048). There were no differences in the 0.8kbp
rs1948, 2.7kb and 800bp rs8023462 constructs.

2.1.1.4 PC12 differentiated cells: Results for the NGF-treated, differentiated PC12 cells are
presented in Figure 5. A significant effect of the rs1948 allelic variants on luciferase
expression was noted for both 0.8kbp and 1.7kbp constructs (t(1,27)=-4.1, p<0.001 and
t(1,39)=4.4, p<0.001, respectively); the minor allele (T) showed increased gene expression
in the 0.8kbp constructs, but decreased expression in the 1.7kbp constructs when compared
to major (C) allele constructs. In the 3.5kbp construct-transfected group, a main effect of
plasmid haplotype was detected (F(4,74)=7.65, p<0.001). Follow-up Tukey post-hoc
analysis comparing all 5 haplotypes indicated that 3.5kbp_CGG reduced expression
compared to all other constructs (CAA (p<0.001), CAG (p=0.003), CGA (p=0.008), and
TGG (p=0.002)). There were no differences in 2.7kb or 800bp rs8023462 constructs.

2.1.2 Lung cancer cell lines—In the lung cancer cell GLM, main effects of cell line and
length (p<0.001) were detected. Given these findings and biological justification, separate
analyses were conducted within each cell line, treatment condition and construct length
group. Follow-up analyses were conducted as described in section 4.6, statistical analysis.

2.1.2.1 H446 cells: Both the 0.8kbp and the 1.7kbp length rs1948 constructs were
significantly different (t(1,14)=-4.05, p=0.001 and t(1,11)=25.29, p<0.001, respectively),
with the T allele (minor/risk) increasing expression relative to the C (major/protective) allele
in the 0.8kbp experiments, but reducing expression in the 1.7kbp constructs. In the 3.5kbp
length group a main effect of plasmid haplotype (F(4,39)=15.81, p<0.001) was detected and
follow-up Tukey post-hoc analysis indicated that 3.5kbp_CGG had decreased expression
compared to all other haplotypes (all p<0.001 except CAG p=0.020). Additionally,
3.5kbp_GAG had decreased expression compared to 3.5kbp_CGA (p=0.003). No other
significant differences were noted in the 2.7kbp or 800bp rs8023462 groups, either between
alleles or among haplotypes.

2.1.2.2 H69 cells: Luciferase gene expression results for the H69 cells are shown in Figure
7. In the 3.5kbp length group a main effect of plasmid haplotype (F(4,59)=3.95, p=0.007)
was noted. Tukey post-hoc analysis within the 3.5kbp group comparing all 5 different
haplotypes indicated that 3.5kbp_CGG had significantly reduced expression compared to
TGG (p=0.004) and CGA (p=0.035). No other significant differences were noted in other
length groups between alleles or among haplotypes.

2.2 EMSA Results
Both EMSAs for rs6495309 (Figure 8) and rs8023462 (Figure 9) had specific, shifted bands,
as well as allele-dependent band differences using both neuronal-like and lung cancer cell
nuclear extracts. EMSAs for rs1948 revealed no specific shifts.

2.2.1 rs6495309
2.2.1.1 Neuronal-like cell nuclear extracts and rs6495309 probes: For EMSAs using
nuclear extract from SH-SY5Y untreated (Figure 8a), or differentiated cells, and EMSAs
using untreated or differentiated PC12 cells (not shown), the rs6495309 A allele caused a
more intense, shifted, specific band than the G allele, indicating a stronger/better association
with nuclear protein when the A (minor/protective) allele is present than when the G (major/
risk) allele is present (Figure 8a). This is supported by the lack of full competition when the
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unlabeled G oligonucleotide was used as a competitor, compared to the unlabeled A (100x
molar excess) (Supplemental Figure 1a). The SH-SY5Y undifferentiated cell line was
chosen for supershift experiments, as nuclear extracts from all neuronal-like cell lines tested
yielded the same specific band, but EMSAs using the SH-SY5Y nuclear extract had the
most intense band. Addition of antibodies specific for oct-1 or oct-3/4 did not result in a
supershift (Figure 8a), whether added in 1 or 2 μL amounts, before or after probe and extract
incubation. Addition of an unlabeled consensus oct-1 competitor at 450x molar excess also
could not out-compete the shifted bands (Supplementary Figure 1a).

2.2.1.2 Lung cancer cell line nuclear extracts and rs6495309 probes: When combined
with nuclear extract from either of the lung cancer cell lines tested, H446 (Figure 8b) or H69
(Supplemental Figure 1b), the biotin-labeled probes for rs6495309 bound specifically with
nuclear protein(s), yielding two major bands. The rs6495309_A allele caused more intense,
shifted, specific bands than the G allele, indicating a stronger/better association with nuclear
protein(s) when the A allele was present than when the G allele was present. This was
further demonstrated by the lack of full competition when the unlabeled G oligonucleotide
was used as a competitor, compared to the unlabeled A (100x molar excess) (Supplementary
Figure 1b). H446 nuclear extract was used for supershift experiments, since this cell line
was investigated in work by Wu et al., which indicated Oct-1 binds rs6495309 in lung
cancer cell lines (Wu et al., 2009), Addition of an antibody specific for Oct-1 did not result
in a supershift (Figure 8b), whether added in 1 or 2 μL amounts, before or after probe and
extract incubation.

2.2.2 rs8023462
2.2.2.1 Neuronal-like cell nuclear extracts and rs8023462 probes: For SH-SY5Y
untreated (Figure 9A and Supplementary Figure 2A) and differentiated (Supplementary
Figure 2B) cell nuclear extracts, rs8023462 probes yielded unique, allele-specific shifted
bands, the biotin-labeled G allele causing a specific band overlaying a non-specific band
with three secondary specific bands, and the A allele causing a more retarded, specific band
in addition to the band overlaying a non-specific band. When the unlabeled A
oligonucleotide was used as a 100x competitor for G, or when unlabeled G (100x) was used
to compete with A, specific bands were slightly reduced (supplementary Figure 2A and 2B),
but by no means eliminated. GATA antibodies caused competitive supershifts for only
rs8023462_G (minor/risk), illustrated by disappearance of specific bands upon addition of
the antibody (Lanes 11 and 13 Figure 9A, SH-SY5Y nuclear extract used). Biotin-labeled
probes for rs8023462 did not cause a significant, specific shift in EMSAs using nuclear
extracts from either untreated or differentiated PC12 cells.

2.2.2.2 Lung cancer cell nuclear extracts and rs8023462 probes: Nuclear extract from
H69 (not shown) and H446 (Figure 9B and Supplementary Figure 2C) bound probes for
rs8023462, and yielded one specific, shifted band. Band intensity was allele-dependent. The
biotin-labeled A allele caused a more intense shifted band than the G allele, and competition
with the alternate allele at 100x did not eliminate the specific band. (Supplementary Figure
2C). When H446 was tested for a supershift with GATA antibodies, no supershift was
detected (Figure 9B).

2.2.3 rs1948—Biotin-labeled probes for rs1948, whether of the major C or minor/risk T
variant, did not cause a significant specific shift in EMSAs using nuclear extracts from any
of the neuronal-like or lung cancer cell lines tested, even after multiple attempts with various
combinations of kit reagents and probe/extract concentrations to optimize the reaction.
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3 Discussion
Data from the luciferase expression assays have shown that human CHRNB4/A3 SNPs
associated with drug phenotypes contribute to differences in gene expression in vitro using
both cells that express neuron-specific proteins and those from lung cancer specimens. The
main effect of cell line noted in the overall GLM for neuronal-like cells may be due to a
number of differences between PC12 and SH-SY5Y cells including species, tumor type and
tissue. PC12 cells had enhanced expression when differentiated. Maturation-dependent
expression changes may be involved in gene expression differences between untreated PC12
and differentiated cells. Results are consistent with the knowledge that expression of
nicotinic receptor subunits is controlled within particular cell types during different stages of
development or differentiation (Gotti et al., 2006), and provides some evidence that the
human CHRNB4/A3 intergenic region may be regulated by developmental changes.

The effects of length of construct on expression are expected, given previous experiments
indicating that multiple enhancing/repressive regions exist in the both the human CHRNA3
promoter (Battaglioli et al., 1998; Benfante et al., 2007; Doyle et al., 2011; Fornasari et al.,
1997; Wu et al., 2009) and rat Chrnb4/a3 intergenic regions (Boyd, 1996; Improgo et al.,
2010). A putative repressive region in the 2.7kbp construct but not in the 1.7kbp construct,
previously identified by Wu et al. using lung cancer cell lines (Wu et al., 2009), does not
appear to be globally repressive (Figures 2-7). The lack of effect on expression of rs8023462
in the smaller construct, compared to the 3.5kbp construct, could be due to required
additional flanking sequences that may influence DNA structure or key regulatory sequences
(Nakshatri et al., 1995). Alternately, the distance of SNP from the promoter may be a factor
modifying transcription.

The constructs most routinely impacted by cell line and treatment condition appear to be the
rs1948 0.8kbp and 1.7kbp constructs. Expression of the longer constructs in PC12 cells
appears sensitive to effects of differentiation (Figures 4 and 5). The shorter rs1948
constructs had increased expression for the T allele versus the C allele in both differentiated
neuronal-like cell lines (Figures 3 and 5). In the context of interpreting results from
luciferase assays, it is important to recognize this approach does not establish the
mechanism responsible for differences in gene expression. Given the negative EMSA results
for rs1948, it appears that either a nuclear protein is not involved, or the assay is simply
unable to detect nuclear protein binding which may require interactions with other DNA
binding proteins not present in the short sequence of the oligos used for EMSAs. Though
methylation may be an interesting epigenetic mechanism to investigate in regards to rs1948,
to the best of our knowledge, there is not any evidence that epigenetic mechanisms can be
effectively studied using transiently transfected constructs. Results reported here provide a
definite platform from which to pursue additional questions, and support a functional
contribution of rs1948.

EMSAs reveal, for the first time to our knowledge, that the minor./risk rs8023462_G allele
(but not A) binds GATA transcription factors in SH-SY5Y nuclear extracts (Figure 9a).
GATA TFs were chosen for investigation using the Transcription Element Search System
(TESS) (URL: http://www.cbil.upenn.edu/tess). This family of TFs coordinates complex
developmental processes (Bresnick et al., 2010), such as those involved in regulating
receptor expression during critical windows in development, and GATA-4 has been
identified through GWAS as a TF associated with alcohol dependence (Treutlein et al.,
2009). Importantly, the supershift EMSA shown here in Figure 9a indicates that
rs8023462_G binds both GATA 4 and GATA 2 or 3, while the A allele does not. It is
interesting to note that 3.5kbp_CGG routinely has significantly lower expression in all cell
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lines tested in the luciferase assays, indicating that perhaps the context of the surrounding
sequence can influence the presumably repressive effect of GATA binding at rs8023462_G.

As previously reported by Wu et al., the A allele of rs6495309 binds nuclear protein and
causes a more intense band on EMSAs. However, we did not find support for Oct-1 binding
rs6495309, particularly when using H446 (figure 8b), a cell line investigated by Wu et al. in
their luciferase expression studies, though not in their EMSA studies, which instead used
nuclear extract from H1299 cells. Perhaps H1299 but not H446 nuclear extract contains
Oct-1. Indeed, the binding of another protein or proteins is indicated in Figure 8b using
H446 extracts. Using TESS, nearly all POU TFs are suggested to bind this allele-containing
region. Neuronal and lung cancer cell lines have high levels of N-Oct-3 (brain-2) (Schreiber
et al., 1992), and so we investigated this TF as well and determined Oct-3 and Oct-4 do not
appear to bind rs6495309 either. In the rat intergenic region, the POU family TF SCIP/Tst-1/
Oct-6 has been identified as a cell-type specific regulator of transcription (Fyodorov and
Deneris, 1996; Improgo et al., 2010; Yang et al., 1994). POU family TFs Brn-3a, b and c
have also been shown to interact with the rat Chrna3 and Chrna2 promoters and to either
activate or repress transcription, depending on surrounding sequence and subtype (Milton et
al., 1996). It remains to be determined if these other POU TFs bind rs6495309.

While the clustering of CHRNA5/A3/B4 genes is well conserved across species (Battaglioli
et al., 1998; Boulter et al., 1990; Couturier et al., 1990; Fornasari et al., 1997), only 7%
appears to be conserved between rodent and human (Evolutionary Conserved Regions
(ECR) browser) (Ovcharenko et al., 2004). Transfections using the rat PC12 cell line
(Figures 4 and 5) were employed to begin to assess cross-species regulatory conservation in
the context of previous findings for the rat. To begin to develop a model for the human
sequence, Figure 10 provides a very preliminary model for the EMSA and gene expression
effects noted here.

Though potential confounds exist related to co-morbidity (Young et al., 2008) as well as
ethnicity (Shiraishi et al., 2009; Wu et al., 2009), it is apparent that variants within the
cluster may be directly involved in carcinogenic events within the lung parenchyma where
they are expressed. The risk of lung cancer that can be attributed to CHRNA5/A3/B4
variants is higher than what one could explain by simple effects of smoking quantity,
supporting a gene-environment interaction (Thorgeirsson et al., 2008; Volkow et al., 2008).
Some insist that receptors in the lung are not driving this interaction, rather that variants are
primarily associated with increased intake of carcinogenic compounds like nitrosamine,
even with cigarette numbers being equivalent. Individuals with the risk variants rs1051730
and rs16969968 have been shown to extract more carcinogens per cigarette (Le Marchand et
al., 2008), as supported by increased tobacco metabolite (cotinine) levels in individuals with
risk genotypes (Munafò et al., 2012).

However, there is also evidence that nicotinic receptor activation within the lung
parenchyma (Paliwal et al., 2010) (Dasgupta et al., 2006) (Xin and Deng, 2005) Catassi,
Servent et al. 2008) Schuller 2009) can contribute to increased risk for lung cancer. Variants
associated with increased risk for lung cancer may be influencing brain processes to sustain
the activity of smoking AND also increasing pro-survival signals within the lung as a
consequence of nicotinic receptor activation (West et al., 2003), providing a “double hit” in
terms of conferring risk for lung cancer. Possible mechanisms include disregulation of
mRNA (Falvella et al., 2009; Wang et al., 2009a; Wang et al., 2009b) and altered levels of
gene expression given different haplotypes (Doyle et al., 2011; Falvella et al., 2010; Wu et
al., 2009).
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In conclusion, the work presented here supports the hypothesis that SNPs associated with
human alcohol and tobacco behaviors may lead to allele-specific gene expression
differences that are dependent on cell type and haplotype. These findings are consistent with
previous work showing transcriptional regulation in this region is tightly controlled during
development. Additionally, this is the first evidence that rs8023462 interacts with GATA
transcription factors and influences gene expression.

4 Experimental Procedure
4.1 Plasmid constructs

A “construct” refers to the pGL3 promoter vector (Promega Corporation, Madison, WI,
USA) with a sequence inserted between the 5’-MluI–NheI-3’ restriction sites (or 5’-Acc651-
XhoI-3’ restriction sites for the 800 bp rs8023462 construct only), upstream of the SV40
promoter and firefly luciferase gene. Relative sizes of each construct with their respective
SNPs are shown in Figure 1A.

Constructs using the positive/forward chromosomal strand of our region of interest
(consensus sequence from NCBI assembly database GRCh37/hg19) were synthesized and
placed upstream of the SV40 promoter in the pGL3 promoter vector at GenScript, Inc.
(Piscataway, NJ, USA), and manipulated in our laboratory to excise and place the sequence
in the correct, coding, orientation (the coding strand for CHRNA3/B4 is the negative/reverse
chromosomal strand). Details of cut sites, sequences, and ligations are available upon
request. The use of a viral promoter is important for determining the impact of these regions
outside of the influence of the CHRNA3 promoter, and viral promoters have been used to
study regulation of the rat cluster in a similar manner (McDonough et al., 2000). All
constructs and control plasmids were transformed into Top10 cells (Invitrogen Corporation,
Carlsbad, CA, USA), and prepared from bacterial cultures using FastPlasmid Mini Kit or the
PerfectPrep Endofree Maxi Kit (5 Prime Inc., Gaithersburg, MD, USA). All constructs and
control plasmids were sent for sequencing initially and re-sequenced halfway through the
project at SeqWright Inc. (Houston, TX, USA) or GenScript (Piscataway, NJ, USA), for
verification.

4.2 Cell culture and reagents
Cell culture conditions (growth, differentiation and maintenance) have been carried out as
described previously by our group (Ehringer et al., 2010; Mexal et al., 2007). The PC12 and
SH-SY5Y cell lines were chosen based on similarities such as the ability to transcribe
nAChR subunit genes including those in the cluster (Dajas-Bailador et al., 2002; Lukas et
al., 1993; Rogers et al., 1992; Wang et al., 1996), expression of genes characteristic of
neurons (Biedler et al., 1978; Greene and Tischler, 1976), and the capacity to differentiate
(Greene and Tischler, 1976; Påhlman et al., 1990; Rogers et al., 1992). H69 and H446 were
chosen as SCLC is largely attributed to smoking. All cell lines were obtained from ATCC
(Manassas, VA, USA), then passaged and seeded in the exponential growth phase. Cells
were maintained in a humidified incubator with 5% CO2 at 37°C. Media was purchased
from ATCC, unless otherwise indicated. Fetal bovine serum (FBS), horse serum (HS) and
penicillin/streptomycin/amphotericin B (PSA) were purchased from Invitrogen Corporation
(Carlsbad, CA, USA).

PC12 cells were grown in RPMI 1640 with 10% HS, 5% FBS and 1% PSA. Differentiated
PC12 cells were cultured RPMI 1640 with nerve growth factor added and serum reduced
(NGF 50 ng/mL, 1% HS, 0.5% FBS, 1% PSA) and seeded on plates pretreated with poly-L-
lysine (PLL, 100 μg/mL). SH-SY5Y (human neuroblastoma) cells were grown in a 1:1
mixture of Ham’s F12 (Invitrogen) and Eagle’s Minimal Essential Medium (EMEM) with
10% FBS and 1% PSA. Differentiated SH-SY5Y cells were cultured in serum-reduced
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media with retinoic acid (RA 10μM, 1% FBS, 1% PSA) and seeded on plates pre-treated
with PLL. H69 and H446 cells were grown in RPMI 1640 + 10% FBS and 1% PSA.

4.3 Cell transfection
100,000 cells/1mL (neuronal-like cells) or 150,000 cells/mL (lung cancer cells) were seeded
in 12 or 24-well culture plates. Twenty-four hours after seeding (differentiation initiated on
day of seeding), test plasmids (constructs or empty vector) (20 ng/μL final concentration)
were transfected into cells using FuGene HD or X-tremeGene transfection reagent (H446
only) (Roche USA, Indianapolis, IN, USA) in GIBCO Opti-MEM ® 1 media (Invitrogen).
A renilla luciferase control plasmid, (pRL-CMV, Promega Corporation) was co-transfected
(0.002 ng/μL final concentration) with each construct or empty vector. Cells were
maintained for another 96 hrs (neuronal-like cells) or 48 hrs (lung cancer cells) before
harvesting and assaying for luciferase activity.

4.4 Promoter/reporter luciferase assay
The Dual-Luciferase Reporter Assay System (Promega Corporation, Madison, WI, USA)
was used to assess gene expression following manufacturer’s instructions. Briefly, aliquots
of 20 μL of lysate from each cell culture plate well were run in duplicate using 96-well
plates. A PerkinElmer Victor 3V plate reader (Perkin Elmer, Wellesley, MA, USA)
dispensed assay substrates and detected light generated by test (firefly luciferase; constructs
and empty vector) and control (renilla luciferase) plasmids. A minimum of 2 separate maxi
preps were tested with multiple replicates of each performed on at least 2 separate days.

4.5 Nuclear extracts and Electrophoretic Mobility Shift Assays (EMSAs)
Proteins were extracted from cell nuclei using the NE-PER nuclear and cytoplasmic
extraction kit as directed, and measured using the BCA protein assay kit (both Thermo
Fisher Scientific, Rockford, IL, USA) following the micro-assay protocol for the NanoDrop
(Thermofisher Scientific, Welmington, DE, USA). Synthetic double-stranded and 3′ biotin–
labeled oligonucleotides were prepared at IDT (Integrated DNA Technologies, Inc., San
Diego, CA USA) and reconstituted in water. For competition experiments with the Oct-1
consensus probe, the Oct-1 EMSA Probe Set from Panomics was used (Panomics. Inc.,
Fremont. CA, USA). Biotin labeled probes (0.025 picoMoles) and cell nuclear extracts
(10-15μg) were incubated together at room temperature for 30 min using the LightShift
Chemiluminescent EMSA kit (Thermo Fisher Scientific, IL, USA) with 0.5 mM DTT and 5
mM MgCl2 in 1x binding buffer with 1 μg poly dIdC (for rs6495309) or with 0.5 mM DTT
in 1x binding buffer with 1 μg poly dIdC (rs8023462). Reactions were electrophoresed using
5% polyacrylamide gels and transferred to Biodyne B Nylon membranes (Thermo Fisher
Scientific, IL, USA). Bands were detected (Chemiluminescent Detection Kit, Thermo Fisher
Scientific, IL, USA) and images were acquired using the GelLogic 2200Pro CCD-camera
and accompanying software (Carestream Molecular Imaging, Woodbridge, CT, USA).
Unlabeled oligonucleotides at 100-fold molar excess were added to the reaction for
competition (15 minute pre-incubation with unlabeled oligos and nuclear extract, 15 minute
further incubation following addition of biotin labeled oligos). To determine whether the
DNA-binding protein in assays with rs6495309 was oct-1 or oct-3/4, we used antibodies
specific to Oct-1 (sc-232x), Oct-3/4 (sc-5279x) or nonspecific rabbit IgG or mouse IgG
(Santa Cruz Biotechnology, Santa Cruz, CA, USA), as described by Wu et al. 2009 (Wu et
al., 2009). For identification of protein in assays with rs8023462, the Transcription Element
Search System (TESS) (URL: http://www.cbil.upenn.edu/tess) was used to determine
possible TFs for investigation. GATA 4 and GATA 2/3 antibodies were used (sc-1237X and
sc-1235X, respectively) with nonspecific goat IgG (Santa Cruz Biotechnology, Santa Cruz,
CA, USA).
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4.6 Statistical Analysis
Firefly luciferase activity of the test plasmids was divided by renilla luciferase activity of the
control plasmid for each well, yielding a gene expression ratio. Duplicate readings were
averaged to arrive at one ratio value per transfected cell-culture well. Values were then
normalized to the average value of the empty pGL3 test plasmid (no insert) within the same
cell line and experiment to yield the vector-normalized ratio, or relative luciferase activity,
herein referred to as “gene expression”. Data were analyzed using IBM® SPSS® Statistics
(Somers, NY, USA) version 19.0, after first discarding results with Z score values greater
than 2.25. An initial analysis was performed separately for the neuronal-like cell data and
the lung cancer cell data using a General Linear Model (GLM) Univariate Analysis, with
gene expression level as the dependent variable and cell line (PC12/SH-SY5Y or H446/
H69), treatment condition (differentiated or un-treated), and length as independent variables.
In both the neuronal-like and lung cancer cell line GLMs, main effects were evident for cell
line, treatment condition (neuronal-like) and length (p<0.001). Given these findings and
biological justification, separate analyses were conducted within each cell line, treatment
condition and construct length group. Follow-up analyses were conducted for each PC12,
PC12-D, SH-SY5Y, SH-SY5Y-D, H446 and H69 groups using student’s t-tests (0.8kbp
rs1948, 1.7kbp and 800bp rs8023462 length groups), or analysis of variance (ANOVA) with
Tukey post-hoc analysis (2.7kbp and 3.5kbp length groups) to compare the variants or
haplotypes, respectively.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Constructs (A) and previous human expression studies (B)
A. The CHRNA5/A3/B4 cluster with the reverse strand (coding strand for CHRNA3 and
CHRNB4) of human chromosome 15 is shown on top, 5’ to 3’. Positions indicated from the
Feb 2009 GRCh37/hg19 NCBI assembly database delineate borders of each gene and
identify each SNP position. Grey boxes indicate exons. CHRNA5 is not to scale (indicated
by hash marks) and exons are not identified. Bold arrows indicate direction of transcription.
The five different length constructs, inserted upstream of the SV40 promoter in the
promoter-reporter pGL3 luciferase expression vector (not shown), as well as each possible
allele for each SNP, is shown below the cluster diagram.
B. Top line, indicating the 3.5kbp construct used here, describes nucleotide base pairs from
relative position 1 to 3500. Numbers across the top denote nucleotide bps in the 3.5kbp
construct, bottom numbers indicate relative SNP locations. Constructs shown below this
metric are from 3 independent studies using luciferase reporter assays and human sequences
upstream of CHRNA3 and inclusive of the promoter. Solid, dark lines indicate a significant
effect of the sequence when placed upstream of the luciferase reporter (Fornasari et al.,
1997; Wu et al., 2009). Grey solid line indicates no effect of fragment (no promoter used in
construct) (Fornasari et al., 1997). Dotted black line indicates possible repressive region, and
bold A at rs6495309 indicates repressed expression compared to G (Wu et al., 2009).
Dashed grey line indicates no effect (inclusive of CHRNA3 promoter, numerous variants
investigated) on expression (Doyle et al., 2011).
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Figure 2. Luciferase expression results from transfected SH-SY5Y cells
Data are mean +/- SEM. ** p<0.01,*** p<0.001. X-axis indicates luciferase gene expression
normalized to the pGL3 empty vector (1.0). All comparisons are within length groups.
Significant differences indicated are from post hoc Tukey analysis of the 3.5kbp constructs.
Asterisks indicate significantly different from 3.5kbp_CGG.
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Figure 3. Luciferase expression results from transfected SH-SY5Y Differentiated cells
Data are mean +/- SEM. * p<0.05, *** p<0.001. 0.8kbp_T expression is significantly
increased compared to C. 800bp rs8023462_G expression is significantly reduced compared
to A.
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Figure 4. Luciferase expression results from transfected PC12 cells
Data are mean +/- SEM. x or * p<0.05, *** p<0.001. 1.7kbp_T expression is significantly
increased compared to 1.7kbp_C. In the 3.5kbp group, asterisks indicate significantly
different from 3.5kbp_CGG, and X symbol indicates significantly different from
3.5kbp_TGG in the post hoc Tukey analysis for 3.5kbp length constructs.
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Figure 5. Luciferase expression results from transfected PC12 Differentiated cells
Data are mean +/- SEM. * p<0.05, xx or ** p<0.01, *** p<0.001. Note that the X-axis
shows increments of 20 and ends at 100. 0.8kbp_T expression is significantly increased
compared to 0.8kbp_C. 1.7kbp_T expression is significantly decreased compared to
1.7kbp_C. In the 3.5kbp group, asterisks indicate significantly increased from 3.5kbp_CGG
in the post hoc Tukey analysis of the 3.5kbp constructs.
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Figure 6. Luciferase expression results from transfected H446 cells
Data are mean +/- SEM. * p<0.05, ## p<0.01, *** p ≤ 0.001. Note that the X-axis shows
increments of 0.25 and ends at 1.00. Asterisks in the 3.5kbp group indicate significantly
different from 3.5kbp_CGG, pound symbol indicates significantly different from
3.5kbp_CGA in the post hoc Tukey analysis.
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Figure 7. Luciferase expression results from transfected H69 cells
Data are mean +/- SEM. * p<0.05, ** p<0.01. Significant differences indicated are from
post hoc Tukey analysis of the 3.5kbp constructs. Asterisks indicate significantly different
from 3.5kbp_CGG.
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Figure 8. rs6495309 EMSA: Biotin-labeled rs6495309_A shifts more nuclear extract than G
Nuclear extract (+) is either 15μg SH-SY5Y (8A) or H446 (8B) or no extract (-).
Competitor/Ab indicates either none (-) or 100x molar excess, double-stranded, unlabeled
rs6495309_A (A) or rs6495309_G (G), or antibodies specific to oct-1 (O1), oct-3/4 (O3/4)
and their respective control antibodies (R=rabbit, M=mouse). Labeled probe is either 3’
biotin-labeled, double-stranded rs6495309_A or G. Arrows indicate specific bands of
unknown protein composition (1 band for SH-SY5Y (8A) and 2 bands for H446 (8b).
Sequences provided are for both the biotin labeled and unlabeled probes. Bold letters
indicate putative Oct transcription factor binding site.
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Figure 9. rs8023462 EMSAs: Biotin-labeled rs8023462_G yields a competitive supershift with
antibodies to both GATA-4 and GATA-2/3 using SH-SY5Y nuclear extract
Nuclear extract (+) is either 15μg SH-SY5Y (8A) or H446 (8B) or no extract (-).
Competitor/Ab indicates either none (-) or 100x molar excess, double-stranded, unlabeled
rs8023462_G (G) or rs8023462_A (A), or antibodies specific to GATA-4 (G4), GATA 2/3
(G2/3) and the non-specific control antibody (Gt=goat). Labeled probe is either 3’ biotin-
labeled, double-stranded rs8023462_G or A. Arrows indicate specific bands. Sequences
provided are for both the biotin labeled and unlabeled probes. Bold letters indicate putative
GATA transcription factor binding site. 9a) The upper right arrow as well as the upper left
and lower left arrows indicate specific bands of unknown protein(s) binding specifically to
the oligonucleotides. The rs8023462_A allele may bind a different protein (upper left arrow)
than the rs8023462_G allele. 9b) GATA factors 2-4 do not appear to be present in the H446
extract.

Flora et al. Page 26

Brain Res. Author manuscript; available in PMC 2014 September 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10. Model for SNP effects on gene expression based on EMSA results
All 3 SNPs are indicated, along with very preliminary putative mechanisms for regulation of
gene expression. Mechanisms that increase expression indicated on top, those that decrease
expression on bottom. Bold/underline indicates the major allele for each SNP.
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