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Abstract
A three parameter model based on the Whittle-Matérn correlation family is used to describe
continuous random refractive index fluctuations. The differential scattering cross section is
derived from the index correlation function using nonscalar scattering formulas within the Born
approximation. Parameters such as scattering coefficient, anisotropy factor, and spectral
dependence are derived from the differential scattering cross section for this general class of
functions.

The process of elastic light scattering from weakly scattering turbid media is important in
many applications ranging from radar, remote sensing, and atmospheric sciences to light
propagation in biological media. Commonly used models of the continuous refractive index
distributions include the Booker-Gordon formula (exponential correlation), the Gaussian
model, and the Kolmogorov spectrum (von Kármán spectrum) [1]. Evidence exists for other
distribution types [2] and recently, several groups have proposed a fractal model for index
distributions of biological tissue [3, 4]. In this paper, we make use of a general model that
includes the mass fractal, exponential, Gaussian, and other index correlation functions and
expand on the work of Sheppard [5] to include the effect of vector waves. We also provide
simplified relationships for limiting cases and discuss how the spectral dependence relates to
the shape of index correlation function.

A three parameter model with parameters lc, dn2, and m is used to describe the refractive
index correlation function. The model is represented by the Whittle-Matérn correlation
family

(1)

which reduces to several important specific functions for certain values of m [6]. Kν(·)
denotes the modified Bessel function of the second kind. The parameter lc describes the
index correlation distance or turbulence scale and the parameter dn2 is the variance of the
refractive index, sometimes written as <n1

2>. The third parameter m determines the shape of
the correlation function.

Eq. 1 is normalized such that Bn(0) = dn2 for m > 3/2. As m → ∞, the function approaches
a Gaussian distribution. When m = 2, the function is a decaying exponential. Values of m
between 2 and 3/2 result in a stretched exponential (for small values of r). A singularity
exists at m = 3/2 and the function collapses to zero because of the normalization factor of
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Γ(m − 3/2). However, the unnormalized Bn(r) approaches a delta function for m = 3/2 and
the corresponding spectral density is the often used Henyey-Greenstein function. This can be
interpreted as describing point like scatterers or a discrete rather than continuous medium.
Values of m < 3/2 correspond to a mass fractal index distribution with correlation function
described by a power law in which case m is related to the mass fractal dimension by dmf =
dE − (3 − 2m), where dE is the Euclidean dimension. Here, dE = 3, the dimension of the
embedding medium and is not related to the shape of the scattering bodies. Fig. 1 shows
Bn(r) for several representative values of m.

When m < 3/2, the function Bn(r) is infinite at r = 0 and as a consequence the function can
not be normalized. This is non-physical and in reality the correlation must roll off to a finite
value below some minimum length scale rmin. This can be represented by a truncated
version of the function such that B̃n(r) = Bn(rmin) for r < rmin. When rmin ≪ lc, the error
between the model and truncated version is minimal as discussed later. For r > lc, the
function drops quickly to zero. The model can be thought of as a fractal over the range rmin
to lc where rmin is the inner length scale and lc is the outer scale beyond which, the function
drops quickly to zero.

In the Born approximation, the spectral density Φ is the Fourier transform of Bn(r) [1]. For
this model, Bn(r) is of the form of the Pearson distribution type VII.

(2)

The spectral density is related to the differential scattering cross section per unit volume σ
by

(3)

Note that the factor (1 − sin2(θ)cos2(ϕ)) = sin2χ depends on the polarization orientation ϕ of
the incident light. For klc ≪ 1 (isotropic scattering), this factor results in the dipole radiation
pattern. Fig. 2 (top) shows an example σ with slightly forward directed scattering.

The scattering coefficient μs is derived by integrating σ(θ, ϕ) over all angles and is shown in
Fig. 3. The mean free path ls is the inverse of the scattering coefficient μs. All length scales
are normalized by wavelength so that the relationships depend only on klc and kls (or μs/k).

(4)

Eq. 4 is not easy to interpret, so insight can be gained by considering the equation for either
very small or very large klc. In the limit of klc ≪ 1 or klc ≫ 1 and m > 1, the relationship
simplifies dramatically.

(5)

The anisotropy factor g is used to describe the degree of forward directed scattering and is
defined as the average value of the cosine of the scattering angle, < cos(θ)>. For this model,
g is given by
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(6)

Again, the limiting cases for small and large klc can be calculated. For g the equation in the
large klc limit depends on the value of m:

(7)

Combining equations for μs and g provides the reduced scattering coefficient μs′ = (1 − g)μs

(or transport mean free path, ). Fig. 4 shows the dependence of wavelength

normalized  on klc.

A key feature of  is the wavelength dependence. Measurements of  typically exhibit a

power law dependence on wavelength [7, 8]. Note that for klc ≪ 1, g → 0 and . In
this case, μs ∝ λ−4 which is consistent with Rayleigh scattering.

In most biological tissues, measurements indicate that g is large [9] implying that klc ≫ 1

(Eq. 7). When klc ≫ 1 and m > 2,  does not depend on wavelength at all. When klc ≫ 1

and 1 < m < 2 (the most likely regime for biological media), then . This link
between the spectral dependence of the reduced scattering coefficient and the shape of the
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index correlation function parameterized by m in this model enables the determination of

mass fractal dimension. Many scattering techniques can measure  and thus can be used
to determine m simply by determining the power law dependence on wavelength. This
spectral dependence combined with the previous relationships provides the connection

between measurable optical properties μs, g,  and the model parameters lc, dn2, m.

There are two major approximations that can be made to simplify the resulting differential
scattering cross section. The first is needed for the mass fractal regime when m < 3/2 and
Bn(r) → ∞ as r → 0. Since this situation cannot exist in reality, the actual correlation
function must level off. However, this would complicate the model significantly, so
provided that the error is small, the simple model can be legitimately used even for values of
m that result in infinite correlation. To verify this, the normalized error is calculated
numerically by computing the difference in μs from the model and a truncated version of Bn
where B ̃n(r) = Bn(rmin) for r < rmin. This approximation can be used for values of rmin ≪ lc.
The normalized error (μs − μ̃s)/μs is negligible for all values of krmin when m → 3/2. As m
→ 1 the error increases for large values of krmin but remains small when krmin is small. For
example, for normalized error less than 1% when m = 1.01 and klc = 1, krmin must stay
below 1/6.

The second approximation that is often used is to assume scalar wave incidence and neglect
the dipole factor (dependence on ϕ), which results in an axially symmetric σsw (without
dimples). In the case of unpolarized illumination, σ is sampled at all orientations of ϕ and
the result can be expressed by averaging over ϕ to produce a rotationally symmetric σup. The
lower part of Fig. 2 shows the difference between the scalar wave approximation and the
result of averaging over polarization orientations. To quantify the error in this
approximation, the normalized error in the scattering coefficient μs is calculated and is
maximum for the case of isotropic scattering where . The error in

neglecting the dipole factor also affects the anisotropy factor g and hence  as shown in
Fig. 5. Since this second approximation can introduce large error and the complexity of the
relationships is not significantly reduced, inclusion of the dipole factor is advisable.
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Fig. 1.
Index correlation functions for some values of m.
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Fig. 2.
Above: An example differential scattering cross section plotted in spherical coordinates. The
incident wave propagates from left to right and the polarization is such that electric field is
in the vertical plane. The dimple is located at the origin. Below: Comparison of the
rotationally averaged σup (inner) corresponding to unpolarized incidence and the scalar wave
approximation σsw (outer) for klc = 0.1 (isotropic scattering) shown left, and klc = 1
(forward scattering) shown right.
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Fig. 3.
Wavelength normalized scattering coefficient μs/k as a function of wavelength normalized
index correlation length klc. Inset shows the normalized mean free path kls = k/μs
dependence. It should be noted that although no limit is shown for μs, the value is inherently
limited by the requirement that ls > lc. This weak scattering limit requires that the value of
dn2(klc)2 ≪ 1.
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Fig. 4.
Reduced scattering coefficient as a function of index correlation length (each normalized by
wavelength).
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Fig. 5.

Plots of  vs klc with and without the dipole factor.
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