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Abstract
Lab-chip device analysis often requires high throughput quantification of fluorescent cell images,
obtained under different conditions of fluorescent intensity, illumination, focal depth, and optical
magnification. Many laboratories still use manual counting - a tedious, expensive process prone to
inter-observer variability. The manual counting process can be automated for fast and precise data
gathering and reduced manual bias. We present a method to segment and count cells in
microfluidic chips that are labeled with a single stain, or multiple stains, using image analysis
techniques in Matlab and discuss its advantages over manual counting. Microfluidic based cell
capturing devices for HIV monitoring were used to validate our method. Captured CD4+ CD3+ T
lymphocytes were stained with DAPI, AF488-anti CD4, and AF647-anti CD3 for cell
identification. Altogether 4788 (76 × 3 × 21) gray color images were obtained from devices using
discarded 10 HIV infected patient whole blood samples (21 devices). We observed that the
automatic method performs similarly to manual counting for a small number of cells. However,
automated counting is more accurate and more than 100 times faster than manual counting for
multiple-color stained cells, especially when large numbers of cells need to be quantified (>500
cells). The algorithm is fully automatic for subsequent microscope images that cover the full
device area. It accounts for problems that generally occur in fluorescent lab-chip cell images such
as: uneven background, overlapping cell images and cell detection with multiple stains. This
method can be used in laboratories to save time and effort, and to increase cell counting accuracy
of lab-chip devices for various applications, such as circulating tumor cell detection, cell detection
in biosensors, and HIV monitoring devices, i.e. CD4 counts.

†Electronic supplementary information (ESI) available: Fig. S1 and S2 and Legends for the Code and test images. See DOI: 10.1039/
b911882a
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Introduction
Biomedical research often requires enumerating cells, labeled with multiple fluorescent
markers, which are captured on labchip devices. Examples are: circulating tumor cell
detection,1 cell detection in biosensors2 and CD4 counting devices.3–5,20,21 Flow cytometry
techniques offer reliable cell quantification. However, this is an expensive process that
requires cells to be suspended in solution.6 Other cell quantification methods include cell
counting chambers, microFACS7 and capturing of fluorescently stained cells in microfluidic
devices. In the latter method, cells are imaged using a camera attached to a fluorescent
microscope, followed by manual counting of the various resultant fluorescent images.
Although this method is effective, manual counting is a slow process that lacks standardized
accuracy, as it is subject to inter-operator variance.8

Image processing techniques allow segmenting and counting stained cell images on lab-chip
devices. However, due to differences in microfluidic devices, cell morphology, staining
techniques, and imaging conditions, there is no standard method to segment all cell images.
Most current image segmentation methods are task specific; for instance, they count cell
nuclei,9 determine cell morphology,10 or quantify features of specific cell types.11,12

Methods are needed to count cells on microfluidic chips that simultaneously express two or
more fluorescent stains.1,4

Conventional image segmentation techniques include thresholding selection, edge detection,
and active contour. The thresholding method does not retain spatial information that is used
during image segmentation.13 Thresholding also cannot always be applied to counting
imaged cells in microfluidic devices, since some images contain unevenly distributed
background noise with higher intensity than that of the cells of interest. Thresholding
methods often work with morphological operators to improve the segmentation
accuracy.14,15 Edge detection is inadequate for cell segmentation because not all cell
boundaries are sharp, making it challenging to accurately detect all cells.16 Active contour
models use the gradient flow vector applied to initial circular shapes placed inside the cells.
These models are usually preceded by image conversion into binary format using double
thresholding, and a subsequent search for cells whose intensity exceeds the threshold value.
This approach, however, suffers from false maxima and false edge points due to the uneven
background intensity.13,17

To alleviate the aforementioned shortcomings, we introduce a simple, yet accurate method
to segment and count cells on microfluidic devices. The method takes into consideration the
challenges related to cell imaging on a microfluidic chip. Our algorithm consists of a pre-
processing step for automatic background elimination through morphological operators, a
cell detection step that detects local maxima and performs local thresholding, and a stain
comparison step that compares cell positions in images taken under various fluorescent
filters at the same location on the microfluidic device to determine if each cell expresses one
or more fluorescent markers. This software is tested on DAPI, AF488-anti CD3, and AF647-
anti CD4 stained white blood cells captured on two types of microfluidic chips. Our
algorithm recognizes each DAPI stained cell and verifies whether that cell was CD3+ and
CD4+. It outputs the number of CD3+ CD4+ T-lymphocytes, which is of crucial interest for
HIV monitoring.4 This method is more accurate and more than 100 times faster than manual
counting.

Summary of the algorithm
First, the background was subtracted and the image was amplified. Then, the image was
dilated using a disk-shaped structuring element.18 Next, the local maximum was determined
using morphological operators and a local thresholding technique was applied to each local
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maximum in the image. The same step was applied to all three images for the distinct stains;
then each of the CD3+ cells was checked for expression of other stains (i.e. DAPI and
CD4+), and the number of cells that expressed all three stains was determined (Figure S1,
ESI).†

Image acquisition
We used 21 microfluidic chips that captured CD4+ T lymphocytes from 10 discarded HIV
infected patient whole blood samples. We tested our algorithm on two sets of images
obtained from two different kinds of microfluidic devices. The first set represents images of
white blood cells stained with DAPI, AF488-anti CD3, and AF647-anti CD4 which were
captured in a microfluidic channel using surface chemistry.4 The images of the full device
were taken sequentially using the microscope and a movable stage. The stage was moved
systematically to ensure that the same area was not imaged twice. The image program (Spot
Advanced software) saved the images with auto-increment numbers in their file names.
Based on these numbers, the program first read all the images in a folder then opened each
image sequentially, analyzing three images (1 “blue”, 1 “green”, and 1 “red”) at a time.

The second set represents images of white blood cells stained for CD3, and CD4 which were
captured using porous nano-filters.19,20 The stained cells were detected through a
fluorescence microscope (Nikon Eclipse, TE2000-U, Japan) with a CCD camera (Spot
RTKe Diagnostic Instruments Inc., MI). For the first set, “UV”, “blue”, and “green” filters
were used for the three stain types (DAPI, AF488-anti CD3 antibody, and AF647-anti CD4
antibody), respectively. Images were taken with a 10× Epi objective lens through each of the
three filter cubes (UV-2E/C DAPI, FITC HYQ, Cy5 HYQ, Nikon, Japan). To use these filter
cubes, three fluorescent probes were utilized adopting the excitation and emission
wavelengths, 356/458 nm for DAPI, 499/520 nm for AF488, and 652/667 nm for AF647.
All cells were imaged using the same method and parameters, i.e. exposure time, focus, and
gain. For the second set, the stained cells were detected by a fluorescence microscope
featuring “blue” and “green” filters for CD3, and CD4 stains, respectively. Images for this
set were taken at 4× magnification. Consequently, a single image detailed the entire device
(4 mm long × 4 mm wide).

Image pre-processing
Undesired shading effects and intensity variations in the image can hamper cell detection.
Such effects were therefore minimized and eliminated by evening out the background using
Matlab's background subtraction method, as described in the manual.18 First, the pixel value
of the background was estimated using a morphological opening operation in Matlab's
Image Processing Toolbox (Version 2.2.2 R12). This operation is composed of erosion22

followed by dilation,23 using a structuring element that was larger than the pixel-size of the
cells. The obtained background value was then subtracted from the original image. Finally,
the image contrast in the background-corrected image was adjusted by linearly mapping the
pixel values onto a larger scale to increase the overall image contrast (Fig. 1 A–F).
Combining background subtraction with the amplification method allowed us to eliminate
the background without losing the pixel values of the cells.

†Electronic supplementary information (ESI) available: Fig. S1 and S2 and Legends for the Code and test images. See DOI: 10.1039/
b911882a
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Cell recognition
To detect cells, all local maxima within the image were first detected. A morphological
dilation function23 that uses a disk with a diameter that matches the cell diameter (5 pixels
for a 4× image and 12 pixels for a 10× image) was applied to each image (following CCD
specification, controllable cell diameter adjustment to match different magnifications and
cell types); the original image was compared to the dilated one and the maxima were
identified (Fig. 1 G,H). An exclusion method was applied to exclude points with identical
intensity. This is done by adding noise to the image without affecting the peaks.

Next, a local thresholding method was applied to each local maximum in the image to
distinguish maxima that represented cells from background noise peaks (Fig. 1 I). Local
thresholding was done by comparing the cell to four points residing around each maximum
(Fig. 1 J). If any of the four differences exceeded the threshold, the maximum was identified
as a cell.

Multiple stain comparison
The software can quantify the number of cells that are labeled with more than one stain. In
HIV testing devices, for example, a certain type of white blood cells (T-lymphocytes),
which have CD3 and CD4 receptors on their membrane, need to be counted.4 After each
sample was labeled with all three stains, and flowed into a microfluidic device, images were
taken under three fluorescent filters. Object locations were recognized under “green”
fluorescence (CD4+ cells), and then compared to pixels in the same location on the “blue”
image (DAPI stained image). Only if a cell candidate was found in that specific location was
the object counted as a cell. Those cells were then compared to the CD3+ cells (“red
images”), and the number of cells that were fluorescent for DAPI, CD4, and CD3 was
obtained. The cells were marked by the program with circles (Fig. 2 A–G). Arrows in the
figure were added to show an object that was present in the “red image” but absent in the
“blue image”. Such an object was not counted as a cell by the algorithm, and was hence not
marked with a circle by the software.

It took 5–9 hours to manually count one device of this type (228 of these 10× images). The
manual counting was done by trained lab technicians who manually counted each DAPI
image and performed a cell by cell comparison to CD3+ and CD4+ cells and reported the
number. The software automatically counted all the images of this device in 3–6 minutes on
a laptop computer (Intel Centrino Duo CPU T2050 @ 1.6GHz), and analyzed multiple
images of different stains. Here, the automated counting was about 100 times faster than
manual counting.

Parameters
Two parameters were adjustable in our code: cell size and threshold. ‘Cell size’ determined
the disk size used in the morphological operator. This allowed separating adjacent cells; our
method overcomes the issue of adjacent cell separation (Figure S2, ESI)† which is generally
a problem for automated cell counting programs that are based on edge detection. Having
the cell size as a free parameter makes this program useful for counting images at different
magnifications as well as images with different cell types. For example, the ‘cell size’ is
around 5 pixels in a 4× image, and around 12 pixels in a 10× image. The program was used
to count 4× images of T lymphocytes captured on a microfluidic filter (Fig. 3 A–I). Imaging
under low magnification (4×) allowed capturing the full device in one single image for each
fluorescent stain. Counting this device (represented by 1 “red”, and 1 “green” image only)
automatically took 3 to 5 seconds. Manual counting of these three highly populated images
took 5 hours. Hence, in this case the automated method provided over 3000 times faster
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counting. The threshold parameter determines the difference between the pixel intensity of
the cells and that of the adjacent surrounding background. It is important to control this
parameter since the relative intensity of the stains varies based on microfluidic device type,
staining and imaging conditions.

Statistical analysis
Results from the software-based automated counting of fluorescently stained cells for the
first set (the surface chemistry treated microfluidic device) were compared to manual
counting of those images using a paired t-test, with 95% confidence level. The correlation
between the two methods was also determined using the Pearson correlation test. Moreover,
the Passing & Bablok regression24 correlation test was used to determine the linear
regression between counting results based on the two methods, i.e. manual and automated.
The degree of concordance between the two methods was established using Bland Altman
statistical analysis.25,26

Both the Pearson's correlation test, and the paired Student's t-test indicates a strong
correlation (Table 1). The Bland and Altman plot indicated that there was no significant
difference between automated and manual quantification methods. Results of comparing the
two methods versus the average of the two methods, for DAPI, DAPI/CD4+, and DAPI/
CD4+/CD3+ sample, are shown (Fig. 4 A–C). The Passing and Bablok regression also
showed the difference between the two methods, and the limits of concordance for the 95%
confidence interval (Fig. 4 E–G) along with the equations and the coefficient of
determination (R2). Each device of this type required 5–9 hours of manual counting, versus
3–6 min when counted using our software.

For each device, the ‘average cell size’ and the ‘threshold’, which vary based on the
magnification and the fluorescence intensity, were selected using a test set of images. The
free parameters were locked and used to perform automatic counting of the rest of the device
(on average ～228 images per device).

All devices were counted automatically, and the results were evaluated by comparing them
with manual counting results of the same images.

The variability among human counters was accounted for by having 3 different counters
reporting the number of cells for the same 12 sets of images. Results were also compared to
those generated by the software. The manual counting results varied considerably among
counters, and the variability increased significantly when the task was to count cells that
were positively stained for all the three stains (Fig. 4 D).

Conclusion
Lab-on-chip devices require high throughput quantification of fluorescently stained cell
images that are taken under different fluorescent intensity, illumination, focal depth, and
optical magnification. Manual counting is tedious, expensive and varies from observer to
observer. This process can be automated for fast and standardized data gathering regardless
of manual bias. We presented a method to quantify fluorescently-stained cells captured on a
microfluidic chip using image analysis techniques. We verified our system using
microfluidic chips that captured CD4+ T lymphocytes using 10 discarded HIV-infected
patient whole blood samples. White blood cells captured in 21 devices stained with DAPI,
CD4 and CD3 fluorescent antibodies were counted using this algorithm. In addition to the
accuracy and the time savings (100×), the software can also be used to obtain cell location
and cell distribution on a microfluidic device. This approach may prove beneficial to other
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cell capture based lab-chip devices and further studies on cell locomotion or cell capture
mechanisms.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Background subtraction and cell detection. The original image (A) is plotted in three
dimensions (B). The image was viewed along the x-z axis (C), the background increases
from <25 to >150 from left to right. The image was then processed (D) and plotted in three
dimensions after background subtraction (E). It was also viewed along the x-z axis (F), the
background was always <50 without losing signal intensity for the objects of interest (cells).
Detecting a local maximum in the intensity profile across a portion of one image (G), all the
local maxima were determined (H), a local thresholding method was then applied to the
image to separate cells from background (I). Local maxima followed by local thresholding
was applied to the image, shown in 3-D (J). In (B,E) the x-y axis labeling corresponds to
pixels whereas the z axis labeling corresponds to intensity. In (C,F,H,I) the x axis labeling
corresponds to pixels whereas the y axis labeling corresponds to intensity (8bit, 0～255). The
scale bar is 100 μm.
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Fig. 2.
Drawing of the microfluidic device used to capture T lymphocytes using surface chemistry
(A). Fluorescent images of cells stained with DAPI (B), CD4 (C), and CD3 (D). All cells in
the DAPI image are marked. The DAPI image is used as a base for CD4 and CD3. The
location of each cell in the DAPI image is compared to that in the processed CD4 and CD3
images. If a cell candidate in those images exceeds a certain threshold, the program marks it
as a cell. The circle indicates what the program considers “a cell”; the arrows show objects
that are not considered cells since they were not found in all three stains. Scale bar
corresponds to 100 μm.
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Fig. 3.
Cells in 4× images on microfluidic filters. Enumeration is often required for 4× images,
more than 3000 cells per image, with over 1000 cells that fluoresce for both CD3 and CD4.
(A,B) correspond to CD3+ and CD4+ stained cells, respectively. (C) is a merged image of A
and B. (D,E,F) are counted versions of A, B, and C. (G,H,I) are the magnified portions of D,
E, and F. Counting these images automatically takes 3–5 seconds. Manual counting of these
highly populated images take 5 hours. Hence, in this case the automated method provides
over 3000 times faster counting. Scale bar corresponds to 200 microns.
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Fig. 4.
Statistical analysis of the automated and manual counts of DAPI, CD4+, and CD3+ stained
images. Bland-Altman plot of the automated versus the manual count of DAPI+, DAPI+/
CD4+ and DAPI+/CD4+/CD3+ cells, (A–C) showing the error and limit of agreement.
Comparison using Passing and Bablok Regression is shown (E–G), with the 95% confidence
interval and the regression equation. The variability of manual counting was obtained by
having 3 counters counting the same 12 sets of images (D). We notice that the variability
(error bars) increased when the task was to identify multiple stains; the automated count was
within the standard deviation for all three cases. R2 values were 0.958, 0.954, and 0.921 for
E, F, and G, respectively.
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Table 1
Correlation tests from manual vs. automated counting

DAPI DAPI/CD3+ DAPI/CD3+/CD4+

Pearson Correlation 0.979 0.977 0.960

Paired T-test (P value) 0.249 0.059 0.089

R2 0.958 0.954 0.921
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