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Modulates the Inflammatory Response of the Brain and
Lowers A� in APP/PS1 Mice Along a Different Time Course
than Anti-A� Antibodies
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Gammagard IVIg is a therapeutic approach to treat Alzheimer’s disease currently in phase 3 clinical trials. Despite the reported efficacy
of the approach the mechanism of action is poorly understood. We have previously shown that intracranial injection of anti-A� antibod-
ies into the frontal cortex and hippocampus reveals important information regarding the time course of events once the agent is in the
brain. In the current study we compared IVIg, mouse-pooled IgG, and the anti-A� antibody 6E10 injected intracranially into the frontal
cortex and hippocampus of 7-month-old APP/PS1 mice. We established a time course of events ranging from 1 to 21 d postinjection.

IVIg and pooled mouse IgG both significantly reduced A� deposition to the same degree as the 6E10 anti-A� antibody; however, the
clearance was much slower to occur, happening between the 3 and 7 d time points. In contrast, as we have previously shown, A�
reductions were apparent with the 6E10 anti-A� group at the 1 d time point. Also, neuroinflammatory profiles were significantly altered
by the antibody treatments. APP/PS1 transgenic mice at 7 months of age typically exhibit an M2a inflammatory phenotype. All antibody
treatments stimulated an M2b response, yet anti-A� antibody was a more rapid change. Because the neuroinflammatory switch occurs
before the detectable reductions in amyloid deposition, we hypothesize that the IVIg and pooled mouse IgG act as immune modulators
and this immune modulation is responsible for the reductions in amyloid pathology.

Introduction
Alzheimer’s disease (AD) is characterized by deposition of amy-
loid plaques, composed of aggregated amyloid-� (A�) peptide,
and neurofibrillary tangles, composed of aggregated tau protein
(Hyman et al., 2012). Anti-A� immunotherapy has been shown
to improve cognition while lowering brain A� in numerous
mouse models (Morgan et al., 2000; Wilcock et al., 2004c; Maier
et al., 2006). It has been shown that anti-A� immunotherapy
lowers brain A� through both central and peripheral mecha-
nisms (Wilcock and Colton, 2009). We previously showed that
anti-A� antibodies activate microglia, and the microglial activa-
tion is important for the clearance of compact amyloid deposits
(Wilcock et al., 2003; Wilcock et al., 2004a). Antibodies can also
catalytically disaggregate amyloid deposits in vitro (Solomon et
al., 1997). When administered systemically, anti-A� antibodies
can enter the CNS and activate microglia (Wilcock et al., 2004c),

but they also result in the efflux of A� from the brain via a mech-
anism called the peripheral sink (DeMattos et al., 2001).

Adverse cerebrovascular events continue to plague the
anti-A� immunotherapy field. These adverse events include mi-
crohemorrhages and vasogenic edema (termed ARIA-H and
ARIA-E, respectively) (Wilcock et al., 2004b; Sperling et al.,
2011). We have previously published data that suggests activation
of matrix metalloproteinases (MMPs) MMP2 and MMP9 are
associated with the increase in microhemorrhage by anti-A� im-
munotherapy (Wilcock et al., 2011a).

Intravenous Ig (IVIg) is a term applied to the pharmaceutical
preparation of pooled human IgG derived from plasma. IVIg is
used to treat immune deficiency disorders including idiopathic
thrombocytopenic purpura and hypogammaglobulinemia (Har-
tung et al., 2009). The described immunomodulatory effects of
IVIg include downregulation of antibody production, inhibition
of B-cell-mediated IL-6 production and inhibition of nitric oxide
secretion, among many other immunological effects (for review,
see Dodel et al., 2010). After early reports of IVIg being tested in
AD patients (Dodel et al., 2004), an open label dosing of Gam-
magard, a commercially available IVIg, reported good tolerance
and increased plasma A� following infusion. MMSE scores also
increased in the small number of patients receiving the IVIg (Rel-
kin et al., 2009). Phase 3 trials are ongoing after passing the futility
analysis in January 2012. Despite the early indicators of a positive
clinical benefit of IVIg in AD patients, the underlying mecha-
nism(s) of action are unknown. Some have suggested the pres-
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ence of anti-A� antibodies accounts for the effects of IVIg
(Magga et al., 2010), while others suggest immune modulation
effects (Dodel et al., 2010).

We have previously shown that anti-A� antibody administra-
tion systemically results in significant changes in inflammatory
markers in the brain (Wilcock et al., 2011b). We are using the
macrophage phenotypes of M1, M2a, M2b, and M2c to charac-
terize the neuroinflammatory phenotype of the brain. The use of
the multiple markers of neuroinflammation allows us to better
characterize the inflammatory state of the brain beyond examin-
ing typical microglial cell surface markers of “activation.” In the
current study we use a time course to examine the effects of IVIg
and mouse IgG on neuroinflammation and A� load, and contrast
these effects with anti-A� antibody.

Materials and Methods
Animals. APP/PS1 transgenic mice (C57BL6 mice carrying human
APPSwe and PS1-dE9 mutations; Jankowsky et al., 2004) were bred in-
house and aged to 7 months. Then 120 7-month-old APP/PS1 mice were
assigned to one of four injection groups: saline, anti-A� antibody (6E10,
A�3– 8, IgG1; Covance), IVIg (trade name Gammagard from Baxter and
composed primarily of IgG1 and IgG2; Schwab and Nimmerjahn, 2013),
or mouse IgG (Sigma-Aldrich; composed primarily of IgG1 and IgG2a;
Sant’Anna et al., 1985). The anti-A� antibody, IVIg, and mouse IgG were
diluted to a final concentration of 1 mg/ml in sterile saline. Six mice in
each group (three female and three male) were killed at each time point
(1, 3, 7, 14, and 21 d). The study was approved by the University of
Kentucky Institutional Animal Care and Use Committee and conformed
to the National Institutes of Health Guide for the Care and Use of Ani-
mals in Research.

Bilateral intracranial injection. On the day of surgery mice were
weighed, anesthetized with isoflurane, and placed in a stereotaxic appa-
ratus (51733D digital dual manipulator mouse stereotaxic frame; Stoelt-
ing). A mid-sagittal incision was made to expose the cranium and four
burr holes were drilled with a dental drill mounted in the stereotaxic
frame over the frontal cortex and hippocampus to the following coordi-
nates: frontal cortex, anteroposterior, �1.7 mm, lateral � 2.0 mm; hip-
pocampus, anteroposterior �2.7 mm; lateral, � 2.5 mm, all taken from
bregma. A 26 gauge needle attached to a 10 ml Hamilton syringe (Ham-
ilton) containing the solution to be injected was lowered 3.0 mm ventral
to bregma, and a 2 �l injection was made over a 2 min period. The
incision was cleaned and closed with surgical staples for the 1–7 d time
points, and sutures for the 14 and 21 d time points. Sutures were removed
at 10 d.

Tissue processing and histology. After injection with a lethal dose of
pentobarbital, mice were perfused intracardially with 25 ml of normal
saline. Brains were rapidly removed and bisected in the mid-sagittal
plane. The left half was immersion fixed in freshly prepared 4% parafor-
maldehyde. The right half was dissected with the frontal cortex and hip-
pocampus being isolated, flash frozen in liquid nitrogen, and stored at
�80°C. The left hemibrain was passed through a series of 10, 20, and 30%
sucrose solutions as cryoprotection and 25 �m frozen horizontal sections
were collected using a sliding microtome and stored floating in PBS
containing sodium azide at 4°C.

Sections spaced 300 �m spanning the estimated injection site were
initially mounted and stained by cresyl violet to identify the injection site.
For all subsequent histology and immunohistochemistry six sections
spanning the injection site, spaced �100 �m apart were selected and
analyzed. Free-floating immunohistochemistry for CD45 (rat monoclo-
nal; Thermo Scientific) and A� (rabbit polyclonal A�1–16; Invitrogen)
were performed as described previously (Wilcock et al., 2003).

ELISA measurement. Protein was extracted for A� analysis from the
right frontal cortex using a two-step extraction method. First, the brain
was homogenized in PBS containing a complete protease and phospha-
tase inhibitor (Pierce Biotechnology). These samples were centrifuged at
16,000 � g at 4°C for 1 h. The supernatant was removed and became the
“soluble” extract. The resulting pellet was homogenized in 100 �l of 70%

formic acid and centrifuged at 16,000 � g at 4°C for 1 h. The supernatant
was removed and neutralized 1:20 with 1 M Tris-HCl and became the
“insoluble” extract. Protein concentration for both the soluble and insol-
uble extracts was determined using the bicinchoninic acid protein assay
according to manufacturer’s instructions (Thermo Scientific). We used
the Meso-Scale Discovery multiplex ELISA system to measure A�38,
A�40, and A�42 (MSD). ELISA kits were run according to the manufac-
turer’s instructions. We took the soluble extract remaining after A� anal-
ysis and measured levels of MMP9, tissue inhibitor of metalloproteinases
1 (TIMP1), MMP2, and TIMP2 by ELISA according to manufacturer
instructions (R&D Systems). We also measured the levels of mouse and
human IgG to detect the injected antibodies. We used the Easy-Titer IgG
assay kits (Thermo Scientific) for mouse IgG and human IgG.

Quantitative real-time reverse transcription (RT)-PCR. RNA was ex-
tracted from left hippocampus using the Trizol Plus RNA Purification
System (Ambion, Invitrogen) according to the manufacturer’s instruc-
tions. RNA was quantified using the BioSpec Nano spectrophotometer
(Shimadzu) and cDNA was reverse transcribed using the cDNA High
Capacity kit (Applied Biosystems) according to the manufacturer’s in-

Figure 1. IgG levels in the brain are rapidly decreased between 1 and 3 d following injection.
A, Mouse IgG levels in the right frontal cortex over the time course from 1 to 21 d. B, Human IgG
levels in the right frontal cortex over the time course form 1 to 21 d. **p � 0.01 compared with
saline.
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structions. Real-time PCR was performed us-
ing the 384-well microfluidic card custom
TaqMan assays containing TaqMan Gene Ex-
pression probes for our genes of interest
(Applied Biosystems, Invitrogen). All gene ex-
pression data were normalized to 18S rRNA
expression. Fold change compared was deter-
mined using the � �Ct method.

Analysis. Data are presented as mean �
SEM. Statistical analysis was performed using
the JMP statistical analysis program (SAS). Sta-
tistical significance was assigned where the p
value was lower than 0.05. One-way ANOVA
and two-way ANOVA were used, where appro-
priate, to detect treatment differences and dif-
ferences within treatment groups along the
time course.

Results
Measurement of mouse IgG in the protein
extracted from the right frontal cortex
showed that mice injected with mouse
IgG and anti-A� IgG had significantly in-
creased levels of IgG in the brain 1 d after
injection (Fig. 1A). This was reduced dra-
matically by the 3 d time point and was
down to the levels of mice receiving saline
or human IVIg by the 7 d time point. At
no time point did we observe a difference
between the mouse IgG and anti-A�
antibody-injected mice for the amount of
IgG present suggesting the clearance ki-
netics of the IgG was identical (Fig. 1A).
Similarly, quantification of human IgG
showed significant increases only in the
mice receiving the human IVIg at the 1 d
time point. This was reduced but still signif-
icantly elevated at 3 d and was undetectable
at the 7 d time point (Fig. 1B).

Total A� load measured by immuno-
histochemistry in the frontal cortex and
hippocampus of the saline-injected mice
was as previously shown for this mouse
model (Fig. 2A–C; Jankowsky et al., 2004).
We found that at the earliest time point,
1 d postinjection, the anti-A� antibody
had significantly reduced the brain A�
load in both frontal cortex and hippocam-
pus (Fig. 2D; hippocampus shown; Fig. 2M; quantification).
There was a slight further reduction in A� with anti-A� antibody
between 1 and 3 d (Fig. 1D,E,M) and then no further reductions
were observed. In fact, A� levels began to steadily increase from
the 7–21 d time points (Fig. 2M). In contrast, both reductions in
A� load were not observed with IVIg or mouse IgG until the 7 d
time point, indicating that this reduction occurred between the 3
and 7 d time points (Fig. 2H, I,K–M). At no time point did we
observe a significant difference between the IVIg and mouse IgG
treatment groups.

Measurement of A� levels by ELISA showed similar patterns as
the immunohistochemistry. The soluble pools of A�1–40 and
A�1–42 were significantly reduced by anti-A� antibody at 1 d com-
pared with saline, and a further slight reduction was observed at the
3 d time point. Interestingly, soluble A�1–40 increased dramatically
between the 3 and 21 d time point, reaching the levels observed in

mice receiving saline injection (Fig. 3A). While a similar pattern was
observed with soluble A�1–42, the increase between 3 and 21 d was
less dramatic (Fig. 3B). Both mouse IgG and IVIg injection reduced
soluble A�1–40 and A�1–42 between the 3 and 7 d time points and
showed a gradual increase between the 7 and 21 d time points, al-
though this increase was less dramatic for the A�1–40 than the
anti-A� antibody group (Fig. 3A,B). In contrast to the soluble pools
of A�, insoluble A�1–40 was reduced between the 1 and 3 d time
points by the anti-A� antibody, while insoluble A�1–42 was already
reduced at the 1 d time point. Mouse IgG and IVIg both showed
significant reductions in insoluble A�1– 40 and A�1– 42 be-
tween the 3 and 7 d time points (Fig. 3C,D). Of note, is the
apparent increased efficacy of IVIg to lower insoluble A�1– 40
compared with the reduction seen by anti-A� antibody or
mouse IgG (Fig. 3C).

To determine the role of neuroinflammation we first exam-
ined CD45 immunohistochemistry. Saline-injected mice showed

Figure 2. Brain A� is reduced by anti-A� antibodies, IVIg, and mouse IgG. A–C, Show the hippocampus of mice receiving saline
1 (A), 3 (B), and 7 (C) d following injection. D–F, Show the hippocampus of mice receiving anti-A� antibody 1 (D), 3 (E), and 7 (F )
d following injection. G–I, Show the hippocampus of mice receiving IVIg 1 (G), 3 (H ), and 7 (I ) d following injection. J–L, Show the
hippocampus of mice receiving mouse IgG 1 (J ), 3 (K ), and 7 (L) d following injection. In A, the dentate gyrus (DG), cornu ammonis
3 (CA3), and cornu ammonis 1 (CA1) regions are indicated to provide orientation. Asterisks in A–L indicate the injection site within
the hippocampus. M, Shows quantification of A� across the full time course, from 1 to 21 d, in the frontal cortex and hippocampus.
**p � 0.01 compared with saline for all points under the asterisk; #p � 0.05 for IVIg and mouse IgG compared with anti-A�
antibody.
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low levels of microglial activation around plaques in the frontal
cortex (images not shown) and hippocampus (Fig. 4A–C). One
day following injection a small number of CD45-positive cells
could be seen associated with the injection site (Fig. 4A), but these
were not detectable at the 3 d time point and beyond (Fig. 4B,C).
In contrast, diffuse microglial activation could be seen through-
out the dentate gyrus, CA3, and CA2 regions of the hippocampus
1 d following injection (Fig. 4D). This activation then localized to

the granule cell layer of the dentate gyrus
and the pyramidal cell layer of the CA3
and CA2 regions (Fig. 4E). We have pre-
viously shown this similar pattern of mi-
croglial activation following anti-A�
antibody injection along this same time
course (Wilcock et al., 2003). Some mi-
croglial activation in these cell layers re-
mained at 7 d and the activation resolved
close to saline-injected levels by 21 d (Fig.
4F,M). While IVIg and mouse IgG
showed some increased CD45 expression
at 1 and 3 d, it was not until 7 d after
injection that we observed significant mi-
croglial activation that resembled the
anti-A� antibody-injected mice (Fig.
4G–L). Quantification of the CD45 im-
munohistochemistry showed that micro-
glial activation peaked 3 d following
injection with anti-A� antibody, but 7 d
after injection with IVIg and mouse IgG in
both the frontal cortex and hippocampus
(Fig. 4M).

To better characterize the neuroin-
flammatory response to the injected anti-
bodies, we isolated RNA from the right
hippocampus and performed real-time
RT-PCR for genes relatively specific for
the four phenotypes of macrophages: M1,
M2a, M2b, and M2c. We found that all
M1 associated genes (IL-1�, MARCO,
and TNF-a) were significantly increased
at 3 d following anti-A� injection and
quickly resolved by the 7 d time point (Fig.
5A). Mouse IgG and IVIg showed signifi-
cant increases at the 7 d time point but this

increase was slower to resolve (Fig. 5A). In contrast to the M1
markers, we found that M2a-associated genes (Arg1, IL-1Ra, and
YM1) were significantly decreased at the 3 d time point with
anti-A� antibody and at the 7 d time point with mouse IgG and
IVIg (Fig. 5B). Again, the M2a markers were slower to reach
control levels with mouse IgG and IVIg than the anti-A� anti-
body group, much like the M1 markers (Fig. 5B). Of particular

Figure 3. Both soluble and insoluble A�1– 40 and A�1– 42 are reduced by anti-Ab antibodies, IVIg, and mouse IgG. A, B, Show
ELISA measurement of A�1– 40 (A) and A�1– 42 (B) in our soluble protein extract. C, D, Show ELISA measurement of A�-140 (C)
and A�1– 42 (D) in our insoluble, formic acid protein extract. *p � 0.05; **p � 0.01 compared with saline for all points under the
asterisk; #p � 0.05 for IVIg and mouse IgG compared with anti-A� antibody. ∧ p � 0.05 for IVIg compared with both mouse IgG
and anti-A� antibody.

Table 1. Individual data points for the neuroinflammatory marker gene expression

T’ment Survival

M1 M2a M2b M2c

IL1-� MARCO TNF-� AG1 IL1Ra YM1 CD86 Fc�R1 Fc�R3 Sphk1 TGF-�

Anti-A� 1 d 2.6 � 0.5 0.8 � 0.3 1.4 � 0.3 1.3 � 0.1 0.8 � 0.2 1.0 � 0.2 2.1 � 0.5 3.0 � 0.5 4.7 � 1.1 1.9 � 0.5 1.9 � 0.3
3 d 5.4 � 0.8* 4.6 � 0.5* 3.7 � 0.9* 0.4 � 0.1* 0.4 � 0.2* 0.2 � 0.1* 6.5 � 1.5* 6.0 � 1.1* 2.0 � 0.3* 0.8 � 0.3 0.7 � 0.1
7 d 0.9 � 0.2 2.3 � 0.3 0.65 � 0.3 1.7 � 0.3 1.0 � 0.3 1.2 � 0.3 1.1 � 0.1 0.2 � 0.1 0.1 � 0.05 3.2 � 0.9* 9.5 � 2.3*
14 d 1.2 � 0.4 1.2 � 0.5 1.0 � 0.2 1.1 � 0.3 1.1 � 0.2 1.2 � 0.1 0.9 � 0.3 0.5 � 0.3 0.45 � 0.3 1.1 � 0.3 3.2 � 1.1
21 d 1.2 � 0.3 0.9 � 0.3 1.1 � 0.2 1.2 � 0.2 1.2 � 0.2 1.5 � 0.5 1.5 � 0.2 1.1 � 0.3 1.1 � 0.3 1.3 � 0.2 1.1 � 0.3

IVIg 1 d 1.5 � 0.6 1.6 � 0.6 1.1 � 0.6 1.3 � 0.3 1.3 � 0.3 1.2 � 0.3 0.9 � 0.2 1.2 � 0.3 1.3 � 0.5 1.5 � 0.6 1.3 � 0.3
3 d 2.3 � 0.5 1.9 � 0.3 1.2 � 0.5 1.3 � 0.5 0.7 � 0.3 1.1 � 0.3 1.1 � 0.3 2.3 � 0.5 4.0 � 0.6* 1.3 � 0.2 1.5 � 0.3
7 d 5.6 � 0.5* 3.7 � 0.3* 3.4 � 0.3* 0.3 � 0.1* 0.3 � 0.2* 0.3 � 0.1* 3.9 � 0.9* 3.5 � 0.3* 1.4 � 0.6 1.0 � 0.2 1.3 � 0.2
14 d 3.6 � 0.9 2.2 � 0.3 1.1 � 0.4 0.7 � 0.2 0.7 � 0.2 0.5 � 0.1 0.9 � 0.2 0.3 � 0.2 0.7 � 0.3 2.5 � 0.5* 3.3 � 0.9*
21 d 1.4 � 0.3 1.3 � 0.5 1.5 � 0.6 0.8 � 0.1 1.3 � 0.2 1.1 � 0.2 1.3 � 0.7 0.8 � 0.3 1.1 � 0.4 1.2 � 0.3 1.1 � 0.3

M-IgG 1 d 1.4 � 0.5 1.5 � 0.5 1.2 � 0.5 1.2 � 0.5 1.5 � 0.3 1.1 � 0.3 1.0 � 0.3 1.2 � 0.5 0.9 � 0.4 0.8 � 0.2 0.7 � 0.3
3 d 2.9 � 0.6 1.3 � 0.5 1.1 � 0.3 1.2 � 0.3 1.0 � 0.3 1.2 � 0.3 2.1 � 0.4 3.5 � 0.9 3.9 � 0.5* 1.2 � 0.4 1.2 � 0.3
7 d 4.2 � 0.4* 3.9 � 0.6* 3.8 � 0.4* 0.7 � 0.2* 0.4 � 0.2* 0.3 � 0.2* 3.2 � 0.6* 4.1 � 0.5* 1.5 � 0.4 0.8 � 0.5 0.9 � 0.3
14 d 2.9 � 0.3 2.7 � 0.4 0.7 � 0.3 0.9 � 0.3 0.9 � 0.1 0.6 � 0.2 1.2 � 0.5 0.4 � 0.2 0.3 � 0.2 2.1 � 0.8* 2.6 � 0.7*
21 d 1.5 � 0.5 1.2 � 0.3 1.0 � 0.2 1.2 � 0.2 1.1 � 0.3 1.5 � 0.3 1.2 � 0.3 0.9 � 0.3 1.1 � 0.3 0.9 � 0.3 0.9 � 0.3

Bolded font shows points that are statistically significantly greater than saline-injected mice at the same time point. Time points with an asterisk illustrate the peak change for that gene. Italicized font shows points that are statistically
significantly lower than saline-injected mice at the same time point.
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interest is the M2b phenotype, which is
known to be initiated by immune com-
plexes. Markers of the M2b phenotype
were significantly increased at the 1 d time
point following anti-A� injection, and for
two of the three markers (CD86 and
Fc�R1) peaked at 3 d before resolving rap-
idly at the 7 d time point (Fig. 5C). In
contrast, Significant increases in M2b
markers were observed at 3 d for the IVIg
and mouse IgG-injected mice and, for the
CD86 and Fc�R1, peaked at 7 d before
resolving at the 14 d time point (Fig. 5C).
Of note for the M2c phenotype, TGF-�
was significantly elevated at the 7 d time
point following anti-A� injection but
only a small increase was seen in the IVIg
and mouse IgG-injected mice at the 14 d
time point (Fig. 5D). The individual time
point values with statistical significances
are shown in Table 1.

We have previously shown that MMP2
and MMP9 activation is increased in mice
that develop microhemorrhages due to
anti-A� immunotherapy. Although we
did not observe microhemorrhages in the
current study, as expected due to the
young age of the mice and the intracranial
administration paradigm used, we did ex-
amine gene expression for the MMP2 and
MMP9 systems to determine whether
IVIg and mouse IgG have different effects
on the systems than anti-A� antibody. We
found that MMP3 (the activator of
MMP9) and MMP9 gene expression were
significantly elevated 1 and 3 d following
injection of anti-A� antibody (Fig. 6A).
The increase in mice injected with IVIg or
mouse IgG were peaked at the 7 d time
point; however, the increase in expression
of MMP3 and MMP9 was significantly
less than that observed with anti-A� anti-
body (Fig. 6A). The expression of TIMP1,
the endogenous inhibitor of MMP9, was
increased at 3 d in all groups with no sig-
nificant difference between any of the
antibody-injected groups (Fig. 6A). Pro-
tein levels of MMP9 and TIMP1, mea-
sured by ELISA, matched the time course of the RNA (Fig. 6B).
Expression of MMP14 (the activator of MMP2) and MMP2 was
significantly increased at the 1 d time point in mice receiving
anti-A� antibody injection (Fig. 6C). We saw modest increases in
MMP14 with IVIg and mouse IgG at the 3 d time point (Fig. 6C).
MMP2 gene expression was also increased with IVIg and mouse
IgG at the 3 d time point (Fig. 6C). TIMP2, the endogenous
inhibitor of MMP2, was significantly increased at the 1 d time
point following anti-A� antibody injection, and the 3 d time
point following IVIg and mouse IgG injection (Fig. 6C). Interest-
ingly, expression of all genes in the MMP2 system was signifi-
cantly reduced to almost 0 at the 7 d time point with anti-A�
antibody injection before rebounding back to control levels at 14
and 21 d (Fig. 6C). This was a phenomenon we did not observe
with the IVIg or mouse IgG injection mice. Protein for MMP2

and TIMP2 matched the temporal patterns observed in the gene
expression studies, with the exception of the lack of a reduction at
the 7 d time point with anti-A� antibody.

Discussion
IVIg is a therapeutic approach currently in clinical trials for the
treatment of AD. Despite early indicators of some clinical benefit
(Relkin et al., 2009), the mechanism(s) of action are unknown.
There has been much speculation on the mechanisms, ranging
from the presence of circulating anti-A� antibodies in IVIg
(Dodel et al., 2002), and therefore acting in much the same way as
anti-A� immunotherapy (Magga et al., 2010), to immune mod-
ulation, a known mechanism of action of IVIg used in the treat-
ment of autoimmune disorders (Dodel et al., 2010). In the
current study we applied a study design previously used to estab-

Figure 4. Microglial cells are activated by anti-A� antibodies, IVIg, and mouse IgG. A–C, Show the hippocampus of mice
receiving saline 1 (A), 3 (B), and 7 (C) d following injection. D–F, Show the hippocampus of mice receiving anti-A� antibody 1 (D),
3 (E), and 7 (F ) d following injection. G–I, Show the hippocampus of mice receiving IVIg 1 (G), 3 (H ), and 7 (I ) d following injection.
J–L, Show the hippocampus of mice receiving mouse IgG 1 (J ), 3 (K ), and 7 (L) d following injection. In A, the dentate gyrus (DG),
cornu ammonis 3 (CA3), and cornu ammonis 1 (CA1) regions are indicated to provide orientation. Asterisks in A–L indicate the
injection site within the hippocampus. M, Shows quantification of CD45 immunoreactivity across the full time course, from 1 to
21 d, in the frontal cortex and hippocampus. **p � 0.01 compared with saline for the data point(s) directly under the asterisk;
#p � 0.05 the difference between IVIg and mouse IgG compared with anti-A� antibody.
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lish mechanism(s) of action of anti-A� antibody once it is in the
brain (Wilcock et al., 2003). We intracranially administered IVIg,
mouse IgG, or anti-A� antibody, all at the same concentration
and volume, bilaterally into the frontal cortex and hippocampus
of APP/PS1 transgenic mice and killed the mice 1, 3, 7, 14, and
21 d following injection. Mouse IgG was tested in addition to the
human IVIg to determine whether there were any differences
between these two groups. Mouse IgG should not contain anti-
bodies to human A� protein and, therefore, if differences were
observed between the mouse IgG and IVIg then we could con-
clude that there were unique antibodies in the IVIg contributing
to its efficacy. We attempted to detect anti-A� antibodies in the
mouse IgG preparation by either ELISA or decoration of plaques
on tissue sections and were unable to achieve signal.

Overall, we found that IVIg and mouse IgG lower A� levels in
brain by comparable degrees as that seen with anti-A� antibody.

However, this reduction occurs over a
slower time course. We also found that the
modulation of the neuroinflammatory re-
sponse occurs over a slower time course
than anti-A� antibody and appears, in
some instances, to be longer lasting. These
differences in time course are not ac-
counted for by the presence of the IgG in
brain, since all the injected antibodies
showed the same clearance kinetics as one
another. Our data suggest that IVIg can
lower A� as effectively as anti-A� immu-
notherapy, but the two therapies likely
have distinct mechanisms of action due to
the different time courses. However, it is
also feasible that the same mechanisms are
engaged with both anti-A� antibodies and
IVIg/mouse IgG but simply delayed. Im-
mune modulation is one likely mecha-
nism of action suggested by our data. In
addition, isotype differences may account
for some of the differences between the
IVIg/mouse IgG and anti-A� antibody
groups. Mouse IgG and IVIg compose
primarily IgG1 and IgG2 in IVIg and
mouse IgG compared with IgG1 only in
the anti-A� antibody.

Anti-A� antibody injection rapidly re-
duced A� burden in the brains of APP/
PS1 transgenic mice, with the greatest
reduction seen at the 1 d time point, as
previously shown in Tg2576 mice (Wil-
cock et al., 2003). In contrast, we did not
see significant reductions in A� with ei-
ther the IVIg or mouse IgG until the 7 d
time point, indicating the clearance oc-
curs between the 3 and 7 d period. The
difference between the anti-A� antibody
and the IVIg/mouse IgG groups suggests
that there may be distinct mechanisms of
action. We focused on inflammation as an
explanation for the differences in A� re-
moval because we have previously found a
relationship between microglial activa-
tion and A� clearance by anti-A� anti-
bodies injected intracranially (Wilcock et
al., 2003; Wilcock et al., 2004a). More re-

cently, we reported that systemically administered anti-A� anti-
body results in altered neuroinflammatory phenotype in the
brains of Tg2576 mice (Wilcock et al., 2011b). Most amyloid-
depositing mice show an M2a phenotype primarily (Colton et al.,
2006) and this is what we observed in our saline-injected mice.
When we injected anti-A� antibodies we found increases in M1
genes and M2b genes at the 1 d time point, peaking at 3 d. There
was also a concomitant reduction in M2a gene expression at the
3 d time point. Both IVIg and mouse IgG showed similar in-
creases in M1 and M2a gene expression, but along a slower time
course, peaking at 7 d.

While macrophages were once broadly grouped into M1 and
M2 based on their expression of IL-12 and IL-10 (M1; high IL-12
and low IL-10, M2; low IL-12 and high IL-10), studies found
other phenotypes that did not fit this description (Gerber and

Figure 5. Neuroinflammatory phenotypes are altered by anti-A� antibodies, IVIg, and mouse IgG. The figure shows relative
gene expression for genes representative of the M1 (A), M2a (B), M2b (C), and M2c (D) phenotypes. Data are shown as fold change
relative to APP/PS1 mice receiving saline injection at the given time point. Due to the multiple statistical differences the statistical
significance of the differences is highlighted in Table 1.
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Mosser, 2001). The M2b macrophage was
described in the periphery by Mosser et al.
several years ago (Edwards et al., 2006).
Called the type-II activated macrophage,
the group elegantly showed that activa-
tion of the Fc� receptors by immune
complexes switches the macrophage phe-
notype to this unique state characterized
by elevations in some M1 markers, partic-
ularly IL-1�, TNF-�, and IL-6, while there
was increased IL-10 and no induction of
IL-12 (Mantovani et al., 2004; Mosser and
Edwards, 2008). There were also some
markers that were identified to be more
specific for an M2b phenotype, including
CD86 (Edwards et al., 2006). CD86 is ex-
pressed on antigen-presenting cells and is
a ligand for CD28 and CD152 on T-cells,
leading to T-cell activation (Sansom et al.,
2003). We have recently shown that in the
AD brain samples, both early stage and
late stage, the phenotype that is not ob-
served is M2b (Sudduth et al., 2013a). In
the current study, we show that the in-
creased presence of IgG in the brain by
intracranial administration, be it IVIg,
mouse IgG, or specific anti-A� IgG, leads
to the modulation of the inflammatory re-
sponse away from M2a and into an M2b
phenotype. We cannot be sure whether
the increase in IL-1�, TNF-�, and
MARCO are due to an M2b or M1 pheno-
type since the primary distinguishing fac-
tor between these is the balance of IL-10
and IL-12, and neither are consistently
and reliably detectable in the mouse brain
tissue. The concomitant increase in M2b-
specific genes suggests that at least some of
the increase in these M1 genes is a part of
the M2b response.

Data from mouse models of disease,
including neurodegenerative diseases,
suggest that altering neuroinflamma-
tory phenotype results in changes in
progression of pathology. For instance,
Gómez-Nicola et al. (2013) showed re-
cently that changing the microglial phe-
notype from M1 to M2a in a mouse
model of prion disease slowed neurode-
generation and disease progression. We
have previously shown that lowering of
the M2a response while increasing M1
markers is associated with reductions in
A� with immunotherapy (Wilcock et
al., 2011b); however, it is now possible
that this was an M2b phenotype as opposed to an M1 based on
our current data. More recently, we showed that lithium treat-
ment increased M2a markers and decreased M1 markers in
APP transgenic mice and was associated with increased amy-
loid deposition (Sudduth et al., 2012). Contrasting results
were found with the PPAR� agonist, pioglitazone, where a
switch from M1 to M2 was observed along with decreased
plaque load (Mandrekar-Colucci et al., 2012). The contrasting

data found in animal studies may be accounted for by nonim-
munological effects of the drugs being used and suggests a
clear need for better understanding of the various neuroin-
flammatory phenotypes in the brain. An elegant review re-
cently discussed macrophage diversity in atherosclerosis, and
there it was suggested that it is not necessarily the polarization
to one phenotype or another, but rather a balance of pheno-
types, that is necessary for the progression, or lack thereof, of

Figure 6. Both the MMP9 and MMP2 systems are activated by anti-A� antibodies, IVIg, and mouse IgG. A, C, Show
relative gene expression of components of the MMP9 system (A) and the MMP2 system (C). Gene expression is shown as
fold change compared with mice receiving saline injection at the given time point. B, D, Show protein expression of MMP9
and TIMP1 (B), and MMP2 and TIMP1 (D) measured by ELISA. *p � 0.05; **p � 0.01 for the data point shown compared
with all other datasets at that time point. Where multiple groups are together, the statistical significance is compared with
saline.
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the pathological process (Mantovani et al., 2009). It is possible
that this is the case, too, for the diseased brain.

While microhemorrhages were not observed in the current
study due to the age of the mice, and the intracranial administra-
tion route selected, they do continue to be a major concern in the
development of immunotherapeutics for AD. We have previ-
ously shown that MMP2 and MMP9 activation is significantly
increased in mice that develop microhemorrhages due to anti-A�
immunotherapy (Wilcock et al., 2011a). MMP2 and MMP9 are
heavily implicated in the pathogenesis of hemorrhagic transfor-
mation following ischemic stroke (Klein and Bischoff, 2011)
and blood– brain barrier disruption in vascular dementia
(Candelario-Jalil et al., 2011). We have also recently shown that
MMP2 and MMP9 systems are activated in a mouse model of
vascular dementia based on hyperhomocysteinemia (Sudduth et
al., 2013b). To begin to assess the potential capacity for IVIg to
induce microhemorrhages we assessed the MMP2 and MMP9
systems in the current study by quantitative RT-PCR and ELISA
measurement of components of these systems. We found that
IVIg, mouse IgG, and anti-A� antibodies activated both systems;
however, a greater increase in the MMP9 system was observed
with anti-A� antibodies.

In summary, we have shown that IVIg and mouse IgG, when
present in the brain, lower A� deposition similarly to anti-A�
antibodies, but with a different time course. We believe that the
immunomodulatory functions of IVIg are active in the brain,
turning on an M2b phenotype that may be involved in the reduc-
tion of the A� deposition. Overall, our data suggest that immu-
nomodulation by IVIg may be beneficial in the treatment of AD.
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Gómez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of Mi-
croglial Proliferation during Chronic Neurodegeneration. J Neurosci 33:
2481–2493. CrossRef Medline

Hartung HP, Mouthon L, Ahmed R, Jordan S, Laupland KB, Jolles S (2009)
Clinical applications of intravenous immunoglobulins (IVIg)– beyond

immunodeficiencies and neurology. Clin Exp Immunol 158 [Suppl 1]:
23–33. CrossRef Medline

Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson
DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Sch-
neider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ
(2012) National Institute on Aging-Alzheimer’s Association guidelines
for the neuropathologic assessment of Alzheimer’s disease. Alzheimers
Dement 8:1–13. CrossRef Medline

Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Cope-
land NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR
(2004) Mutant presenilins specifically elevate the levels of the 42 residue
beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific
gamma secretase. Hum Mol Genet 13:159 –170. Medline

Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix met-
alloproteases. Amino Acids 41:271–290. CrossRef Medline

Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, Härtig W,
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