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Abstract
Magnetic Particle Imaging (MPI) is a promising tracer imaging modality that employs a kidney-
safe contrast agent and does not use ionizing radiation. MPI already shows high contrast and
sensitivity in small animal imaging, with great potential for many clinical applications, including
angiography, cancer detection, inflammation imaging, and treatment monitoring. Currently,
almost all clinically relevant imaging techniques can be modeled as systems with linearity and
shift invariance (LSI), characteristics crucial for quantification and diagnostic utility. In theory,
MPI has been proven to be LSI. However, in practice, high-pass filters designed to remove
unavoidable direct feedthrough interference also remove information crucial to ensuring LSI in
MPI scans. In this work, we present a complete theoretical and experimental description of the
image artifacts from filtering. We then propose and validate a robust algorithm to completely
restore the lost information for the x-space MPI method. We provide the theoretical, simulated,
and experimental proof that our algorithm indeed restores the LSI properties of MPI.
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I. Introduction
Magnetic Particle Imaging (MPI) [1] is a promising tracer imaging modality that is
completely non-invasive and employs a kidney-safe contrast agent, already showing high
contrast and high sensitivity in small animal imaging [2]. The technique exploits the
nonlinear magnetization response of superparamagnetic iron oxide (SPIO) nanoparticles to
time-varying magnetic fields. Hence, for medical imaging, MPI only detects a signal from
the SPIO tracers and not from biological tissue. Moreover, since tissue is completely
transparent to magnetic fields, there is no attenuation of the MPI signal with depth. Thus, the
physics of MPI is ideally suited for tracer imaging in clinical applications such as
angiography, cancer imaging, inflammation imaging, and in vivo stem cell therapy tracking.
MPI contrast agents, notably SPIO nanoparticles, have been shown to be much safer for
patients with chronic kidney disease [3], [4], [5] than currently available tracers (iodine and
gadolinium) used in planar X-ray imaging, X-ray computed tomography (CT), and magnetic
resonance imaging (MRI) [6], [7], [8].

Almost all clinically relevant imaging techniques – including ultrasound, CT, nuclear
medicine, and MRI – can be modeled as Linear and Shift-Invariant (LSI) systems [9]. LSI
systems guarantee that the image pixel intensity is linearly proportional to the amount of
tracer located at that pixel, and that the imaging system’s blur is independent of the spatial
location of the input (shift invariance). LSI is an indispensable quality for quantitative
medical diagnosis. For example, because X-ray CT is LSI, the reconstructed CT image of
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tissue attenuation coefficient maps can provide reliable and quantitative lumen diameters for
cardiovascular diagnosis. Similarly, MRI is LSI and therefore can provide quantitative
estimates of tumor volume for cancer diagnosis.

In MPI, a selection field, which is a strong magnetic field gradient (typically stronger than
2.5 T/m), produces a localized region where the static magnetic field is zero (known as the
field free point or FFP). We then apply a homogeneous oscillating magnetic field, called a
drive or excitation field, that rapidly translates the instantaneous FFP across the field of view
(FOV) in a scanning sequence. Currently, all MPI systems translate the FFP using a
sinusoidal waveform. When the FFP passes over a SPIO particle, the particle’s
magnetization is flipped in space, inducing a voltage signal in a receive coil. This signal is
rich in harmonics of the excitation field frequency due to the nonlinear response of the
magnetic nanoparticles.

One crucial practical consideration in MPI is the effect of suppressing direct feedthrough
interference, an unavoidable phenomenon in current MPI techniques. Because the excitation
and signal reception occur simultaneously in MPI, significant direct feedthrough
interference is induced in the receive coil by the excitation field at its fundamental excitation
frequency (Fig. 1). To reject this direct feedthrough interference, nearly all MPI scanners
rely on high-pass filters, which pass only higher-order harmonic frequency signals to the
pre-amplifier and A/D converter. Of course, these high-pass filters also unavoidably remove
the nanoparticle response’s first harmonic information. The impact of the loss of first
harmonic information has never been fully analyzed in MPI.

Currently, there are two methods to reconstruct the MPI image from the received, high-pass
filtered, MPI signal: the system function method [10], [11] and the x-space method [12],
[13]. The system function method employs a large system matrix that describes the spatial
dependence of signal harmonics from a point source input for every pixel within the imaging
bore. This large matrix is estimated either by acquiring a time-consuming calibration scan of
experimental impulse responses at every desired location [11] or through a full Langevin
nanoparticle model simulation [10]. System function reconstruction typically involves
inverting the system matrix estimate, which may require regularization to deal with poor
conditioning. The matrix inversion process can be computationally intense, and if
deconvolution is employed, it can amplify noise in the image [14]. Moreover, the system
matrix estimate is often acquired from nanoparticles in water, which may not match the
viscosity of blood, a thixotropic fluid [15]. Further, blood viscosity is known to decrease by
about 35% [16] from larger vessels (0.5 mm in diameter) to capillaries (40 microns in
diameter) due to the Fåhræus–Lindqvist effect. Such modeling errors could create image
reconstruction artifacts in the system matrix method when applied in vivo.

The x-space method does not rely on an estimate of the system matrix, but instead
reconstructs the MPI image using only the instantaneous MPI signal and FFP velocity
through space. As a result, the x-space image reconstruction algorithm is computationally
fast and well-conditioned, and reconstructs the native undeconvolved MPI image, whose
resolution is defined only by the strength of the magnetic field gradient and the magnetic
properties of the nanoparticle tracer.

The MPI x-space analysis relies on three assumptions:

1. Uniqueness: the instantaneous position of the FFP in the bore is unique at all times.
This is always valid given the modest (e.g., 10%) homogeneity specifications of the
FFP magnet and the excitation magnets.

Lu et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Adiabaticity: the nanoparticles respond adiabatically (i.e., instantaneously) to the
applied magnetic field. This is not always valid, as analyzed by Weizenecker et al.
[17], Reeves et al. [18], Goodwill et al. [19], Croft et al. [20], and Ferguson et al.
[21].

3. Complete MPI Signal Recoverability: the x-space reconstruction requires the
complete MPI signal, including the lost first harmonic information. Hence, x-space
reconstruction requires that the lost first harmonic information is recoverable via
robust methods.

The practical implications of the assumption that the lost first harmonic information is fully
recoverable have never been analyzed. Here, we prove for the first time that the lost first
harmonic information corresponds to offsets of the constant (or DC) component of the MPI
image. We propose a robust algorithm to restore the lost DC information in conjunction with
x-space MPI. Finally, we provide the first theory, simulation and experimental evidence that
our proposed algorithm does indeed restore the LSI properties of the MPI images. This DC
recovery method may also improve system function method, since the loss of DC
information is common to all MPI methods.

II. Theory
In this section, we prove that the direct feedthrough filtering in MPI causes a loss of a
constant (or DC) information in an unmodified x-space reconstruction. This insight informs
the robust and fast algorithm that we propose below to restore this lost DC information.

A. 1D X-space Theory: Brief Review
MPI requires a strong magnetic field gradient for spatial encoding and selectively saturating
the sample at all locations except near the FFP. Applying a strong magnetic gradient −μ0G
[T/m] across the sample, the particles within the sample experience a magnetic gradient field

(1)

To elicit a nanoparticle signal, we apply a spatially homogenous and temporally sinusoidal
magnetic field to the sample. Without loss of generality, we model the excitation field as a
1D cosine function with peak amplitude Bex [T] and frequency f0 [Hz]

(2)

Solving H (x) + Hs (t) = 0, we obtain the instantaneous Field Free Point (FFP), xs (t) [m]

(3)

where we have defined W = 2Bex / (μ0G) [m]. This equation shows that FFP trajectory
sinusoidally scans across a region of width W, which we refer to as the “partial Field-of-
View” (pFOV).

The particle signal is picked up by an inductive coil. The 1D MPI signal equation in volts
can be derived using the Reciprocity Theorem and the three assumptions above [12].
Assuming the receiver coil has a sensitivity map of −B1 [T/A] and the input particle
distribution is ρ(x) [particles/m], we obtain the following convolution relation:
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(4)

where γ ≜, B1 mG / Hsat, m [Am2] is the magnetic moment of the magnetic nanoparticle,
Hsat [A/m] is the amplitude of the magnetic field it takes to half saturate the nanoparticle
tracer, ẋs (t) [m/s] is the instantaneous FFP speed, and ℒ refers to the Langevin function that
characterizes SPIO magnetization.

We can analytically convert the time-domain signal equation directly into a native MPI
image, ρ̂(x), using the x-space reconstruction method [12]. This only requires normalizing
the received signal by the instantaneous velocity, followed by gridding to the instantaneous
position of the FFP (Fig. 3):

(5)

Note that the x-space reconstruction only requires a single point-wise division and gridding
operation, which can be performed in real time. As we described above, the noise source in
MPI is currently dominated by the direct feedthrough interference, which decreases together
with the FFP velocity. Thus, theoretically, dividing the signal by the velocity should not
amplify the direct interfering noise. For these reasons, x-space reconstruction method is
computationally efficient and well-conditioned.

The analysis above shows that the resulting MPI image is simply the nanoparticle density
convolved with the native MPI point spread function (PSF), which is clearly identified as
h(x) ≜ ℒ ̇ [Gx / Hsat] (Fig. 2a–c). In the case of 2D or 3D excitation field, MPI can still be
written as the multi-dimensional nanoparticle distribution convolved with a multi-
dimensional PSF, as shown in Goodwill et al. [13]. This convolution relationship proves that
MPI is a linear and shift-invariant imaging system. However, this result assumes that the
complete MPI signal is available for reconstruction into a LSI image. In contrast, the first
harmonic information is unavailable in practice due to the direct feedthrough high-pass
filtering operation. We now analyze this challenge.

B. MPI Harmonic Image Basis Set
To understand how filtering affects the MPI image, it is powerful to assess the individual
contribution each temporal harmonic signal makes to an MPI image. Building on insightful
results from Rahmer et al. [10] on the harmonic decomposition of unfiltered particle signals,
we apply here for the first time the x-space reconstruction algorithm to each harmonic, and
we prove that filtering out the first harmonic information corresponds to losing a constant, or
DC, component of the MPI image.

We begin with Fourier analysis of the received particle signal s(t). For periodic cosinusoidal
excitation expressed in Eqn. 2, the received signal is composed of a series of sinusoidal
harmonics of the excitation. Rahmer et al. decomposed the received particle signal into a
Fourier Series [10]:

(6)

where Sn is the Fourier coefficients of the nth order harmonic signal.
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We now apply the x-space reconstruction method to both sides of Eqn. 6 to derive an
analytic decomposition of the MPI image. Because the x-space reconstruction is a linear
operation, we can apply it to each term in the series and thereby isolate the spatial
contribution from each harmonic. From the FFP trajectory in Eqn. 3, we can make
substitution ẋs (t) = −π f0 W sin (2π f0t) and 2π f0t = arccos (2x / W), and we obtain:

(7)

where α is a constant that only depends on the scanning parameters and particle properties,

with the analytical form . Hence, the nth harmonic signal corresponds to a
weighted version of a simple Chebyshev polynomial of the second kind, Un−1 (x). In fact,
this result implies that the set of Chebyshev polynomials constitutes a complete and natural
MPI harmonic image basis set [10]. Therefore, Eqn. 8 motivates a straightforward analysis
of the lost harmonic signals due to temporal filtering.

For reference, the first five Chebyshev polynomials are listed in Table I. Most pertinent to
this paper, the first harmonic basis image is simply a constant in space. The second
harmonic reconstructs to a linear slope in space, and the third harmonic corresponds to the
quadratic basis function in space. Figure 2 illustrates an example of decomposing an MPI
native image from a simple nanoparticle distribution onto the MPI harmonic image basis set.
This image decomposition highlights the fundamental transform in MPI between image
space and harmonic space, and it allows a thorough analysis of the spatial frequency
contents of all MPI harmonics.

C. Loss of Image Baseline and Shift Variance due to High Pass Filtering
Equation 7 provides deep and definitive insight into the precise spatial information lost due
to filtering out the first temporal harmonic signal in MPI. Mathematically, the high-pass
filter removes the first harmonic, which removes a constant from our image:

(8)

This artifact is confirmed in Figure 3, where we see that filtering out the fundamental
frequency component of MPI signal indeed leads to a loss of a constant in the image. All the
rest of odd harmonics (third, fifth, etc.) also contain DC content for the MPI image so we
conclude that losing the first harmonic information is precisely equivalent to having an
unknown constant or DC offset in the uncompensated x-space MPI image. This insight will
inform our first harmonic recovery algorithm below.

A crucial question is whether this loss of a constant value due to high-pass filtering destroys
linearity or shift invariance. It is straightforward to prove that linearity is not destroyed by
the loss of DC information, since each of the higher order Sn remains linear in ρ̂(x).

However, the loss of the first harmonic does destroy the shift-invariance of an
uncompensated x-space image reconstruction. To see this, note that the first harmonic image
(and in fact every individual harmonic image) is shift variant. For example, consider the lost
first harmonic term, S1, adapted from [10]:

(9)
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Here, β = −4B1 mG f0 / Hsat, a constant dependent on scanning parameters and particle
properties. This equation reveals that S1 varies when ρ̂(x) is shifted due to the space-variant

velocity term, , which is unity at x = 0, but it is zero at the edges of the
pFOV, x = ±W / 2. This implies that a simple shift of the input image would alter the DC
value of an MPI image reconstructed by x-space image reconstruction without the first
harmonic information, in clear violation of LSI systems properties.

The fact that the DC loss leads to non-LSI properties is confirmed by simulation and
experiments. We simulated shifting a simple impulse input in a single FOV, and observed a
significantly different DC loss in the image (Fig. 4). Moreover, this artifact becomes far
more complex and non-linear in a partial-FOV image reconstruction. As illustrated both in
experiments and simulation (see Figs. 5 and 6), if we do not recover the lost DC
information, our image reconstruction is not quantitative. Hence it is absolutely critical that
this artifact be removed.

An apparent paradox arises: how can x-space reconstruction using all the harmonic signals
be shift invariant while each harmonic image is shift variant? This paradox is resolved by
the fact that the sum of all the harmonic basis images (including the unavailable first
harmonic term) does indeed cancel the shift-variant velocity weighting term, revealing a
linear and shift-invariant MPI image (see Appendix A for a rigorous proof). This reassures
that the x-space theory remains valid, and it indicates that one should be able to restore LSI
properties by simply restoring the lost first harmonic image.

Since there is no practical way to filter out direct feedthrough without also rejecting the first
harmonic MPI signal, we must instead devise an algorithm to restore the lost DC
information using a priori information. It is fortunate that the image artifacts from filtering
are restricted to the DC components of the MPI image, since there exist many robust signal
processing methods to restore baseline or DC components of an image using continuity
algorithms. In Section III we present a fast and robust continuity algorithm that recovers the
lost DC offset and thereby restores the quantitative LSI properties of the x-space MPI
technique.

D. Partial Field of View MPI Scanning and Lost Baseline Information
Clinical MPI must obey human safety limits on SAR and magnetostimulation [22], [23].
Within the typical operation frequency range of MPI, magnetostimulation has been shown to
be the dominant safety concern [24]. For example, if we are to image a torso (r = 20 cm)
using a full body MPI scanner with 5 T/m gradient, it would require a 1 Tpp excitation field
strength to cover the entire sample. However, magnetostimulation limits excitation field
amplitudes of ≈ 8 mTpp at 25 kHz [24] to avoid stimulating the human subjects, which
would only cover a partial field of view (pFOV) of about 3 mm. To address this
magnetostimulation challenge while covering a large FOV, the Philips group introduced
the ’focus field’ approach [2], [25], [26], where they rapidly scan small sub-regions and
slowly translate the center of the sub-region to cover the entire FOV. Each sub-region
(or ’station’) is reconstructed individually by system matrix inversion. The full FOV is then
reconstructed by averaging the sub-regions together. Here we also address the
magnetostimulation safety limit with a similar pFOV scanning scheme, but we instead use a
modified x-space image reconstruction algorithm.

We now understand that high-pass filtering distorts only the global DC value. This situation
is more complex for pFOV scanning. Figures 5 and 6 shows the pFOV scan data from both
experiments and simulation. We can see that the high-pass filter shifts each pFOV by an
unknown DC offset that we will denote by δi. If we fail to correct the DC offsets, it is
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apparent that the naively reconstructed MPI image is highly distorted and non-quantitative
(for an example of a unrecovered image, see the experimental data in Fig. 6). To restore the
desired native MPI image, we must estimate each of the δi robustly and then fully recover
the desired MPI image over the entire FOV. This method is described below.

III. Modified X-space Image Reconstruction with Continuity Enforcement to
Restore Lost Baseline Information and LSI Properties in MPI

Consider a single MPI scan reconstructed with the x-space method from the high-pass MPI
signal with no first harmonic information. This image will manifest the correct slope,
quadratic term, and higher-order terms, but it will have an incorrect DC value. Fortunately,
we know that the MPI image should be zero outside the FOV where no particles exist, so it
is straightforward to offset the entire image so that the average value of the reconstructed
image outside the FOV is zero. Essentially we are enforcing continuity to the known zero
boundary condition. This a priori information allows us to robustly recover the lost DC
information.

We can extend this continuity algorithm to pFOV scanning provided our FFP scanning
trajectory satisfies two conditions:

1. Overlapping pFOVs: The pFOV scans must have non-zero overlap to ensure
continuity of the overall full-FOV reconstruction.

2. Known boundary conditions: To have a robust recovery of the global baseline
offset, we must have some a priori knowledge of the particle concentration at one
reference location. For example, we need a location that is known to contain no
tracer (such as a location outside the patient), or a fiducial with known
concentration. This is akin to the FOV requirement to prevent aliasing in CT and
MRI.

Figure 5 illustrates the operation of our DC or baseline recovery algorithm. For illustrative
purposes, we will describe the algorithm working from left to right, but symmetric
continuity algorithms are also feasible.

We first simply shift the leftmost pFOV sub-image so that the region outside the patient has
zero average signal. Mathematically, this is identical to picking the first DC shift estimate,
δ1, as the negative of the sample mean of the leftmost pFOV.

The rest of the constant offsets can be estimated iteratively by maximizing the continuity of
successive pFOV scans over the overlapping regions. Mathematically, we pick the DC shift
estimates, δ̂i, to be the sample mean of the difference between the successive pFOVs, where
the averaging takes place only over the two regions’ overlap zone.

This recovery algorithm is real-time since offsets can be directly calculated with linear
computational complexity. In Appendix B, we prove that this algorithm provides statistically
unbiased estimates of the real offsets, and a complete restoration of the linearity and shift
invariance of MPI system. In the following sections, we demonstrate with experiments and
simulation that with this modified x-space reconstruction, MPI images demonstrate linearity
and shift invariance.
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IV. Methods
A. Simulations

We implemented a numerical simulation of the MPI imaging process, including magnetic
field simulation, Langevin nanoparticle modeling, FFP trajectory generation, signal
detection, direct feedthrough interference computation and filtering (MATLAB, Natick,
MA). X-space reconstruction was implemented in the simulator to reconstruct the native
MPI images. The simulated MPI signals and images were then decomposed into harmonic
basis sets, and compared with the analytic forms. Specific harmonic images of interest
included the first and second harmonic images.

B. Phantom Imaging
The imaging experiments were performed on the Berkeley field free line (FFL) projection
MPI scanner (Fig. 7(a)) [27] and 3D FFP MPI scanner (Fig. 7(b)). The gradient strength of
FFL scanner is 2.25 T/m along x and z axes, yielding an imaging resolution of 3.9 mm in z
axis and 7.6 mm in x axis with the contrast agent Resovist [27]. The 3D FFP MPI scanner
has a gradient strength of 7 T/m in the x axis, and 3.5 T/m in y and z axes, yielding an image
resolution of 2.5 mm in all axes with Resovist. Both scanners excite along the z axis at 22
kHz. Alongside with a triangular slow-shifting magnetic field in x axis, the excitation field
covers each pFOV in a Cartesian trajectory [28], while the additional slow-shifting magnetic
fields in z axis (as well as y axis in the case of Berkeley 3D FFP MPI scanner) slowly
translate the pFOV to cover the entire imaging sample [13].

To test the linearity of the system, we acquired a series of images on the Berkeley FFL
scanner, each containing a single point source tracer with iron quantity ranging from 28 µg
to 280 µg Fe, with a step size of 28 µg for a total of 10 measurements. An image of 1 cm by
1 cm is taken and reconstructed for each sample, and we measure the peak image intensity
of each impulse response.

To test linearity and shift invariance simultaneously, we constructed an acrylic phantom
containing multiple line sources of different concentrations (Fig. 9(a)) and imaged it using
the FFL scanner. The phantom measures 10 cm by 2 cm and contains four laser-cut
channels. Each channel has a width of 1.5 mm, a thickness of 3 mm and a length of 1 cm.
The channels are spaced at 3 cm intervals and filled with exponentially decreasing
concentrations of Resovist tracer: 50, 25, 12.5 and 6.25 millimoles Fe/L. The phantom was
imaged with a 2D FOV of 6 cm × 12 cm in the horizontal xz imaging plane, with a scan time
of 39 seconds. The FFL scanner has a pFOV of about 6 cm × 2.5 cm. The total scan was
completed with a pFOV overlap ratio of 75%.

We also constructed two laser-cut acrylic “carotid artery” phantoms imitating two models of
carotid arteries with and without a stenosis model (Fig. 10a). We scanned this phantom on a
3D FFP MPI scanner. The channel representing the common carotid artery is 4.5 mm wide,
and the branching channels representing the external and internal carotid arteries have a
width of 3 mm. Both are approximately 75% the size of a typical human carotid artery. In
one of the phantoms, we created a stenosis where the internal carotid artery is half occluded.
The phantom is filled with 20-fold diluted Resovist at 25 millimoles Fe/L concentration. The
phantom was imaged with a full 3D FOV at a spatial coverage of 4.5 cm × 4.5 cm × 6.2 cm,
and a scan time of 141 seconds. The pFOV size was around 4.5 cm × 4.5 cm × 1.3 cm. The
overlap ratio between two successive pFOVs were 80%.
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C. X-space Reconstruction and Recovery Algorithm Implementation
The received particle signals of the imaging phantoms are reconstructed using the two-step
x-space reconstruction algorithm [12], [29]: the signal is first velocity compensated and then
gridded to the instantaneous FFP position to form the MPI image of each pFOV scans. Due
to relaxation effects and other non-interference noise sources in MPI scanners, the particle
signal is non-zero at the edges of the pFOVs, where the FFP velocity is zero. To avoid the
noise amplification at the two edges, we only reconstruct the central 95% of each pFOV.
Experimentally, the data loss and the noise gain are negligible with a small amount of edge
pFOV discarded.

The baseline or DC recovery continuity enforcement algorithm was implemented as
described in Section III using MATLAB (Mathworks, Natick, MA). The computational time
required for complete DC baseline recovery was minimal, on the order of milliseconds per
line-scan using standard computing hardware (2× Intel Xeon E5645 CPUs, each with 6
cores, 2.4 GHz, 144 GB RAM, 64-bit Windows Server 2008 R2). Finally, we averaged the
DC recovered pFOV scans to assemble a final MPI image.

V. Results
Figure 8 shows the results of the linearity test. As demonstrated in this figure, MPI image is
linear with respect to iron quantity with a near-perfect correlation coefficient (R2 = 0.999)
after we recover the DC offsets and stitch the pFOVs. The detection limit depends on the
tracer type and has considerable room for improvement as we improve the system sensitivity
and address interference sources in our system.

Figure 9 shows the result of the linearity and shift-invariance phantom. The reconstructed
image following baseline recovery faithfully reflects the exponentially decreasing iron
concentration within the channels. The center line of the reconstructed image shows that the
signal intensity is linearly proportional to the particle concentration, and the PSF is the same
regardless of location, verifying the linearity and shift invariance of the system.

Figure 10 shows the carotid angiographic phantoms, and the reconstructed MPI images with
baseline recovery and mild Wiener deconvolution. The occlusion in the vessel is clearly
depicted by the reduced brightness, as well as the narrowing. These images are quantitative
as the baseline recovery algorithm ensures the linearity and shift invariance of MPI system.
This experiment demonstrates the tremendous potential of MPI for angiographic imaging.

VI. Discussion
A. Tradeoffs Between Speed and Absolute Quantitation in MPI

Linearity and shift invariance (LSI) are crucial properties for quantitative imaging. In fact,
almost all existing medical imaging modalities are modeled as LSI systems, including
Ultrasound, CT, PET/SPECT and MRI. Linearity in MPI means that each pixel value is
linearly related to the true nanoparticle concentration at that pixel. Shift-invariance means
the MPI scanning process blurs the image of the nanoparticle concentration identically at
every location in the image. Applications of quantitative MPI could include tracking and
quantitating stem cells, or inflammation. As human MPI systems are developed, LSI
qualities will also be crucial for clinicians to make quantitative diagnoses, such as ejection
fraction, lumen diameter, and tumor volume.

In this paper, we both mathematically proved and experimentally demonstrated that MPI is
linear and shift invariant, but only after the DC restoration algorithm recovers the lost first-
harmonic image information. The modified x-space image reconstruction requires
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overlapping pFOVs, and full coverage of the entire FOV. These conditions enable a fast,
robust algorithm to restore the lost DC information in realtime without inverting a large
system matrix. Other imaging modalities also require boundary conditions. For example,
MRI pulse sequence designers must choose the minimum number of phase encodes based on
the FOV size to prevent spatial aliasing. In MPI, we need these conditions to ensure an
absolutely quantitative and linear, shift-invariant MPI scan.

It is likely that clinicians will prefer speed over absolute quantification for certain clinical
applications. For example, for cardiac imaging or coronary artery imaging, scanning speed is
crucial because of the speed of cardiac motion. Also, the heart itself spans only a small
fraction of the full patient FOV. Acquiring all the pFOVs out to the edge of the chest would
require far more scan time than simply covering the heart. Clearly, full FOV acquisition may
not be prudent for such clinical applications. Hence, one could modify the proposed method
by finding a region near the heart (e.g., pericardiac fat) containing no contrast agent and use
this region to provide the zero boundary condition. This would also still permit true
quantitative and LSI imaging. Indeed, physicians may abandon absolute quantification for
relative quantitation when imaging speed is paramount. Suppose we quickly scan only a
small FOV over the heart at high speed. Then one could reconstruct a continuous image
between pFOVs, using the continuity algorithm demonstrated here. As a result, the entire
image would have an arbitrary DC baseline; but physicians may obviate this artifact with
routine tools like window and level adjustment.

The second requirement, overlapping pFOVs, is somewhat similar to the requirement of
adequate sampling to prevent spatial aliasing in CT, PET or MRI. We have found that, in
practice, about 15% overlap is required during the scan (results not shown). Of course, this
implies a small loss of overall imaging speed. Note that increasing the overlap region size
can boost SNR, since we average independent noise sources across the overlapping regions.
Our experimental pulse sequences on the latest 3D MPI scanner in Fig. 8(a) demonstrate that
even with a 80% overlap, we can still achieve a reasonable scan time of 141 seconds at a 3D
volumetric coverage of 4.5 cm × 4.5 cm × 6.2 cm. Clearly, optimizing the overlap region
between pFOVs will require a delicate tradeoff between SNR, scan time, and motion
artifacts. Hence, the optimal overlap region is likely to depend on the particular clinical
application.

B. Parallels Between the System Function Method and X-space Image Reconstruction
Methods

This analysis is the first time that the mathematical tools of x-space reconstruction have
been applied to the Fourier decomposition that inspired Philips’ excellent System Function
method [10]. This effort could begin the unification of the two MPI image reconstruction
methods. There remain significant differences between the complexity, speed and robustness
of the two methods. We hope that these parallels will help researchers compare tradeoffs
between the two dominant image reconstruction methods currently used in MPI.

Indeed, in theory, an MPI image could be reconstructed by summing the Sn -weighted
Chebyshev-basis images in Eqn. 7, as proposed first by Rahmer et al. [10]. This image
reconstruction method would be slightly slower than x-space reconstruction method (only
due to the FFT operation), but faster than the system matrix inversion method. Of course,
this reconstruction method and system function reconstruction method both fundamentally
lack the first harmonic data, since high-pass filtering is essential for all MPI methods.
Hence, we recommend applying a continuity algorithm to restore the lost DC offset
information for both methods. Indeed, the successful demonstration of reconstruction using
Chebyshev basis set would be a welcomed advancement to the field.
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This analysis also confirms the Rayleigh limit of spatial resolution in MPI, given by Rahmer
et al. [10] and Goodwill et al. [12]. One might hope that an infinite number of Fourier
harmonic coefficients could enable reconstruction of an MPI image at arbitrarily high spatial
resolution. However, this analysis confirms that even with an infinite number of Fourier
coefficients, one can only perfectly reconstruct an MPI image that has already been blurred
by the derivative of the Langevin function, ρ̂(x) ≜ ρ(x) * ℒ ̇ (Gx / Hsat), as shown by Eqn. 5.
Exceeding this spatial resolution defined by the nanoparticle’s Langevin function and the
applied gradient field then must rely on some form of deconvolution.

C. Higher Harmonic Restoration
Here we focused exclusively on the loss of first harmonic information due to the high-pass
filter. However, the high-pass filter may not be sharp enough to leave the 2nd, or even 3rd,
harmonic information intact. It is straightforward to extend the analysis above to include 2nd
or 3rd harmonic restoration, which is precisely equivalent to restoring the linear or quadratic
terms of our reconstructed MPI scans. Fortunately, low spatial frequency information can be
robustly recovered provided there is adequate SNR and adequate overlap. While our current
high-pass filter only removes the first harmonic, this may be an area of fruitful future
investigation.

D. Extension to MPI Fluoroscopy
To date, the Fourier analysis of MPI, whether employed for x-space or system function
methods, always assumes a periodic time domain received signal. This implies a discrete
Fourier spectrum. Physically, this is only true when we repeat the scan of the same y-line in
image space several times. However, the only clinically pertinent reason to scan the same
line repeatedly is to increase SNR through averaging. We expect that future MPI scanners
will scan faster, perhaps even a single period per y-line, with no repetition. At that point our
received spectrum can no longer be modeled as a discrete spectrum. Fortunately, we believe
that the modified x-space image reconstruction presented here will remain effective and
robust, since it does not directly rely on the Fourier coefficients.

VII. Conclusions
All MPI scanners employ high-pass filters to prevent direct feedthrough of the first
harmonic from the transmit coil to the receiver coil, which could easily drown the received
MPI signal. For a simple case of 1D sinusoidal excitation, we showed in theory, simulation,
and in experiment that this high-pass temporal filtering removes only a DC component of an
MPI scan. If left uncorrected, this loss of information destroys the shift invariance of x-
space MPI images and also produces severe image artifacts. We showed both theoretically
and experimentally that our proposed continuity algorithm restores the lost DC offsets
accurately. We also showed that this restores linearity and shift invariance in x-space MPI.
Last, we demonstrated the experimental MPI scans reconstructed with this modified x-space
algorithm and measured near-perfect linearity and shift invariance with respect to the
concentrations of SPIO contrast agent. This effort represents a crucial step toward making
MPI a quantitative tracer imaging modality.
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Appendix

A. Sum of Harmonic Components Manifests Linearity and Shift-Invariance
One apparent paradox uncovered in the analysis in Theory Section is the fact that each
harmonic image is shift variant, yet the sum of all basis images is shift invariant. Here we
resolve this paradox by summing all the harmonic basis functions, and showing that the

shift-variant term,  cancels out only after we add all the terms together.

Here, we rely on the Chebyshev polynomial identity [30]:

First, we adapted the analytic expression of Sn from [10] to our notations, which has the
form:

(10)

where β = −4B1 mG f0 / Hsat, is a constant dependent on scanning parameters and particle
properties; and ρ̂(x), is the native MPI image reconstructed using the x-space method.

Let us substitute the Fourier coefficient Sn into the image decomposition equation (Eqn. 7),
we have:

We conclude that the sum of all the linear but shift-variant harmonic images does indeed
provide a linear and shift-invariant MPI image.

B. Mathematical Proof of LSI Restoration
Here we give a complete derivation of the DC recovery algorithm and prove that our
algorithm robustly restores all the lost image information, and the linearity and shift
invariance of MPI images.

First of all, let us denote the ideal native MPI image as ρ̂(x), the center position of each
pFOV as xi, the noise in this pFOV image as ni (x). Let us also denote the lost DC value
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from the ith pFOV scan as δi, while the estimator of this lost DC value as δ̂i. Then with an
unmodified x-space reconstruction, the lossy pFOV image will have this form:

(11)

The lost DC value δi can be estimated by maximizing the continuity between the ith pFOV
scan and its previous scans over the overlapping region. Let us denote Pi as the dataset that
includes all the points within the overlapping region between the ith and (i − 1)th pFOV scan,

which is defined as . Let’s further denote g0 (x) ≜ 0 and n0 (x) ≜
0, corresponding to a virtual 0th scan that incorporates the boundary condition into the same
mathematical framework. Thus, the process of estimation for each DC offset, δ̂i, can be
expressed as

(12)

As one would hope, δ̂i is an unbiased estimate of the actual DC loss to each pFOV, provided
that all the image noise, ni (x), is zero-mean, i.e.,

(13)

where E {X} denotes the expected value of a random variable X.

After restoring the DC values to each of the pFOVs, our final estimate of the true MPI
nanoparticle density can be computed as

(14)

This analysis proves that restored image ĝi (x) is an unbiased estimation of the ideal native
MPI image ρ̂(x) with no amplification of noise and within the same subregion, which we
already know to be linear and shift invariant from Eqn. 5. This algorithm obtains (at least)
two estimates of the native MPI image in the overlapping zone, and we can average these to
reduce image noise. To form our final MPI image, we simply join all the pFOVs
numerically on an interpolated uniform grid that spans the full FOV. This algorithm is able
to reconstruct an accurate rendition of the ideal MPI image ρ̂(x), with fully restored LSI
properties. Fig. 5 and Fig. 6 illustrates the recovered images from both simulation and
experiment, demonstrating that the continuity algorithm does recover the lost DC image
information.
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Figure 1.
Simultaneous excitation and reception in MPI leads to direct feedthrough interference,
which contaminates the received signal at the fundamental drive frequency. Aggressive
filtering removes the direct feedthrough interference, however it also removes part of the
nanoparticle signal. It is necessary to recover the lost signal to enable artifact-free MPI
images. (a) Simplified block diagram of the MPI system. Excitation and reception occur
simultaneously. (b) Frequency spectrum of the signal detected in the receive coil. Sinusoidal
excitation leads to harmonics in the nanoparticle signal spectrum. A high-pass filter is
applied to remove the fundamental feedthrough signal.
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Figure 2.
Illustration of 1D MPI imaging process, x-space reconstruction and harmonic decomposition
of the MPI signal in the time and image domains. (a)–(c) MPI is intrinsically LSI – the
native image can be written as a convolution of the input SPIO distribution and a point
spread function (PSF). (d) Basic sinusoidal scanning sequence in 1D. (e) Theoretical time
domain nanoparticle signal assuming no direct feedthrough. (f) Application of the x-space
reconstruction to each harmonic signal expands the native image into the MPI harmonic
image basis set, which is composed of Chebyshev polynomials of the second kind. (g) The
Fourier representation of the time domain signal. Note that the phase is 90° across all the
harmonics from the inductive detector.
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Figure 3.
Filtering out the fundamental frequency component of the particle signal leads to a constant
offset artifact in the MPI image. (a), (b), and (d) show the two-step x-space reconstruction
from signal in time domain to MPI image in spatial domain. (c) A plot of the FFP velocity.
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Figure 4.
The DC offset lost due to filtering changes when the impulse input of particle distribution is
shifted within the FOV, demonstrating that MPI is non-LSI after filtering. The simulated
image of an impulse of particles located (a) toward the edge of the FOV, and (b) at the
center of the FOV.
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Figure 5.
Simulation of pFOV scanning scheme and DC recovery algorithm on an impulse input (i.e.,
point source) of particles. Each pFOV scan loses a different DC offset δi as each scan sees a
different particle distribution. After DC recovery, the lost DC offsets can be completely
restored to each pFOV. The reconstructed image shows a perfect match with the ideal native
MPI image.
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Figure 6.
Experimental data of MPI images reconstructed without and with DC recovery. The data
was acquired from an impulse input of the particles on Berkeley FFL projection scanner.
The reconstructed image without DC recovery has a very different shape from the ideal
image and does not have any quantitative value. In contrast, the reconstructed image with
DC recovery effectively restores all the lost signal and matches well with the ideal MPI
image shown in the simulation (Fig. 5).

Lu et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
MPI scanners. (a) Berkeley FFL projection MPI scanner, with a gradient strength of 2.25 T/
m along x and z axes. (b) Latest Berkeley 3D x-space MPI scanner, with a gradient strength
of 7 T/m in the x axis and 3.5 T/m in y and z axes.
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Figure 8.
Experimental demonstration of MPI’s linearity after recovery and stitching. The peak
intensity of the corresponding MPI image is linearly proportional to the input particle
quantity, showing a near-perfect correlation coefficient (R2 = 0.999). The amount of iron
tested ranges from 28 µg to 280 µg, with a step size of 28 µg. An image of 1 cm by 1 cm is
taken and reconstructed for each sample, and the peak value of each impulse response is
plotted.
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Figure 9.
Experimental demonstration of MPI’s linearity and shift invariance after recovery and
stitching. (a) Linearity and shift invariance phantom. The phantom is injected with diluted
Resovist, with iron concentration of 50, 25, 12.5, and 6.25 millimoles Fe/L in each channel
from left to right respectively. (b) The undeconvolved native image is reconstructed after
recovery and stitching. (c) The center line of the reconstructed image shows that the signal
intensity is linearly proportional to the particle concentration, and the PSF shape and
resolution is the same regardless of location.
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Figure 10.
MPI shows promise as a quantitative angiographic imaging modality. (a) The carotid artery
phantom is filled with 20× diluted Resovist (25 millimoles Fe/L). The phantoms represent
the internal carotid artery with no occlusion and half occlusion. (c) Reconstructed native
MPI images with baseline recovery, followed by mild Wiener deconvolution with a
simulated 2D PSF, and displayed at 10% leveling. The occlusion in the phantom is very well
captured in the MPI images.
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Table I

Relationship between the time domain harmonic signal and the MPI harmonic image basis set.

Harmonic MPI harmonic image basis set Shape

sin (1ω0t) 1 constant

sin (2ω0t) 2x linear slope

sin (3ω0t) 4x2 − 1 parabola

sin (4ω0t) 8x3 − 4x cubic

sin (5ω0t) 16x4 − 12x2 + 1 quartic

∶ ∶ ∶
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