Inositol pyrophosphates regulate JMJD2C-dependent histone demethylation

Adam Burton^{a,b}, Cristina Azevedo^{a,b}, Catia Andreassi^{b,c}, Antonella Riccio^{b,c,1}, and Adolfo Saiardi^{a,b,1}

^aMedical Research Council Cell Biology Unit and Department of Cell and Developmental Biology, ^bMedical Research Council Laboratory for Molecular Cell Biology, and ^cDepartment of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom

Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved October 11, 2013 (received for review May 27, 2013)

Epigenetic modifications of chromatin represent a fundamental mechanism by which eukaryotic cells adapt their transcriptional response to developmental and environmental cues. Although an increasing number of molecules have been linked to epigenetic changes, the intracellular pathways that lead to their activation/ repression have just begun to be characterized. Here, we demonstrate that inositol hexakisphosphate kinase 1 (IP₆K1), the enzyme responsible for the synthesis of the high-energy inositol pyrophosphates (IP7), is associated with chromatin and interacts with Jumonji domain containing 2C (JMJD2C), a recently identified histone lysine demethylase. Reducing IP₆K1 levels by RNAi or using mouse embryonic fibroblasts derived from *ip6k1^{-/-}* knockout mice results in a decreased IP₇ concentration that epigenetically translates to reduced levels of trimethyl-histone H3 lysine 9 (H3K9me3) and increased levels of acetyl-H3K9. Conversely, expression of IP₆K1 induces JMJD2C dissociation from chromatin and increases H3K9me3 levels, which depend on IP₆K1 catalytic activity. Importantly, these effects lead to changes in JMJD2C-target gene transcription. Our findings demonstrate that inositol pyrophosphate signaling influences nuclear functions by regulating histone modifications.

inositides | phosphorylation | metabolism

E pigenetic modifications of histones are emerging as a cen-tral mechanism that controls nuclear functions, transducing changes in cell physiology to transcriptional reprogramming (1). Histones are subjected to numerous reversible posttranslational modifications, including acetylation, phosphorylation, methylation, ubiquitylation, ADP ribosylation, and sumoylation (2). Histone methylation has been associated with transcriptional control, mRNA splicing, DNA repair, and replication (3). Recently two families of histone demethylase enzymes have been identified in mammalian cells, lysine-specific demethylase 1 and the Jumonji-C domain-containing proteins (4, 5). The Jumonji-C histone demethylase family member, Jumonji domain-containing 2C (JMJD2C), removes trimethyl groups from lysines 9 and 36 of histone H3 by an oxidative reaction that requires iron and α-ketoglutarate as cofactors (6). Knockdown of JMJD2C decreased proliferation of tumor cells, whereas its expression in mammary epithelial cells induced a transformed phenotype (6, 7). JMJD2C is also an important mediator of embryonic stem-cell self-renewal via positive regulation of the key transcription factor Nanog (8).

Inositol pyrophosphates, including diphosphoinositol pentakisphosphate or PP-IP₅ (IP₇), belong to a specific class of inositol polyphosphates that undergo very rapid turnover (9, 10). They possess highly energetic pyrophosphate moieties that participate in phosphotransfer reactions (11, 12). Inositol pyrophosphates regulate many diverse cellular events (for review, see refs. 13–15) and this is likely to reflect their ability to control a very basic cellular function. In fact, recent discoveries indicate inositol pyrophosphates are master regulators of cell metabolism by controlling the balance between glycolysis and mitochondrial oxidative phosphorylation and thus ATP production (16), likely affecting cellular phosphate homeostasis (17, 18). This metabolic regulation is corroborated by the ability of inositol pyrophosphates to regulate insulin signaling (19) and accumulation of fat observed in ip6k1^{-/-} mice (20). In mammalian cells, two classes of enzymes synthesize inositol pyrophosphates: the inositol hexakisphosphate kinases (IP₆Ks), which are able to phosphorylate the inositol ring at position five, generating the isomer 5PP-IP₅ of IP₇ (21), and the VIP1 (PP-IP₅K) family of enzymes, able to generate the 1PP-IP₅ isomer of IP₇ (22). Three IP₆K isoforms exist in the mammalian genome (23).

To further characterize the intracellular processes regulated by mammalian IP₆K1, we performed a yeast-two hybrid screen and identified JMJD2C as its interacting partner. The finding that the production of IP₇ by IP₆K1 affects JMJD2C functionality reveals a unique and critical role for inositol pyrophosphates in regulating mammalian epigenetic modifications.

Results

IP₆K1 Interacts with JMJD2C. We performed a yeast two-hybrid screen using the IP₆K1 N-terminal variable region as bait (amino acids 75–206), which we called the "Diff" region (Fig. S1). A number of proteins that regulate nuclear signaling and gene expression were identified, including the C-terminal region (amino acids 846–1,054) of the histone demethylase JMJD2C. Interestingly, this region specifically interacted with IP₆K1 (Diff1), but not with the homologous region of IP₆K2 (Diff2) (Fig. 1*A*). To test whether JMJD2C interacted with IP₆K1 in mammalian cells, HEK293T cells were transfected with JMJD2C-Flag and both GST-Diff1 and full-length GST-IP₆K1, and GST pull-down experiments were performed (Fig. 1*B*). We observed a robust interaction of JMJD2C-Flag and GST-IP₆K1. To assess the interaction of endogenous IP₆K1 with JMJD2C, we generated an IP₆K1 antibody, which specifically recognizes IP₆K1

Significance

Epigenetic modifications of chromatin are emerging as important regulatory mechanisms of many nuclear processes. Numerous proteins have been identified that mediate these modifications in a dynamic manner. However, less is known about the signaling pathways that transduce upstream signals into chromatin changes. Here, we show that the signaling molecule inositol pyrophosphate (IP_7) synthesised by inositol hexakisphosphate kinase 1 plays a key role in regulating the association of one of these proteins, Jumonji domain containing 2C with chromatin, thereby controlling the levels of a number of crucial epigenetic modifications important to regulate gene expression.

Author contributions: A.B., A.R., and A.S. designed research; A.B., C. Azevedo, and C. Andreassi performed research; C. Azevedo, C. Andreassi, and A.R. contributed new reagents/analytic tools; A.B., C. Azevedo, C. Andreassi, A.R., and A.S. analyzed data; and A.B., A.R., and A.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

¹To whom correspondence may be addressed. E-mail: dmcbado@ucl.ac.uk or a.riccio@ucl. ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1309699110/-/DCSupplemental.

Fig. 1. IP₆K1 and JMJD2C are binding partners in vitro and in vivo. (A) IP₆K1 (Diff) interacts with JMJD2C (847-1,056) by yeast two-hybrid. Yeast reporter strain AH109 was cotransformed either with empty pGBKT7, pGBKT7-Diff1, or pGBKT7-Diff2 and pACT2-JMJD2C (847-1,056). Serial dilution of yeast grown on selective media to assess interaction strength (Upper) or permissive media (Lower) and grown at 30 °C for 3 d (n = 3). (B) Immunoblot analysis of HEK293T cells transfected with JMJD2C-Flag and either GST-IP₆K1, GST-Diff, or GST empty vector control and subjected to GST pull-down assays. The Ponceau staining confirmed the pull-down of the GST-tagged proteins (n = 3). (C) Immunoblot analysis of HEK293T cells transfected with JMJD2C-Flag and subjected to coimmunoprecipitation with anti-IP_eK1 antibody. The blot was probed with anti-FLAG antibody (n = 3). (D) MEF cell extracts from either wild-type (WT) or IP₆K1 null ($ip6k1^{-1/-}$) mice were subjected to coimmunoprecipitaton with Sepharose-conjugated anti-IP₆K1 antibody and probed with either anti-JMJD2C or anti-IP₆K1 antibodies (n = 3). (E) Recombinant GST-JMJD2C (847-1,056) or GST were subjected to in vitro binding assays either with recombinant His-Diff1 or His-IP₆K1 in the presence of 10 μ M IP₆ or IP₇. Pull-downs and 5% of the inputs were immunoblotted with anti-His antibody and Ponceau staining demonstrates pull-down of the GST-tagged proteins (n = 3).

in WT but not in knockout (*ip6k1^{-/-}*) mouse brain extracts (24) (Fig. S2 *A* and *B*). Although in mouse embryonic fibroblasts (MEFs) the level of IP₆K1 is below detection level by Western blot analysis, the antibody worked well in immunoprecipitation assays revealing a band at the expected molecular size of IP₆K1 in WT but not in *ip6k1^{-/-}* MEF extracts (Fig. S2C). Importantly, our IP₆K1 antibody was also capable of coimmunoprecipitating both Flag-JMJD2C (Fig. 1*C*) and the endogenous JMJD2C protein (Fig. 1*D*). We next investigated whether IP₆K1 directly interacted with JMJD2C by performing pull-down experiments in vitro using recombinant, bacterial-expressed proteins (Fig. 1*E*). Purified GST-JMJD2C (amino acids 847–1,056) pulled down both His-Diff1 and full-length His-IP₆K1, and their interaction in vitro was not affected by IP₆ or IP₇.

IP₆K1 Is Associated with Chromatin. JMJD2C is a histone demethylase that is mostly localized in the nucleus (6). Because neither the IP₆K1 antibody nor the commercially available JMJD2C antibodies are suitable for immunohistochemistry analysis, we characterized IP₆K1 intracellular localization by expressing GFP-IP₆K1 and JMJD2C-Flag in mammalian cells, with both proteins specifically detected in the nucleus of HeLa cells (Fig. S3). To address the localization of endogenous IP₆K1 in more detail, subcellular fractionation experiments were performed. Nuclear partition into nucleoplasmic and chromatin fractions

revealed the presence of endogenous IP6K1 in both compartments, demonstrating that IP₆K1 is found in association with chromatin (Fig. 2A). Coimmunoprecipitation experiments performed on lysates of MEFs treated with DNase showed that histone H3 coimmunoprecipitated with IP₆K1 in wild-type MEFs, but not in MEFs obtained from $ip6k1^{-/-}$ mice (24) (Fig. 2B). IP₆K1 also coimmunoprecipitated trimethyl-H3K9 (H3K9me3), a methylated histone substrate of JMJD2C (Fig. 2C), but failed to coimmunoprecipitate trimethyl-H3K36 (H3K36me3) (Fig. S4) a second methylated histone substrate of JMJD2C. These data suggest that IP₆K1 is able to associate specifically with H3K9me3-containing chromatin regions to which JMJD2C is targeted. To further characterize the interaction of IP₆K1 with chromatin, we performed in vitro binding assays of IP₆K1 and found that (Fig. 2D) IP₆K1 directly interacts with histone H3, providing a mechanism for the recruitment of IP₆K1 to chromatin.

Inositol Pyrophosphate Regulates H3K9me3 Levels. The H3K9me3 modification, removed by JMJD2C, is an epigenetic mark associated with euchromatic transcriptional silencing and heterochromatin formation (2, 25). To test whether the interaction of IP₆K1 with JMJD2C induced epigenetic changes, we assessed the global levels of H3K9me3 in cells lacking IP₆K1. Somewhat surprisingly, in MEFs obtained from $ip6k1^{-/2}$ mice, we detected a markedly reduced level of global H3K9me3, compared with wild-type MEFs, whereas total histone H3 levels remained unchanged (Fig. 3A). Expression of GST-IP₆K1 in $ip6k1^{-/-}$ cells restored H3K9me3 to wild-type levels. Furthermore, expression of GST-IP₆K1 in wild-type MEFs caused an additional increase of H3K9me3 levels (Fig. 3A). Histone posttranslational modifications mostly occur in clusters located within histone N-terminal tails. Lysine 9 and serine 10 of histone H3 represent one of the "hot spots" for posttranslational modifications. In transcriptionally active genes, acetylation of H3 on lysine 9 correlates with serine 10 phosphorylation (2), opposing lysine 9 methylation and thereby acting as a "binary switch" of transcriptional regulation (26). We next tested whether the levels of these modifications were also altered in cells lacking IP₆K1. Consistently, global levels of acteyl-H3K9 were dramatically increased in $ip6k1^{-/-}$ MEFs, compared with wild-type cells (Fig. 3A). This

Fig. 2. Nuclear localization and chromatin association of IP₆K1. (A) IP₆K1 associates with chromatin. HEK293T nuclear pellets were subjected to fractionation into soluble (nucleoplasm) and chromatin fractions. Immunoblotting was subsequently performed with antibodies to actin and histone H3 as quality controls and anti-IP₆K1. (B) IP₆K1 associates with histone H3. MEF cells from wild-type (WT) and IP₆K1 knockout (*ip6K1^{-/-}*) mice were subjected to coimmunoprecipitaton with anti-IP₆K1 antibody after DNase treatment of lysates. Pull-downs and 5% inputs were separated by SDS/PAGE and membranes were subsequently blotted with anti-histone H3 antibody. (C) IP₆K1 associates with chromatin bearing the H3K9me3 mark. Coimmunoprecipitation with anti-IP₆K1 associates with histone H3. In vitro binding assays were performed with recombinant GST-IP₆K1 and purified H3.1 protein.

Fig. 3. IP₆K1 catalytic activity regulates epigenetic modifications of histone H3 at the K9/S10 hot-spot. (A) IP₆K1 knockout MEFs (ip6k1^{-/-}) display reduced levels of H3K9me3 and increased levels of both acetyl-H3K9 and phospho-H3S10, which can be rescued by expression of IP₆K1. In the case of the acetyl-H3K9, a dividing line is shown to indicate that nonessential lanes were removed from the single original blot. Immunoblots of cell extracts obtained either from $ip6k1^{-/-}$ or WT MEFs and probed with the corresponding antibodies. The experiments were performed at least three times with two independent lines of WT and $ip6k1^{-/-}$ MEFs. (B) Immunohistochemistry of ip6k1-/- MEFs confirms reduced levels of H3K9me3. MEFs obtained from $ip6k1^{-/-}$ mice were labeled with cell tracker (green), mixed with WT MEFs, and immunostained with anti-H3K9me3 antibody (red). Images were taken on a Leica TCS SPE confocal microscope and guantified using LAS AF software (Leica). Left graph represents the mean ±SE of the average H3K9me3 fluorescence intensity of 97 KO and 68 WT cells (n = 3). Right graph represents the mean ±SE of the number of H3K9me3 foci per nuclei of 77 KO and 74 WT cells. Statistical analysis was performed using the Mann–Whitney u test. (Scale bar, 30 μ m.) (n = 3). (C) Immunoblot analysis of H3K36me3 shows no difference between WT and $ip6k1^{-/-}$ MEFs (n = 4). (D) Immunoblot of HEK293T cells expressing GST-IP₆K1 and analyzed for H3K36me3 mark (n = 3). (E) Immunoblot analysis of HEK293T cells expressing either GST-IP₆K1 or the catalytically inactive mutant GST-IP₆K1 (DF/AA) and analyzed for H3K9me3 mark (n = 4). (F) H3K9me3 immunoblot of HEK293T cells depleted of IP6K1 for 48 h by using two short hairpin RNAs (shRNA-A and shRNA-B) (n = 3).

effect was partially rescued by expressing GST-IP₆K1 in *ip6k1^{-/-}* MEFs. Similarly, increased levels of phospho-H3S10 were detected in *ip6k1^{-/-}* MEFs compared with wild type, and normal phospho-H3S10 levels were recovered by expressing GST-IP₆K1. To further confirm these findings, immunofluorescence studies were performed. A highly significant ($29 \pm 3\%$) decrease in the level of staining of H3K9me3 was observed in *ip6k1^{-/-}* MEFs, compared with the wild-type cells (Fig. 3B). Interestingly, H3K9me3 nuclear staining appeared more diffuse in *ip6k1^{-/-}* MEFs, as shown by the dramatic decrease ($68 \pm 3\%$) of H3K9me3 from DAPI-dense heterochromatin foci (Fig. 3B). Taken together these findings demonstrate that IP₆K1 exerts a dramatic effect

on chromatin modifications, particularly at the K9/S10 binary switch, via an inhibitory effect on the histone demethylase JMJD2C.

In addition to H3K9me3, JMJD2C also demethylates trimethyl-H3 lysine 36 (H3K36me3), an epigenetic mark associated with transcriptional elongation (27). In contrast to H3K9me3, in $ip6k1^{-/-}$ MEFs H3K36me3 levels were not altered (Fig. 3*C*). Similarly, when GST-IP₆K1 was expressed in HEK293T cells, H3K36me3 levels remained unchanged (Fig. 3*D*). The apparent inability of IP₆K1 to alter H3K36me3 levels likely reflects the absence of localization of this kinase at the H3K36me3 chromatin loci (Fig. S4) and thus lack of local inositol pyrophosphate synthesis. Because the conserved tandem Tudor domains of the closely related demethylase JMJD2A were reported to bind both H3K4me3 and H4K20me3 (28), we tested H3K4me3 and H4K20me3 levels in $ip6k1^{-/-}$ MEFs was observed. Thus, IP₆K1 associates with and regulates the specific state of posttranslational modifications at the K9/S10 hot spot of histone H3, rather than affecting histone methylation in general.

We next investigated whether IP₆K1-mediated epigenetic changes depended on IP₆K1 enzymatic activity. GST-IP₆K1 was expressed in HEK293T cells, and H3K9me3 levels were assessed (Fig. 3*E*). As expected, expression of wild-type $GST-IP_6K1$ increased global levels of H3K9me3 by more than twofold, compared with cells expressing empty vector controls, further demonstrating that IP₆K1 regulates H3K9me3 levels (Fig. 3E and Fig. S5). Importantly, in cells transfected with a catalytically inactive form of IP₆K1 (DF/AA) (29), the levels of H3K9me3 remained unchanged (Fig. 3E and Fig. S4). Moreover, similarly to the HEK293T cells, in the *ip6k1*^{-/-} MEFs transfected with the catalytically inactive form of IP₆K1 (DF/AA), the levels of H3K9me3 remained unchanged (Fig. S6). In contrast, increased levels of H4K9me3 were observed when cells were transfected with catalytically active IP_6K1 (Fig. S6). Furthermore, reduced levels of H3K9me3 were also observed in HEK293T cells transfected with two specific shRNAs that targeted IP₆K1 (Fig. 3F).

These data suggest that the inositol pyrophosphate synthesis catalyzed by IP_6K1 is necessary to mediate the increase in histone H3 methylation. Alternatively, IP_6K1 might directly affect the phosphorylation status of either histone H3 or JMJD2C, thereby changing its activity. To test this hypothesis we incubated IP_6K1 with either histone H3, JMJD2C, or IP_6 , as substrates (Fig. S7). Although we observed a robust phosphorylation of IP_6 to IP_7 , no transfer of phosphate to the two protein substrates was detected (Fig. S7).

Because the catalytic activity of IP₆K1 was required to mediate the increased global H3K9me3 levels, we investigated the nature of the inositol pyrophosphate species that regulate JMJD2Cdependent histone demethylation. IP₆Ks enzymes synthesize 5PP-IP₅, whereas the PP-IP₅Ks enzymes phosphorylate the 1 positions of IP₆ to generate the isomer 1PP-IP₅ of IP₇ and 1,5(PP)₂-IP₄ (IP₈) (22). The expression of Myc-PP-IP₅K1 in HEK293T cells increased IP₈ levels (Fig. S8 *A* and *B*) without affecting the level of H3K9me3 (Fig. S8C). These results indicate that it is the 5PP-IP₅ isomer of IP₇ synthesized by IP₆K1 that specifically regulates H3K9 methylation.

Inositol Pyrophosphates Regulate JMJD2C Chromatin Association. We next tested whether 5PP-IP₅ influences histone H3 modifications in a JMJD2C-dependent manner. The effect of IP₆K1 over-expression on H3K9 methylation was assessed in cells depleted of JMJD2C. HEK293T cells were transfected with two distinct siRNAs specific to JMJD2C, and knockdown of JMJD2C protein levels was confirmed by Western blot analysis (Fig. 4A). Cells with low levels of JMJD2C showed an increase of global H3K9me3, and this effect was rescued by expressing a mouse JMJD2C cDNA that was not targeted by the siRNAs (Fig. 4A). Importantly, when catalytically active IP₆K1 was expressed in cells with reduced levels of JMJD2C, we did not observe any further increase of H3K9me3 levels over cells expressing inactive

Fig. 4. Inositol pyrophosphates regulate histone modifications through JMJD2C chromatin association. (A) JMJD2C protein levels were reduced in human HEK293T cells with two different specific siRNAs for 96 h. *Mus musculus* (Mm) JMJD2C was expressed 16 h before cells were lysated and immunoblotting performed. (*B*) The effect of IP₆K1 kinase activity on H3K9me3 levels depends on JMJD2C. Cells were transfected with JMJD2C siRNAs as above and subsequently transfected either with GST-IP₆K1 or GST-IP₆K1 DF/AA, 16 h before analysis. Total proteins were extracted, separated by SDS/PAGE, and blots were probed with the indicated antibodies.

IP₆K1 (Fig. 4*B*, compare lanes 5 and 6 to 7 and 8), an activitydependent k9me3 increase normally observed (Fig. 4*B*, compare lanes 1 and 2 to 3 and 4; see also Fig. 3*E* and Fig. S5). This effect was quantified across four independent experiments, demonstrating that the increased H3K9me3 levels observed after expression of catalytically active IP₆K1 were dependent on the presence of JMJD2C (Fig. 4*C*). Taken together, these results show that the IP₆K1-dependent increase of H3K9me3 is mediated via inhibition of JMJD2C and through the synthesis of IP₇. It should be noted, however, that addition of either 5PP-IP₅ or 1/3PP-IP₅ (both isomers of IP₇) did not change JMJD2C demethylase activity, when assayed in vitro using the purified catalytic domain of JMJD2C (12–349) (30) (Fig. S9), thereby suggesting that the effect of inositol pyrophosphates on JMJD2C is not mediated by a direct inhibition of its demethylase activity.

We next addressed how inositol pyrophosphates regulate JMJD2C demethylase activity. Although neither JMJD2C nor histones themselves are targets of IP₇-mediated pyrophosphorylation, we observed a number of chromatin-associated proteins that appeared to be its bona fide substrates (Fig. S10). It is possible that IP7-dependent pyrophosphorylation regulates the assembly and/or stability of multiprotein complexes associated with chromatin, thereby influencing JMJD2C recruitment and consequently its demethylase activity. To test whether IP₆K1 affects the association of JMJD2C with chromatin, nuclear fractionation experiments were performed in HEK293T cells expressing either GST alone or GST-IP₆K1 and JMJD2C-Flag. Both IP₆K1 and JMJD2Cwere clearly detectable in the chromatin fraction, as expected (Fig. 4D). In contrast, JMJD2C more readily dissociated from the chromatin of cells transfected with IP_6K1 (Fig. 4 D and E). To test whether JMJD2C chromatin association depends on IP₇ synthesis or it is mediated via a steric effect, nuclear fractionation experiments were performed in cells expressing either GST-IP₆K1 or IP₆K1 DF/AA. There was a stronger dissociation of JMJD2C from the chromatin in cells transfected with the active IP_6K1 (Fig. S11), confirming that JMJD2C chromatin association depends on IP₆K1 catalytic activity. These results are in agreement with the IP6K1 activitydependent influence toward the levels of histone H3K9 trimethylation. The observed decreased level of active IP₆K1 chromatin association (Fig. S11) is coherent with a model involving an IP7-dependent dissociation of the entire IP6K1-JMJD2C complex.

Inositol Pyrophosphates Regulate JMJD2C-Dependent Transcription. To test whether IP₆K1 and IP₇ regulate epigenetic changes at JMJD2C-dependent promoters, we performed chromatin immunoprecipitation assays (ChIPs). The Mdm2 oncogene was analyzed, as the promoter of this gene has been shown to be directly bound by and its expression up-regulated by JMJD2C demethylase activity (31). IP₆K1 was also observed on the Mdm2 P2 promoter in MEFs obtained from wild-type mice (Fig. 5.4). In agreement with our Western blot and fractionation analyses, in MEFs isolated from $ip6k1^{-/-}$ mice, levels of H3K9me3 on the Mdm2 P2 promoter were lower, whereas levels of JMJD2C were

Experiments were performed two times in duplicate. The increase in H3K9me3 levels relative to total histone H3 observed between lanes 3 and 4 over lanes 1 and 2 is no longer apparent in the context of JMJD2C knockdown, now comparing lanes 7 and 8 to lanes 5 and 6. (C) Quantitative analysis of histone H3K9me3 levels normalized to total histone H3. Average \pm SEM of the four experiments is shown. The Mann–Whitney *u* test was used to determine statistical significance. (*D*) IP6K1 induces dissociation of JMJD2C from chromatin. HEK293T cells were transfected with either empty GST or GST-IP₆K1 and JMJD2C-Flag, and nuclear extracts were separated into chromatin or nucleoplasmic fractions. Western blot analyses were performed with anti-Flag, anti-GST, anti-histone H3, and anti-actin antibodies. (*E*) Quantitative analysis of JMJD2C levels normalized to actin or histone H3 for nucleoplasm or chromatin, respectively. NS, nonsignificant. Average \pm SD of two experiments both run in duplicate is shown. The Mann–Whitney *u* test was used to determine statistical significance.

Fig. 5. Inositol pyrophosphates control the expression of JMJD2C-regulated genes. (A) Chromatin immunoprecipitation analysis of MEFs obtained either from WT or $ip6k^{-/-}$ mice. IP₆K1, H3K9me3, JMJD2C, H3S10ph, and H3K9ac immunoprecipitation followed by qPCR of either P1 or P2 promoters of the JMJD2C-regulated gene Mdm2. PI, preimmune serum. Data are represented as percentage of total input. Shown are the averages ±SEM. Parried Student t test was applied to calculate the statistical significance of the value of the ip6k1against WT (n = 3; *P < 0.01, **P < 0.001). (B) IP₆K1 regulates levels of Mdm2 expression from exon 2 but not exon 1. gRT-PCR of mRNA extracted from either WT or $ip6k^{-/-}$ MEF. Mdm2 exon 1 and exon 2 mRNA was normalized to 18S ribosomal RNA (n = 3) *P < 0.01). (C and D) IP₆K1 regulates expression of JMJD2C-dependent genes in embryonic stem (ES) cells. (C) Specific siRNA to IP₆K1 or scrambled siRNA were transfected in embryonic stem cells in two rounds of transfection. RNA was extracted 24 h after the second transfection and analyzed by aRT-PCR (n = 3; **P < 0.001). (D) Myc-IP₆K1 or empty vector controls were transfected into ES

cells and after 48 h RNA was extracted and subjected to qRT-PCR. Levels of Nanog, Sox2, and Cdx2 cDNA were normalized to actin and GAPDH and expressed as fold induction over control samples (n = 3; **P < 0.001).

higher, compared with WT cells (Fig. 5A). Furthermore, phospho-H3S10 and acetyl-H3K9 levels around Mdm2 P2 promoter were significantly higher in $ip6k1^{-/-}$ MEFs, compared with WT MEFs. As a control, the binding of JMJD2C and IP₆K1 to the Mdm2 P1 promoter was tested. As previously reported (31) JMJD2C does not bind the Mdm2 P1 promoter (Fig. 5A) and extremely low levels of IP₆K1 were also detected on the P1 promoter in WT MEFs (Fig. 5A). Importantly, in ip6k1-MEFs, the low levels of H3K9me3 and high H3K9ac observed around the Mdm2 P2 promoter correlated with increased transcription of Mdm2 exon 2 (Fig. 5B). To further substantiate the hypothesis that IP₆K1 plays a key role in regulating JMJD2Cdependent transcription, the expression levels of genes known to be controlled by JMJD2C were analyzed in mouse embryonic stem cells (8). In ES cells, both knockdown and overexpression of IP₆K1 induced significant changes in both Nanog and Sox2 expression (Fig. 5 C and D). Moreover, overexpression of IP₆K1 up-regulated basal levels of Cdx2 48 h posttransfection (Fig. 5*D*).

Discussion

We have identified a distinctive functional link between inositol phosphate intracellular signaling and the regulation of histone modifications at the functionally important residue lysine 9 of histone H3. The regulation of the histone demethylase JMJD2C association with chromatin by IP_6K1 via the production of the 5PP-IP₅ isomer of IP₇ introduces a unique scenario for inositol pyrophosphate signaling, indicating that these high-energy molecules play a fundamental role in mediating mammalian nuclear processes. Indeed the direct binding of IP₆K1 to chromatin, and the regulation of expression of a variety of JMJD2C-dependent genes including both Mdm2 and a number of crucial transcription factors in embryonic stem cells, highlights the important functional role of IP₆K1 and inositol pyrophosphates in controlling gene expression. Several mitochondrial metabolites like ATP, α -ketoglutarate, or acetyl-CoA play a key role in regulating epigenetic changes because these metabolites are cofactors for several epigenetic modifier enzymes (32, 33). Jumonji-C histone demethylases require α -ketoglutarate to perform their demethylase activity. Inositol pyrophosphates are able to control cellular energetic metabolism by regulating mitochondrial physiology (16) and are likely to affect the cellular levels of the metabolites required by the epigenetic modifier enzymes. Thus, inositol pyrophosphates may control the epigenetic program at an additional level besides regulating JMJD2C association to chromatin as we have demonstrated in the current work.

Interestingly IP₆K1 does not affect trimethylation of lysine 36 of histone H3, a second substrate of JMJD2C demethylase activity. Absence of IP₆K1 association with H3K36me3-containing chromatin regions, and thus the lack of local inositol pyrophosphates synthesis, explains the inability of IP₇ to regulate JMJD2C activity at these loci. Our data are in agreement with a previous report observing a differential regulation of H3K9me3 versus H3K36me3 by JMJD2C in regulating hypoxia-inducible factor 1 (HIF-1)-controlled transcription (34).

Inositol pyrophosphates may act in concert with phosphoinositide lipids, which are emerging as important regulators of nuclear signaling (35, 36). The presence of two plant homeodomain (PHD) finger domains in the JMJD2C sequence suggest that this protein might interact with phosphoinositides. The binding of phosphoinositides to PHD finger-domain–containing proteins in the nucleus has been proposed to regulate subnuclear localization of these proteins (37).

The region of JMJD2C found to interact with IP_6K1 contains tandem TUDOR domains, which have been implicated in protein-protein interactions with methylated protein substrates. Indeed, the tandem TUDOR domains of the closely related histone demethylase JMJD2A have been shown to bind H3K4me3 and H4K20me3. If, as it is likely, the highly conserved TUDOR domains of JMJD2C also mediate binding to these or other histone methylation marks, it is noteworthy that the binding site of IP6K1 is also located within this region of JMJD2C. However, the inhibitory effect of IP₆K1 on the chromatin association of JMJD2C is unlikely to be due to a direct steric obstruction as it is clearly dependent on the catalytic activity of IP₆K1. It is likely that the inhibitory effect of inositol pyrophosphates on the binding of JMJD2C to chromatin is dependent on the native chromatin environment and the multiprotein complexes also found at these sites.

Histone demethylases are dynamic regulators of chromatin epigenetic status and their activity has been linked to numerous cellular processes (38). The methylation state of H3K9 correlates with the affinity for heterochromatic proteins that influence chromosomal organization and stability (39). JMJD2C has been shown to regulate tumorigenesis (6, 7), embryonic stem-cell self-renewal (8), and androgen receptor-dependent gene expression (30). The role of IP₆K1 in regulating expression of JMJD2C-target genes implicates both this enzyme and inositol pyrophosphates in the same processes. In particular, the effect of IP_6K1 on the expression of genes important for embryonic stem-cell self-renewal uncovers a unique, yet unexplored function for inositol pyrophosphate signaling.

Mice lacking IP₆K1 are significantly smaller than wild type, indicating a possible developmental defect, and male mice lacking IP₆K1 are sterile due to defects in spermatogenesis (27), a process in which histone epigenetic modifications play a crucial role (40). Interestingly, disruption of the H3K9me3 histone methyltransferases SUV39H1 and -2 in mice also results in severe hypogonadism and spermatogenesis defects as well as abnormal heterochromatin formation (41). Our discovery that IP₆K1 is an endogenous regulator of JMJD2C and H3K9 methylation strongly suggests that inositol pyrophosphates play an important role in regulating the epigenetic modifications associated with these processes.

Materials and Methods

RNA Extraction, cDNA Synthesis, and Quantitative PCR Analysis of Gene Expression Levels in Embryonic Stem Cells and MEFs. RNA was extracted using the NucleoSpin RNA II kit (Macherey-Nagel) according to the manufacturer's instructions. cDNA synthesis was performed using the M-MLV Reverse Transcriptase kit (Invitrogen) according to the manufacturer's instructions. Relative cDNA content was analyzed using 1× Sybr Green PCR mix, 200 nM of primers, and 100 ng of cDNA in a 20-µL reaction on a Roche LightCycler 480 system. For experiments performed with MEFs, normalization was performed using the Ambion Quantitation RNA Universal 18S kit. Primers and detailed RT-PCR conditions are available upon request.

- 1. Aguilar-Arnal L, Sassone-Corsi P (2013) The circadian epigenome: How metabolism talks to chromatin remodeling. *Curr Opin Cell Biol* 25(2):170–176.
- Kouzarides T (2007) Chromatin modifications and their function. *Cell* 128(4):693–705.
 Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. *Nat Rev Mol Cell Biol* 6(11):838–849.
- Shi Y, et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953.
- Tsukada Y, et al. (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078):811–816.
- Cloos PA, et al. (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442(7100):307–311.
- Liu G, et al. (2009) Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28(50):4491–4500.
- Loh YH, Zhang W, Chen X, George J, Ng HH (2007) Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. *Genes Dev* 21(20): 2545–2557.
- Burton A, Hu X, Saiardi A (2009) Are inositol pyrophosphates signalling molecules? J Cell Physiol 220(1):8–15.
- Shears SB (2009) Diphosphoinositol polyphosphates: Metabolic messengers? Mol Pharmacol 76(2):236–252.
- Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. *Science* 306(5704):2101–2105.
- Azevedo C, Burton A, Ruiz-Mateos E, Marsh M, Saiardi A (2009) Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proc Natl Acad Sci USA 106(50):21161–21166.
- Chakraborty A, Kim S, Snyder SH (2011) Inositol pyrophosphates as mammalian cell signals. Sci Signal 4(188):re1.
- Wundenberg T, Mayr GW (2012) Synthesis and biological actions of diphosphoinositol phosphates (inositol pyrophosphates), regulators of cell homeostasis. *Biol Chem* 393(9):979–998.
- Wilson MS, Livermore TM, Saiardi A (2013) Inositol pyrophosphates: Between signalling and metabolism. *Biochem J* 452(3):369–379.
- Szijgyarto Z, Garedew A, Azevedo C, Saiardi A (2011) Influence of inositol pyrophosphates on cellular energy dynamics. *Science* 334(6057):802–805.
- 17. Lonetti A, et al. (2011) Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 286(37):31966–31974.
- Saiardi A (2012) How inositol pyrophosphates control cellular phosphate homeostasis? Adv Biol Regul 52(2):351–359.
- Illies C, et al. (2007) Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. *Science* 318(5854):1299–1302.
- Chakraborty A, et al. (2010) Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143(6):897–910.
- Draskovic P, et al. (2008) Inositol hexakisphosphate kinase products contain diphosphate and triphosphate groups. Chem Biol 15(3):274–286.
- Lin H, et al. (2009) Structural analysis and detection of biological inositol pyrophosphates reveal that the family of VIP/diphosphoinositol pentakisphosphate kinases are 1/3-kinases. J Biol Chem 284(3):1863–1872.

Chromatin Binding and Chromatin Immunoprecipitation. The procedure for the chromatin binding experiments was adapted from (42). Briefly, cells were suspended in a solution containing 50 mM Tris-HCl (pH 7.5), 0.5% Triton X-100, 300 mM NaCl, 60 mM MgCl₂, 10 mM CaCl₂, and DNase I (167 units-mL⁻¹; Roche) to solubilize histone H3 from the chromatin, and incubated at 30 °C for 50 min. Samples were sonicated 3×5 s at setting 1.5 on a Branson Sonifier 450 (Branson Ultrasonics Co.) and cleared by centrifugation at 15,000 × *g* for 10 min. The supernatants were diluted 1:2 with H₂O and added to the equilibrated glutathione or protein A or G Sepharose beads and GST pull-down or immunoprecipitations proceeded as described above. ChIP assay was performed as previously described with minor modifications (43). Primer sequences and PCR conditions are available upon request.

Quantitative PCR (25 μ L) contained 12.5 μ L of PCR Sybr Green mix (NEB) and 0.3 mM primers. All reactions were performed in duplicate on an Opticon 2 system (MJ Research) and each experiment included a standard curve, a preimmune control, and a no-template control. Standard templates consisted of gel-purified PCR products of *Mdmd2* P1 and P2 promoter amplicons of known concentration and each standard curve consisted of eight serial dilutions of template. At the end of 46 cycles of amplification, a dissociation curve was performed in which Sybr Green was measured at 1 °C intervals between 50 °C and 100 °C. Melting temperatures for *Mdmd2* P1 and P2 were 79 °C and 87 °C, respectively. Results were expressed as percentage of total input.

A full description of the methods used in this study can be found in *SI Materials and Methods.*

ACKNOWLEDGMENTS. We are grateful to Dr. Steve Shears for providing the PP-IP₅K plasmid. This work was supported by the Medical Research Council (MRC) funding to the Cell Biology Unit and by Human Frontier Science Program Grant RGP0048/2009-C.

- Saiardi A, Nagata E, Luo HR, Snowman AM, Snyder SH (2001) Identification and characterization of a novel inositol hexakisphosphate kinase. J Biol Chem 276(42): 39179–39185.
- Bhandari R, Juluri KR, Resnick AC, Snyder SH (2008) Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. *Proc Natl Acad Sci USA* 105(7):2349–2353.
- Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45.
- Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425(6957):475–479.
- Bannister AJ, et al. (2005) Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280(18):17732–17736.
- Lee J, Thompson JR, Botuyan MV, Mer G (2008) Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. *Nat Struct Mol Biol* 15(1):109–111.
- Onnebo SM, Saiardi A (2009) Inositol pyrophosphates modulate hydrogen peroxide signalling. *Biochem J* 423(1):109–118.
- Wissmann M, et al. (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9(3):347–353.
- Ishimura A, et al. (2009) Jmjd2c histone demethylase enhances the expression of Mdm2 oncogene. Biochem Biophys Res Commun 389(2):366–371.
- Sassone-Corsi P (2013) Physiology. When metabolism and epigenetics converge. Science 339(6116):148–150.
- Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. *Mito-chondrion* 10(1):12–31.
- Luo W, Chang R, Zhong J, Pandey A, Semenza GL (2012) Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci USA 109(49):E3367–E3376.
- Martelli AM, et al. (2011) Nuclear phosphoinositides and their roles in cell biology and disease. Crit Rev Biochem Mol Biol 46(5):436–457.
- 36. Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4(5):349-360.
- 37. Gozani O, et al. (2003) The PHD finger of the chromatin-associated protein ING2
- functions as a nuclear phosphoinositide receptor. Cell 114(1):99–111. 38. Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by de-
- methylases. *Mol Cell* 25(1):1–14. 39. Bannister AJ, et al. (2001) Selective recognition of methylated lysine 9 on histone H3
- by the HP1 chromo domain. *Nature* 410(6824):120–124. 40. Trasler JM (2009) Epigenetics in spermatogenesis. *Mol Cell Endocrinol* 306(1–2): 33–36
- Peters AH, et al. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. *Cell* 107(3):323–337.
- 42. Nishiyama M, et al. (2009) CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. *Nat Cell Biol* 11(2):172–182.
- Riccio A, et al. (2006) A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell 21(2):283–294.