OPEN 8 ACCESS Freely available online

@PLOS ‘ ONE

Action Recognition Depends on Observer’s Level of
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Abstract

Humans recognize both the movement (physical) goals and action (conceptual) goals of individuals with whom they
are interacting. Here, we assessed whether spontaneous recognition of others’ goals depends on whether the
observers control their own behavior at the movement or action level. We also examined the relationship between
individual differences in empathy and ASD-like traits, and the processing of other individual's movement and action
goals that are known to be encoded in the “mirroring” and “mentalizing” brain networks. In order to address these
questions, we used a computer-based card paradigm that made it possible to independently manipulate movement
and action congruency of observed and executed actions. In separate blocks, participants were instructed to select
either the right or left card (movement-control condition) or the higher or lower card (action-control condition), while
we manipulated action- and movement-congruency of both actors’ goals. An action-congruency effect was present in
all conditions and the size of this effect was significantly correlated with self-reported empathy and ASD-like traits. In
contrast, movement-congruency effects were only present in the movement-control block and were strongly
dependent on action-congruency. These results illustrate that spontaneous recognition of others’ behavior depends
on the control scheme that is currently adopted by the observer. The findings suggest that deficits in action
recognition are related to abnormal synthesis of perceived movements and prior conceptual knowledge that are
associated with activations in the “mirroring” and “mentalizing” cortical networks.
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Introduction

The ability to recognize behavior of other agents is critical for
successful social interaction, reproduction and survival [1].
Recognition of other individuals’ behavioral goals can occur
either in a deliberate or a spontaneous manner [2], and at
distinct levels of either physically defined movements or
conceptually defined actions [3,4]. This ability to recognize
others’ behavior is not equally present in all individuals. A
profound disability in processing own and other individuals’
goals is associated with social and communicative challenges
that are often observed in individuals diagnosed with autism
spectrum disorder (ASD) [5-14].

The term ‘goal’ has often been used in a ill-defined manner
within the field of action research [15,16]. A useful distinction in
the alleged goal hierarchy [17-21] can be made between the
level of physical movement goals which are associated with the
kinematics of individual goal-directed movements (e.g.,
reaching towards the right), and conceptual action goals, which
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reflect functional expectations that govern movement execution
(e.g., reaching to an object to drink coffee). Action goals
include information about the expected external outcome of an
action [22,23] and rely on prior conceptual knowledge [24]
regarding relationships between objects in the environment and
their purpose (e.g., cups are used to drink coffee). While
physical movement goals typically involve a one-to-one
perceptuo-motor mapping between the end-goal location and
the observed movement kinematics [15,25-28], action goals
may involve one-to-many mappings where a conceptual goal
could be associated with expectation of multiple movement
goals, dependent on the context in which behavior is
embedded. In the present article, we use congruency effects
between others’ and own behavior at the movement goal and
at the action goal levels as an index for spontaneous goal
recognition.

Neurally, the perceptuo-motor based account of action
recognition suggests that the processing of other individuals’
goal-directed movements entails an automatic mapping to the
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observer's own movement representations in the “action
observation network/mirror neuron system (AON/MNS)”
[6,7,29-31]. Prior behavioral research on action in social
settings has mainly focused on movement goals, while
neglecting the more complex conceptual action planning
involved in everyday behavior [3]. In line with the perceptuo-
motor account, it has repeatedly been shown that observation
of another individual's movement influences the observer's
subsequent execution of similar movements [32-36].

In contrast, in order to explain guidance of more complex
social behavior, conceptual accounts of action understanding
focus on the processing of other individuals’ conceptual action
goals [37-39]. Cortical processing of action goals has been
associated with activations in the “mentalizing/theory of mind
network” comprising temporal and midline circuits, including
medial parietal and prefrontal cortices and the superior
temporal sulcus [40,41]. Recent behavioral work suggests that
conceptual action goal congruency can have a powerful effect
on subsequent action execution [4,42,43]. For example, we
have recently suggested that during joint action observers rely
on the same mechanism to process both their own action goals
and the action goals of other individuals [4]. The results from
this study also showed that when an observer's behavioral
control depends on the coactors goals (i.e., observer needed to
match or mismatch coactors action goals), observed movement
goals influence movement execution only when their action
goals match.

In contrast to the deliberate processing of others’ conceptual
action goals [4], in many social situations individuals’ brains are
spontaneously processing others’ behavior while
simultaneously controlling their own action selection [2]. For
example, spontaneous recognition of others’ behavioral goals
appears in a situation in which you are having breakfast with
your colleague. While you are reaching to the right for your
knife, you might still be able to recognize your colleague’s
movement goal towards a cup as well as the fact that she is
having coffee; even though these goals are not directly related
to the selection and control of your own behavior.

The current study had two primary aims. First, we assessed
whether spontaneous goal recognition, as indexed by
movement and action congruency effects, depends on the level
of the control scheme adopted by the observer (i.e., movement
or action). Second, to investigate a possible relationship
between social personality traits and the level of social
interaction, we asked whether these traits were related to
congruency indices of action and movement goal recognition.
We used a modified version of the card-selection paradigm
employed by Ondobaka and colleagues (2012) to manipulate
the congruency between participant’s and coactor’s conceptual
action goals and physical movement goals. In the original
experiment, participants needed to explicitly recognize
coactor’s behavior in order to match or mismatch their action
goal. In the current study, however, participants were explicitly
instructed (written instructions prior to each block) to adopt
specific types of control scheme independent of the coactor’'s
behavior. In 4 different blocks of trials, participants adopted a
movement goal (i.e., movement-control condition) or an action
goal (i.e., action-control condition) which guided the selection
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of one of two cards that were presented on a touch screen in
front of them. In the movement-control blocks participants
selected a card by focusing on its physical location (i.e., left or
right), and in the action-control blocks they selected the card
with the higher or lower value. During both the movement-
control condition and the action-control condition participants
observed the behavior of a confederate coactor who,
immediately prior to the action of the participant, choose his
own card. After the card-game, participants completed the
Interpersonal Reactivity Index (IRI) [44] and the Autism-
Spectrum Quotient (AQ) [45] that assessed their self-reported
social personality traits. Whereas the IRI assesses individual
differences in empathy on four subscales, the AQ provides a
measure of the degree to which an individual with normal
intelligence shows autistic traits. In short, the aim of this study
was to test whether spontaneous recognition of other
individuals’ behavioral goals is contingent on the behavioral
control scheme adopted by the observer. Moreover, we were
interested to examine whether individual differences in
empathy and ASD personality traits would relate to movement
goal congruency effects, or rather to conceptual action goal
congruency effects.

Materials and Methods

Participants and apparatus

The study was approved by the Ethics Committee for
Behavioural Research of the Social Sciences Faculty at
Radboud University Nijmegen and is in accordance with the
Helsinki declaration. All participants provided their written
consent. Sixteen healthy (3 male), right-handed [46]
participants were recruited from the Radboud University’s
student population (mean age: 23,8 years; range: 21-31 years).
Participants seated at a custom-built table (length = 120 cm,
width = 80 cm) facing a male confederate coactor. A 19-in.
touch screen (Elo Touch, Elo Touch Systems, Menlo Park, CA)
and one start button on each long side of the screen were
embedded in the table at a level even with the tabletop (see
Figure 1 for an illustration of the experimental setup). Start
buttons and the touch screen were connected to a PC using
Presentation Software (Neurobehavioral systems Inc., Albany,
CA). The program enabled us to detect stimulus onset, release
of the start button (movement onset time) and contact with the
touch screen (arrival time) with millisecond accuracy. Reaction
time (RT) was calculated by subtracting the stimulus onset time
from the movement onset time on each trial.

Procedure, design, and stimuli

All participants performed the experimental task with the
confederate coactor. On each ftrial, four cards were presented
faced down, together with the start cue (Figure 1). Next, the
start cue disappeared and two cards were revealed to the
confederate coactor, who had to select the card with either the
higher or the lower value. So that the coactor would choose
higher and lower cards at random, he was presented with
either a high or low auditory cue at the beginning of each trial
(i.e., the word higher or lower, audible only to the coactor
through the earphones). The purpose of the start cue was
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Figure 1. Experimental setup and illustration of a action/congruent-movement/congruent trial. Trials started with all four

participant
cards face down. After a variable delay (0.5-2.5 s), the two cards on the coactor's side were revealed. This triggered the coactor to
make a selection, which caused the two cards on the participant's side to be revealed immediately. At this point, after having
scanned all the revealed cards for the no-go cue (i.e., card with the value 2) the participant then made their choice according to the
pertinent instruction for the given block. Immediately after selecting their cards by touching the screen, the coactor and participant
placed their index fingers on their start buttons; the next trail was initiated when the coactor and then the participant had their fingers
on the start buttons. The trial illustrated here is action congruent because both the coactor and the participant chose the card with

the higher value; it is movement congruent because both the coactor and the participant moved to their right.

doi: 10.1371/journal.pone.0081392.g001

solely to indicate the start of the trial. After a variable delay
(0.5-2.5 s), the reminder cue disappeared, and the cards on
the coactor's side of the screen were revealed. When the
coactor chose one card by using his right index finger to press
it on the touch screen, the cards on the participant's side of the
screen were instantaneously revealed (see Figure 1). At this
point, the participant used his or her right index finger to select
a card according to the block instruction. Immediately after
selecting their cards by touching the screen, the coactor and
participant placed their index fingers on their start buttons.
Finally, the next trail was initiated when the coactor and then
the participant had their fingers on the start buttons.
Participants were uninformed regarding whether the coactor
had to select higher/lower card or left/right card. At the
beginning of each block, the participant received an instruction
to either select the left or the right card (i.e., movement-control
condition) or the higher or the lower card (i.e., action-control
condition) of the two cards presented in front of them.
Additionally, both the participant and the coactor were
instructed to adopt a predefined upright body posture, with the
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head in line with the centre of the touch screen and the start
button. Furthermore, participants were explicitly instructed to
constantly pay attention and be as fast and as accurate as
possible throughout the experiment.

To prevent the possible influence of ‘low level' perceptual
effects on RTs, the mapping of the cards was randomized in
such a way that the 4 cards were always perceptually
dissimilar. We took care that the lower/higher card appeared
equally often on the left/right for both the coactor and the
participant. Furthermore, the numerical distance between the
value of the cards on both sides was always one. We also
balanced the sum of the two cards such that it was equally
likely to be higher or lower on any given trial. The card selected
by the participant was independent of the card selected by the
confederate coactor. However, in order to ensure that
participants paid attention to the actions of the confederate
coactor, they were required to scan all the revealed cards on
the table and to refrain from making a response when a card
with the value “2” (i.e., no-go cue) was revealed. This
requirement was equal for all ftrials and did not bias
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Participants’ mean response times in the action (conceptual)-control and movement (physical)-control

conditions as a function of action (conceptual)-congruency and movement (physical)-congruency. Error bars represent
standard errors of the mean (SEM). The asterisks indicate significant differences between conditions, * = p < .05, ** = p < .005.

doi: 10.1371/journal.pone.0081392.g002

participants’ performance towards any particular condition. No-
go cards appeared in 23% of the trials in each block, and had
an equal probability of appearing on the participant’s or the
coactor’s side. At the level of movement goals, the responses
of the coactor and the participant could be physically congruent
(movement-congruent condition) or physically incongruent
(movement-incongruent  condition) from an egocentric
perspective. Similarly, at the level of apparent action goals, the
responses of the coactor and the participant could be action-
congruent (both move to the high/low card) or action-
incongruent (e.g., one moves to the high card while the other
moves to the low card).

We used similar 20 combinations of card values in all the
conditions, while manipulating the spatial alignment of the
target cards (i.e., whether the cards were presented at the
same or different side from an egocentric perspective). The
total of 104 trials (80 go and 24 no-go) from each of the 4
blocks (i.e., left, right, higher or lower control condition) were
randomly drawn from this pool. The block instructions that
manipulated movement-control (“Select the left/right card,
unless a card with the value “2” appears on the screen”) or
action-control (“Select the higher/lower card, unless a card with
the value “2” appears on the screen) were presented on the
screen for 10 s and were followed by the instruction to place
the right index fingers at the start button to begin the block.
Block order was counterbalanced between subjects using a
pseudo-random sequence that resulted in 16 different
combinations of the four blocks. We have excluded the no-go
trials and trials in which participants or the coactor selected the
incorrect card (1.0% of participants’ responses and 0.0% of the
coactor’s responses) and in which response times (RTs) were
more than 2.5 standard deviations above the mean (1.1% of
participants’ responses and 1.2% of the coactor’s responses).
After exclusion of participants” and coactor’s responses that
exceeded 2.5 SDs of each condition, mean response times
were submitted to a 2 (control level: action or movement) x 2
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(action-congruency: congruent or incongruent) x 2 (movement-
congruency: congruent or incongruent) analysis of variance
(ANOVA). After the participants completed the experiment, we
asked them to fill in two self-report questionnaires. In order to
assess the presence of individual empathic traits we used the
empathic concern and the perspective taking subscales of the
Interpersonal Reactivity Index [44]. To assess the individual
ASD-like traits we used the Dutch version of the Autism-
Spectrum Quotient [45].

Results

Participants responded faster in the movement-control
condition (mean RT = 410 ms, SEM = 21) compared to the
action-control condition (mean RT = 602 ms, SEM = 18),
F(1,15)= 224.55, p < .001; n? = .94). Overall, we observed a
significant action-congruency effect, participants were faster to
select a card that had a relative value congruent to the
coactor's card value (mean RT = 503 ms, SEM = 19) as
compared to the incongruent one (mean RT = 510 ms, SEM =
19), F(1,15)= 11.91, p = .004; n? = .44. Mean response times in
movement-congruent trials (mean RT = 506, SEM = 19) were
not significantly different than those in the movement-
incongruent trials (mean RT = 506, SEM = 19), F(1,15) = 0.00,
p =.99; n? = .00. A significant three-way interaction indicated
that movement-congruency was dependent on action-
congruency, solely in the movement-control condition (control
level x action-congruency x movement-congruency, F(1,15) =
5.89, p = .03; n? = .28, Figure 2). To further examine the nature
of the three-way interaction effect, we separately analyzed
participants’ response times from the action-control and
movement-control conditions.

Response times in movement-control condition

In the movement-control condition, we found a significant
two-way interaction between action-congruency and
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movement-congruency, F (1, 15) = 32.90, p < .001; n? = .69
(see Figure 2), indicating an interdependency between
movement and action levels of processing. There was a
marginally significant effect of action-congruency, F (1, 15) =
3.41, p = .09; n? = .19; and no significant effect of movement-
congruency, F (1, 15) = .02, p = .90; n? = .00.

To further specify the interaction effects in the movement-
control condition, we ran post-hoc t tests to investigate
movement-congruency effects separately for action-congruent
and action-incongruent trials. When the chosen cards of the
participant and coactor matched in relative value (i.e., their
action goals were congruent), congruent movements were
executed faster (mean RT = 400 ms, SEM = 21; see Figure 2)
than incongruent movements (mean RT = 418 ms, SEM = 21),
t (1, 15) = 4.50, p < .001, d = -.22. When the relative value of
the cards selected by the two actors was incongruent,
incongruent movements were executed faster (mean RT = 402
ms, SEM = 22; see Figure 2) than congruent movements
(mean RT =422 ms, SEM =21), t(1,15)=2.53, p=.02,d =.
23. In other words, when action goals matched, participants
moved faster in the same direction as the confederate coactor,
but when action goals clashed, movements in the opposite
direction from the coactor were executed faster.

Response times in action-control condition

In the action-control condition, participants responded faster
in action-congruent trials (mean RT = 597 ms, SEM = 19 ms;
see Figure 2) than in the action-incongruent trials (mean RT =
608 ms, SEM = 18), F (1, 15) = 6.35, p = .02; n? = .30. We
observed neither significant movement-congruency effect, F (1,
15) = 0.02, p = .90; n? = .00, nor an interaction between
movement-congruency and action-congruency, F (1, 15) =
2.08,p=.17;n?= .12.

Accu racy scores

The participants showed high accuracy rates throughout the
experiment. In the movement-control condition they made on
average 0.15 % errors and in the action-control condition their
average error rate was 0.11 %. The analysis of participants’
error rates revealed no significant results, all p’'s > .1.

Coactor’s response times

To examine whether the RTs of the coactor differed
depending on the experimental conditions we ran a 2 (control
level: action or movement) x 2 (action-congruency: congruent
or incongruent) x 2 (movement-congruency: congruent or
incongruent) ANOVA. As expected, the analysis showed no
significant main effects, nor interaction effects (all ps > .1).
These results indicate that the responses of the coactor were
equally fast in all experimental conditions. We found no
evidence that the RTs of the coactor influenced the RT effects
of the participants.

Correlation analysis between individual ASD-like and
empathy trait scores and behavior

We ran a Spearman’s correlation analysis to examine
whether individual differences in ASD-like traits and empathy
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were associated with the degree of individual action-
congruency and movement-congruency effects. Individual
congruency effects were obtained by calculating the overall
differences between individual participants’ incongruent and
congruent response times from action and movement
congruency conditions. We used the acquired self-report
scores from Autism-Spectrum Quotient [AQ, 45] and empathic
concern (EC) and perspective taking (PT) subscales of
Interpersonal Reactivity Index [IRI, 44] to assess individual
personality differences in the tested pool of participants. EC
scores [mean = 16.25 (SD = 3.49)] and PT [mean = 16.62 (SD
= 4.99)] scores were comparable to the mean Dutch population
scores [mean EC = 18.09 (SD = 4.23); mean PT = 17.29 (SD =
4.30)]. Similarly, participants’ AQ scores [mean = 13.50 (SD =
6.85)] were in line with the original control population scores
[mean = 17.60 (SD = 6.40)]. As the mean score in the ASD
population is 35.80 (SD = 6.50), a score of 32 on the AQ scale
is suggested as a useful cutoff score for distinguishing between
high-functioning individuals with ASD and controls [45]. All our
participants had scores that were below 32 and were thus
within the normal range.

Individual action-congruency effects were positively
correlated with the empathy scores (r, (16) = .55, p = .03) and
perspective taking scores (r, (16) = .41, p = .11) derived from
the Interpersonal Reactivity Index (IRIl), and negatively
correlated with the Autism-Spectrum Quotient (AQ), r, (16) = -.
59, p = .02 (Figure 3). That is, individuals that scored high on
empathy and low on ASD-like traits were more strongly
influenced by the conceptual action goals of the coactor. We
did not observe any significant correlations between individual
movement-congruency effects and either empathy scores, r,
(16) = .05, p = .87, or AQ scores, r, (16) = -.12, p = .67.
Similarly, no significant correlations were observed between
the other two subscales of the IRI (fantasy and personal
distress; all ps > .2) and either the movement- or action-
congruency scores. In sum, the size of action-congruency
effects, but not movement-congruency effects was related to
the measured personality differences.

Discussion

In social settings, humans constantly observe and expect
behavior of other individuals in their surroundings. Here, we
show that the spontaneous recognition of other individuals’
behavioral goals is contingent on the behavioral control
scheme adopted by the observer during action observation.
Specifically, when observers guided their behavior towards
physical movement goals, their performance was affected by
the expected conceptual action goals and the movement goals
of the coactor. When observers guided their behavior based on
action goals, their performance was only sensitive to the
coactors action goals. These findings are informative regarding
the functional action hierarchy that underlies action and
movement control of behavior in social interaction. Moreover,
we report a relationship between individual differences in the
size of action congruency effects and individual differences in
empathy and ASD personality traits, while no relationship was
found for movement congruency effects.
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scores, but not for movement-congruency scores, (p <.05).
doi: 10.1371/journal.pone.0081392.g003

Shared hierarchy for action recognition and action
control

There is a plethora of evidence that supports hierarchical
models of neurocognitive processing, but a general
characterization of the different components within each
distinct functional and neural hierarchy is still missing
[16,21,47-50]. Our novel finding, namely, that how observers
control their behavior alters the influence of observed behavior
on their movements, is consistent with the idea that the
multitiered system underlies both action control and action
recognition. The data is in line with and builds upon previous
work demonstrating that, in situations in which observer’s
behavior is directly related to others’ behavior, performance is
altered by congruency between observer's and coactor’s
movement goals e.g. [33,35] and action goals [4,43]. Our
findings indicate that action goal congruency between the
coactors plays an important role in social interaction,
irrespective of the level of behavioral control. Movement goal
congruency appeared to be only relevant in cases where the
observer controlled their behavior at the movement level.

One interesting finding to emerge from the present study is
that a mismatch between observers’ and coactors’ action goals
resulted in slower response times for congruent movement
goals. This reversal of the movement-congruency effect is in
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line with the recent findings [28,51], which showed that one-to-
one associations between observed and executed action can
be modulated by the context in which the actions are
embedded. Our findings extend previous work by
demonstrating that a spontaneous recognition of other
individual's potential action goals (e.g., choosing a higher card
of the two) [22,23,52] affects observer's movement execution
and alters the influence of other's movements on the
observer's movement execution [15,25-28]. One could argue
that participants ‘automatically’ took into account the mapping
of the numbers, irrespective of movement- or action-
congruency. However, we assert that merely visual mapping of
the cards cannot explain the reported findings. Spatial mapping
of the cards should be regarded as a necessary, but not
sufficient, contextual condition for adaptive perceptuo-motor
coupling during both action control and action recognition. The
interpretation rather requires the assumption that participants
have conceptual (relational) model (which of the two cards is
higher) of the objects in the environment, which dynamically
modulates the perceptuo-motor mapping that underlies the
body-world interaction [53].

A probabilistic conceptuo-perceptual framework [53] for
action control and action recognition offers a possible
explanation for the reversal of the movement-congruency
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effects. This framework assumes that both control and
recognition of action depend on combining prior conceptual
information about the relationships between the objects and the
immediate perceptuo-motor information regarding movement
selection. In the present experiment, incongruent conceptual
expectations (i.e. mismatch between the conceptual goals of
the actor and coactor) may have facilitated the selection of a
movement direction incongruent to that of the coactor, or,
alternatively inhibited the selection of a congruent movement.
Similar, but opposite facilitatory and inhibitory effects would be
predicted in the case that the actor's and coactor’s conceptual
expectations matched (i.e., both going for the low card, or both
going for the high card). The conceptuo-perceptual probabilistic
framework described here can contribute to a better
understanding of the mechanisms that underlie flexible
selection and recognition of movements in social situations
[28,53,54].

A lot of controversy exists regarding the exact neural
instantiation of action recognition [29,37,38,55-58]. Our
behavioral findings point to the notion that a dynamic interplay
between mentalizing and AON/MNS brain networks might
underpin spontaneous recognition of observed everyday
behavior [21,41,59,60]. The results of the current study are in
line with dynamic multitiered accounts of action representation
[17,19,21,61,62] and are consistent with the idea that
processing behavior can be viewed as the synthesis of
immediate movement information and prior conceptual
knowledge. The formalization of appropriate multitiered models
and illuminating their neural correlates is critical to
understanding guidance of everyday social behaviors
[3,21,52,63-65].

Relation between personality traits and hierarchical
goal processing

The neurocognitive basis of social impairments in ASD is
currently heavily debated in cognitive neurosciences
[31,66,67]. Both perceptuo-motor theories [6,7,12,31] and
conceptual theories [9,11,39,68,69] have been proposed to
explain the social and communicative deficits typically
observed in the ASD population. Here, we showed that self-
reported autistic characteristics and empathy are related to
spontaneous recognition of conceptual action goals, rather
than physical movement goals. Studies on the association
between the ability to process human movements and ASD
have reported mixed results [66,67]. Some researchers found
evidence for impaired processing of physical movement goals
in ASD [6,7,13,14], whereas others were unable to find such an
association, e.g. [ 70,71].

We show a relationship between conditions characterized by
social deficits and the ability to process conceptual action
goals, which are distinct from the corresponding physical
movements [13,25,70,71], but pertain to overarching prior
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knowledge driving purposeful action [23,52,63-65]. Synthesis of
conceptual knowledge that is associated with brain activity in
the ‘mentalizing’ regions [72] and the observed movement
goals, processed by the parieto-frontal ‘mirroring’ circuit [29,31]
is necessary for the inference of others’ object-related
conceptual action goals [3,21,41,65,73]. Nevertheless, given
the intertwined nature of conceptual and perceptuo-motor
representations, the lack of correlation between movement
goal recognition and ASD characteristics should not be taken
as direct evidence against the perceptuo-motor explanations
for impairments in action inference. Rather, the findings raise
the interesting possibility that ASD symptoms result from
dysfunctional spontaneous integration of observed goal-
directed movements with the observer’s contextually activated
conceptual knowledge, which might entail the interaction
between the cortical networks for “mentalizing” and “action
observation” [2,21,41,59,60]. Present results suggest that
social learning at a conceptual level, or rather the interaction
between conceptual level and observed movements, might be
impaired in the ASD population. Adopting the conceptuo-
movement hierarchical approach of action processing [53]
could lead to novel insights regarding such aberrant social
interaction. For example, a key tenet of the conceptuo-
perceptual approach, that processing of behavior entails a
synthesis of immediate movement information and prior
conceptual knowledge, could guide development of new forms
of therapy for ASD individuals.

Conclusion

In sum, our findings are consistent with the idea that
spontaneous recognition of others’ behavioral goals depends
on the observer’s level of behavioral control. We suggest that
empathy and ASD-like personality characteristics might be
related to an impairment in the synthesis of incoming
perceptuo-motor information and prior conceptual knowledge
related to functional outcomes in the world. The results also
indicate a need to further investigate the roles of parieto-frontal
“action observation” and medial-temporal “mentalizing” brain
networks that are known for their involvement in processing
movement and conceptual information.
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