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Abstract
Several statistical packages are capable of estimating generalized linear mixed models and these
packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace,
and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-
effects logistic regression model. However, the authors focused on models with one or two
random effects and assumed a simple covariance structure between them, which may not be
realistic. When there are multiple correlated random effects in a model, the computation becomes
intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status
and exposure to anti-tobacco advertisements, we have observed that when a model included
multiple random effects, parameter estimates varied considerably from one statistical package to
another even when using the same estimation method. This article presents a comprehensive
review of the advantages and disadvantages of each estimation method. In addition, we compare
the performances of the three methods across statistical packages via simulation, which involves
two- and three-level logistic regression models with at least three correlated random effects. We
apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX
Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision,
convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two
packages in regard to sample sizes.
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1. MOTIVATION
Our interest in generalized linear mixed models (GLMMs) stemmed from an investigation
into the influence of smoking-related television advertising on adult smoking in the U.S. The
primary hypotheses of our study were that smoking status is associated with exposure to
antismoking television advertisements and that the effects of the advertisements on an
individual’s smoking status vary geographically. The smoking-related advertising is
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sponsored by state governments, the American Legacy Foundation (Legacy), pharmaceutical
companies, and the tobacco industry. Although individual television viewing patterns may
vary, the amount of exposure is measured at the media market level in a given time frame.
Relevant studies of smoking-related media campaigns and aggregate measures of exposure
can be found in Gilpin et al. (2001), Szczypka et al. (2003), Ibrahim and Glantz (2007),
Emery et al. (2005), and Emery et al. (2012). A mixed-effects logistic regression with media
markets as clusters was determined to be the most suitable approach for our study because
(1) individuals living in the same media markets share a similar environment and culture,
and people are likely to resemble each other with respect to behavior and anti- or pro-
smoking sentiment, and (2) we were interested in quantifying the amount of between-market
variability in the effects of advertisements.

Information on individual characteristics and smoking behavior was obtained from the 2000,
2001–2002, 2003, and 2006–2007 waves of the Tobacco Use Supplements to the Current
Population Survey (TUS-CPS). Nielsen Media Research provided television ratings data for
antismoking advertisement broadcasts across the top 75 media markets in the U.S1. The
proportion of current smokers in 2000–2007 was about 0.20 according to the TUS-CPS data.
The individual-level TUS-CPS data were linked to media market-level exposure data based
on the media market identifiers and survey dates. Respondents in areas other than the top 75
media markets and proxy respondents were excluded from the analyses. We used a two-
level mixed-effects logistic regression model for the analysis. The model can be written as

where yij denotes the smoking status (1= current smoker, 0=non-current smoker) of a
respondent j living in a media market i, and xij is the vector of predictors: exposure measures
of state-sponsored ads and Legacy-sponsored ads, age, sex, marital status, race, region
(South, East, Midwest, and Northeast), education, employment, time that TUS-CPS was
administered, and tobacco control policy variables. The measures of ad exposure GRPs were
aggregated, so that one unit of GRPs indicated an average of 10 viewings by all households
in a given media market for four months prior to the survey. Tobacco control policy
variables are the average real price per pack of cigarettes and a smoke-free air index by state
in the year of the survey. zij is the vector of predictors of which relevant coefficients vary
between media markets: the exposure measures of state ads and Legacy ads. The vectors xij
and zij also include a 1 for the intercept and the media market-specific deviation from the
intercept respectively, β is the fixed-effect parameter vector associated with xij, and ui is the
random-effect parameter vector associated with zij. We call ui a vector of random effects and
assume that it is normally distributed with mean 0 and covariance matrix of Σ(θ) where θ is
a vector of all distinct variances and covariances in the matrix. The number of TUS-CPS
respondents ranged from a few hundred to several thousand per media market, and the total
number of respondents in the data was 391,389. The descriptive statistics of the respondents
are presented in the Appendix.

The parameter estimation of a mixed-effects model for a binary response variable is
complicated compared to that for a normally distributed response variable. This is because
the equations to find maximum likelihood estimates cannot be analytically derived in a

1Television ratings are measured by Gross Ratings Points (GRPs), which represent the reach and frequency achieved by a television
show or advertisement in a given media market for a fixed time period. For example, an ad with 50 GRPs during one month is
estimated to have been seen once, on average, by 50% of the households in that media market. Details about measurement of ratings
can be found in Szczypka et al. 2003.
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closed form for a nonlinear model in contrast to a linear model. The marginal likelihood
function is formed by integration over the distribution of random effects and this integration
requires numerical evaluation or approximation. Further, the extent to which binary
responses vary is difficult to measure because there are only two possible outcomes, which
leaves the response with little room to vary. Longford (1994) also pointed out that
information about variation contained in clustered binary data is very sparse unless the
number of clusters and the cluster sizes are large. As a result, it is more challenging to
estimate between-cluster variation with binary responses than with continuous or count
responses. Additionally, when there are k(≥ 2) correlated random effects in a model (i.e., the
vector ui is of k-dimension), up to k(k + 1)/2 unique θ parameters in Σ need to be estimated.
More parameters implies more complex computation, which is likely to cause nonconcave
log-likelihood, numerical overflows, or failure to proceed to the next iteration, given the
limited information contained in data.

Parameter estimation for the mixed-effects logistic models of smoking status has presented
significant challenges. The intercept and two slopes for the state ad exposure and Legacy ad
exposure were allowed to vary across media markets; thus the model contained three
random effects that were assumed to have an unstructured covariance matrix. We performed
analyses using SAS 9.2 GLIMMIX (SAS Institute Inc. 2008a), R 2.11 package lme4 (Bates,
Maechler, and Bolker 2010), and HLM 6 (Raudenbush, Bryk, and Congdon 2004). First, we
observed differences in the regression coefficients, their standard errors, and the estimates of
Σ between the three statistical packages even when the same estimation method was chosen.
We fit the model by using Laplace approximation of SAS GLIMMIX and R lme4;

(co)variance estimates  were fairly different and so were hypothesis test results for some
elements of β between the two packages. For example, the slope of the region (West vs.
South) was estimated as −0.039 (SE=0.034, p=0.244) from SAS GLIMMIX, and the
corresponding estimate from R lme4 was −0.039 (SE=0.018, p=0.031); the standard error
from R lme4 was about half that from SAS GLIMMIX. We also fit the same model by using
Laplace of HLM. The estimates of θ from HLM were somewhat similar to SAS GLIMMIX,
but results for a few regression coefficients were rather inconsistent. One of them was the
fixed-effect slope of Legacy-sponsored ads; HLM Laplace produced −0.007 (SE=0.021,
p=0.734), whereas SAS GLIMMIX Laplace produced −0.033 (SE=0.015, p=0.028). The
degrees of discrepancy in the parameter estimates increased as more random slopes were
included in the model (by adding the measures of exposure to pharmaceutical company ads
and tobacco industry ads in xij and zij. Second, the computation was very intensive. The
computing time until convergence was about 15-20 minutes with Laplace approximation in
these three packages using a PC equipped with Intel Core i7 CPU 2.93 GHz and RAM 4GB.
We fit the same model by using Adaptive Gauss–Hermite quadrature (AGQ) in SAS
NLMIXED, but had to manually stop the program because the algorithm did not converge
after running for 5 days. An integer overflow occurred with a penalized quasi-likelihood
(PQL) estimation in SAS GLIMMIX. With our dataset, this computational burden
substantially increased as we included three or more random effects, regardless of which
estimation method was chosen. Further, in our data the number of respondents in each media
market was hundreds to thousands. Owing to the huge sample size, the computation became
even more intensive, and the convergence speed was extremely slow even if it converged.

These challenges motivated us to conduct a literature review of the mathematical and
computational complexity of multilevel models for binary responses. Many researchers have
evaluated the performance of estimation methods for logistic mixed-effects models.
However, most of them focused on models with no more than two random effects (k ≤ 2),
and investigators experienced biased estimates in certain circumstances even with those
relatively simple models (Breslow and Clayton 1993; Rodriguez and Goldman 1994; Zhou
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et al. 1999; Lesaffre and Spiessens 2001; Diaz 2006). Although estimation techniques for
logistic mixed-effects models have improved over the past two decades (Wolfinger 1993;
Breslow and Lin 1995; Goldstein and Rasbash 1996; Raudenbush et al. 2000), there are few
studies that have specifically evaluated estimation techniques for fitting a model with
multiple random effects.

Statistical packages capable of estimating GLMMs include HLM, R package lme4, Stata
xtmelogit, and SAS NLMIXED procedure, and more recently the SAS GLIMMIX
procedure (available from version 9.2) and SuperMix. Each package provides at least one of
the following estimation methods: (a) PQL approximation, (b) Laplace approximation, and
(c) Gauss–Hermite numerical integration. Technically, (b) and (c) are approximation
methods of integration and (a) is an estimation method, but in this article the “estimation
methods” refers to these techniques for ease of exposition. These (a)-(c) are the most widely
used methods that seek maximum likelihood estimates. The Bayesian approach using
Markov chain Monte Carlo is available with WinBUGS and R. The Bayesian model allows
flexible distribution for random effects and inference does not depend on asymptotic
distribution of estimators. However, the computation is no less challenging than the
maximum likelihood estimation (e.g., nonconvergence to stationary distribution, low
simulation efficiency, etc.), and specifying prior distributions for the random-effects
covariance matrix is sometimes not straightforward. For these reasons, we focus on the three
methods that seek maximum likelihood estimates in this study.

The purposes of this article are to describe the strengths and weaknesses of estimation
methods through a comprehensive literature review and to find a reliable estimation
method(s) and/or statistical package(s) via simulation in situations where multiple random
effects are involved in a logistic regression for a large dataset. In Section 2, we describe the
theoretical background of the logistic mixed-effects regression model. In Section 3, we
provide a comprehensive literature review of the most widely used estimation methods and
compare their advantages and disadvantages. In Section 4, using a few commonly used
statistical packages, we conduct simulations in which we know the true model and compare
their performance. We focus our simulation study on the following packages: HLM 6
(Raudenbush, Bryk, and Congdon 2004), R package lme4 (Bates, Maechler, and Bolker
2010), SAS 9.2 GLIMMIX (SAS Institute Inc. 2008a), SuperMix 1.1 (Hedeker, Gibbons,
Du Toit, and Patterson 2008), and Stata 12 xtmelogit (StataCorp. 2011). In Sections 5 and 6,
we fit the logistic mixed-effects model to our data based on the simulation results and carry
out another limited simulation study to examine statistical packages’ performance associated
with sample sizes. In Section 7, we summarize our findings and make recommendations.

2. THE LOGISTIC MIXED-EFFECTS MODEL
The GLMM is used for modeling outcomes in the exponential family to account for
hierarchical structure of the data, inter-cluster heterogeneity and intra-cluster correlations.
Distributional assumptions on random effects allow for estimating the degree of inter-cluster
heterogeneity. Denote the jth dichotomous outcome within the ith cluster by yij (for i = 1, … ,
N; j = 1, … , ni). Let xij be a vector of explanatory variables associated with a p-dimensional
vector of fixed-effects parameters β. Let ui be a k-dimensional vector of random effects for
the ith cluster and zij a vector of the associated variables (typically a subset of xij). The
conditional probability of yij given the cluster-specific effects vector ui is written as

(1)
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The observations within a cluster i are assumed to be independent given the random effects
ui. As a result, the conditional probability of the response vector yi = (yi1, yi2, … , yini)

T is

(2)

The marginal likelihood function of the ith cluster is obtained by averaging over the
distribution of ui, that is,

(3)

where f(ui; θ) is the probability distribution of ui with a parameter vector θ. The vector ui is
typically assumed to have a multivariate normal with mean 0 and variance-covariance

matrix Σ(θ). The full marginal likelihood function from all N clusters is .
To determine maximum likelihood estimates a numerical maximization procedure is
applied, which requires partial derivatives of the log L. Starting from an initial value, a
parameter estimate is iteratively updated by a function of partial derivatives until
convergence. Therefore, equation (3) as well as the partial derivatives need to be evaluated
numerically or approximated.

3. THE ESTIMATION METHODS
Several methods for evaluating Equation (3) have been developed. Investigators often use
one of the three methods (PQL, Laplace approximation, and Gauss–Hermite numerical
integration) because it is the default option of the package. However, the choice of method
should be made according to the characteristics of data and the purpose of modeling. In this
section we briefly describe those methods and summarize their advantages and
disadvantages (Table 1). We assume f(ui;θ) is a multivariate normal distribution, although
other distributions can be used.

3.1 Gauss–Hermite Quadrature
Gauss–Hermite quadrature, also called Gaussian quadrature (GQ), approximates the
marginal likelihood function. GQ computes the integral by direct numerical evaluation. The
area under the curve is calculated by summing over split areas. The accuracy of
approximation depends on the number of these areas that are represented by quadrature
points and corresponding weights. The equation (3) can be rewritten as

where ui = Γvi, ΓΓ’ = Σ(θ), and vi has the standard normal density ϕ(vi). Let bq denote a
vector of quadrature points having the same dimension as ui and w(bg) its related weight.
The approximated marginal likelihood is

The quadrature points are preset centered around zero. The precision of GQ increases as the
number of quadrature points increases (Givens and Hoeting 2006). When the model includes
multiple random effects, the number of quadrature points that GQ needs increases
exponentially (Lessaffre and Spiessens 2001; Hedeker and Gibbons 2006). For instance, if a
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model has k random effects and GQ uses Q points per random effect, then a total of Qk

quadrature points are needed. Results estimated by other methods are often compared to GQ
method because the computation is very accurate when Q is large. However, the exponential
increase in the number of quadrature points with each additional random effect creates a
problematic computational burden.

3.2 Adaptive Gauss–Hermite Quadrature
This technique is an adaptive version of GQ. While the GQ method uses preset quadrature
points, AGQ adaptively finds the quadrature points centered at the approximate mode of
g(yi∣vi;βΓ) ϕ(vi) according to its shape (Lesaffre and Spiessens 2001; Hedeker and Gibbons
2006). This is especially efficient when the mode is far from 0. The associated weight is also
adjusted accordingly. As a result, AGQ needs fewer quadrature points to obtain the same
degree of precision as GQ reducing the computational burden.

3.3 Laplace Approximation
The Laplace method also approximates the marginal likelihood function. Unlike GQ, it is
not a direct numerical integration. Equation (3) can be rewritten as

(4)

where h(ui) = lon g(yi∣ui;β) − (ui
T Σ−1ui)/2 First, this method expands h(ui) around the mode

 by using a Taylor series expansion and then evaluates the integral by Laplace’s method
(Khuri 2003, p. 531). The accuracy of Laplace approximation depends on how far the
objective function is expanded. Usually a second-order Taylor series expansion is applied:

and the remainder Ri is ignored because the magnitude of higher-order terms diminishes as
the cluster size increases. Thus, its accuracy depends on the sample size. Raudenbush et al.
(2000) improved the precision of the Laplace approximation by further approximating
exp(Ri) using up to sixth-order terms, and called it Laplace 6. They showed via a simulation
study that the estimates obtained by Laplace 6 were as accurate as those obtained by GQ and
AGQ. The advantage of the Laplace method is that it approximately integrates the objective
function expanded at the mode, , leading to asymptotically unbiased estimates, and yet it
is computationally less intensive than GQ and AGQ. The disadvantage is that it tends to
provide less accurate estimates for data with small cluster sizes.

3.4 Penalized Quasi-Likelihood
This method approximates the marginal quasi-likelihood function rather than the full log-
likelihood function. The quasi-likelihood function (McCullagh and Nelder 1989) replaces
log g(yi∣ui;β) in Equation (4) Denote h(ui) = Q(μi;yi) − ui

T Σ−1ui/2 where μi is a conditional
mean of yi given ui. However, for logistic regression the quasi-likelihood function has the
same expression as the log-likelihood function, i.e., log g(yi∣ui;β) = Q(μi;yi). h(ui) is
expanded about the mode  by a second-order Taylor series and then the integral is
evaluated by Laplace’s method. The PQL is different from the Laplace approximation
because it proceeds in the following two alternating steps until convergence. The first step is
to estimate (ui,β) by maximizing h(ui) for fixed Σ. The second step is to estimate Σ by
constructing an approximate profile quasi-likelihood based on updated estimates of (ui,β) by
maximizing h(ui) for fixed Σ. The second step is to estimate Σ by constructing an
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approximate profile quasi-likelihood based on updated estimates of (ui, β) and applying
estimating equations for a normal linear mixed model. Pinheiro and Bates (1995) called the
first step a penalized nonlinear least squares step and the second a linear mixed effects step.
The REML version of the profile likelihood is available too. More technical details and
variations can be found in Breslow and Clayton (1993), Pinheiro and Bates (1995), and
Wolfinger (1993). PQL is generally considered computationally more feasible than the
aforementioned methods; however, it produces biased estimates in certain circumstances
(Table 1).

4. SIMULATION I
We considered two scenarios to simulate the data—two-level and three-level logistic
regression models. For each scenario 100 independent datasets were simulated with different
seed numbers using R. We estimated model parameters for each replicate using SAS
GLIMMIX, R lme4, HLM, SuperMix, and Stata xtmelogit. The estimation methods used
within each package are (i) SAS: PQL, Laplace, AGQ with 10 quadrature points (AGQ-10);
(ii) R: Laplace and AGQ-10; (iii) HLM: PQL (REML version) and Laplace 6; (iv)
SuperMix: AGQ-10; (v) Stata: Laplace and AGQ-10. Laplace 6 is only available with HLM
6.

We used the following maximization algorithms: Newton–Raphson in SAS GLIMMIX,
SuperMix (with step-halving), and Stata (with step-halving); EM for two-level models and
Fisher-scoring for three-level models in HLM; and Gauss–Newton in R lme4. Only SAS
GLIMMIX provides various options for maximization, such as quasi-Newton, Newton–
Raphson with ridging, trust-region, and so on (SAS Institute Inc. 2008b). The maximum
number of iterations was set to 1,000 when possible. The initial values were determined by
fitting the fixed-effects logistic regression in SAS GLIMMIX and R lme4 and by
maximizing the posterior density with respect to random effects in SuperMix (Bock and Du
Toit, 2004). For HLM Laplace method, PQL estimates were used as the initial values. R
lme4 and SuperMix also allow users to explicitly assign starting values.

We calculated the average of the parameter estimates, standardized bias, and root mean
square error (RMSE) over 100 replications to assess accuracy and precision of estimates.
The quantities to evaluate average performance were defined as the following (Burton et al.
2006):

(5)

where m is the number of replicated datasets, φ is the true value for the parameter of
interest, and  is an estimate obtained by fitting a model to the ith replicated data. The
standardized bias ranges from −1 to 1.

4.1 Two-Level Data Simulation
The assumed model equation for the jth dichotomous outcome nested in the ith cluster is
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where (β0, β1, β2, β3)T = (−1.2, 1.0, 1.0, −0.5)T and

 for all i. The vector ui has a
multivariate normal distribution (MVN). This is a typical assumption for random effects,
and the statistical packages considered in our study were developed based on this
assumption. The variance of the random intercept was set to 3. Such a large variance has
been reported to cause problematic computation, and specifically PQL tends to
underestimate a large variance (Table 1). Moderate and small variances were assumed for
two random slopes. The variance-covariance matrix of the random effects determines the
following correlation matrix,

This correlation matrix was intended to include both negative and positive correlations, and
small to moderate strength of correlation. x1ij and x2ij are individual-level covariates
distributed as N(0,4) and N(0,1), respectively. x3i is a cluster-level covariate with half of
clusters in each group. The three covariates were generated independently. The linear
predictor value on the right side of the equation was converted to a probability, which was
used to simulate a binary outcome using the algorithm developed by Kachitvichyanukul and
Schmeiser (1988). β0 = −1.2 is related to the response probability of 0.23, given x1 = x2 = x3
= 0 and u0 = u1 = u2 = u3 = 0. The marginal probability y = 1 was about 0.30. Each
simulated dataset had 100 observations in each of 50 clusters, so a total of 5,000
observations (i=1, …, 50; j=1, …, 100). This sample size was according to the
recommendation of Moineddin et al. (2007).

Simulation results are presented in Table 2 and Figure 1. A numerical overflow occurred for
20 models with Stata xtmelogit; the quantities in (5) were computed based on 80 converged
models. The PQL estimates of SAS and HLM are biased towards zero for both β and Σ,
except for the tiny variance (θ12 =0.00045). Figure 1 displays the standardized biases and
RMSEs for each parameter. The software is marked by different colors; triangles exhibit
Laplace, circles AGQ, and squares PQL. The PQL estimates from both SAS and HLM tend
to have a larger standardized bias than other estimates. This result is consistent with the
previous research studies (Table 1). The intercept variance (θ00) has higher RMSE than
other parameters for all estimation methods and packages. In summary, the estimates from
the Laplace and AGQ are better than the PQL estimates across the five statistical packages
on the basis of criteria (5).

4.2 Three-Level Data Simulation
The assumed level-1 model equation for the kth observation nested in the jth subcluster
within the ith cluster is
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where (β0, β1, β2, β3)T = (−1.2, 1.0, 1.0, −0.5)T,

 and yij ~N(0, Γ = 0.8) for all i and j.
We denote the “level-1” units k, the “level-2” subclusters j, and the “level-3” clusters i. The
correlation coefficients are 0.4 between u0i and u1i, and 0 between u0i and u2i. The
covariates x1ij and x2ij vary with clusters and subclusters and were simulated from N(0,4)
and N(0,1) respectively. The dichotomous variable x3ijkl forms that half of the level-1 units
within a subcluster is in each group. The variance of yij represents variability across the
subclusters within each cluster, and it is constant across all clusters. The marginal
probability of the response is about 0.30. Each simulated dataset has a total of 15,000 level-1
units (i=1, …, 30; j=1, …,10; and k=1, …, 50).

The selected packages have the following limitations in fitting a three-level logistic
regression model: (a) R lme4 does not provide AGQ, (b) PQL-REML version of HLM is
only available for a two-level logistic model, and (c) HLM executes Fisher-scoring for
maximization, although an EM algorithm has been implemented for fitting a two-level
logistic model (HLM6, SSI 2004). We experienced substantially more computational burden
with the three-level models than the two-level models. SAS GLIMMIX AGQ could not
estimate model parameters for all 100 replications due to “insufficient resources to perform
AGQ,” and Stata xtmelogit gave a message “numerical overflow” for 95 replications.
SuperMix AGQ had one nonconvergence within 1,000 maximum iterations. With HLM
Laplace 6, 67 models did not converge or produce parameter estimates; therefore, only 33
converged models were used to evaluate simulation results. HLM PQL had 10
nonconvergences and produced fitted models for 90 datasets. We had 38 “false
convergence” messages with R lme4 Laplace, but it produced fitted models for all datasets.

Table 3 and Figure 2 show the simulation results for the three-level logistic models. The
summary results were not calculated for SAS GLIMMIX AGQ, R lme4 AGQ, and Stata.
Overall, Laplace of SAS GLIMMIX and AGQ-10 of SuperMix produced better estimates
than the others on the basis of the criteria (5). PQL, marked by squares in Figure 2, tends to
shrink estimates toward zero as in the simulation for the two-level models. The Laplace of R
lme4 also tends to result in biased regression coefficients with slightly higher RMSEs. For
the zero covariance component (θ02 = 0), HLM Laplace 6 produced seriously biased
estimates.

5. ILLUSTRATION
We now return to fitting the two-level logistic regression model for the smoking status and
antismoking advertising data. Our simulation, presented in Section 4, provided evidence that
SAS GLIMMIX Laplace and SuperMix AGQ perform the best among the packages and
estimation methods considered. Therefore, we fit our model using SAS GLIMMIX Laplace
and SuperMix AGQ-10 (in this and next sections, we call them SAS and SuperMix for
short). The datasets were prepared so that the parameter estimates were comparable between
the two packages. The intercepts and slopes for the state ad and Legacy ad exposures were
allowed to randomly vary by media markets. Treating the effect of exposure to the Legacy
ads as random, controlling for the random effect of exposure to the state ads, did not
improve the model fit (likelihood ratio test χ2=3.7 from SAS; χ2=0.02 from SuperMix;
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df=3); therefore, the effect of Legacy ads was included as a constant across media markets.
SAS Laplace converged in 5 iterations and SuperMix AGQ-10 converged in 38 iterations.
We expected trivial differences in estimates between SAS and SuperMix because of
different starting values (the default starting values were used) and other computational and
operational settings that cannot be controlled by users.

The two packages, however, produced remarkably different estimates that led to different
qualitative conclusions for some parameters. The fixed-effect of state ad exposure on the log
odds of smoking was estimated as −0.013 (SE=0.014) from SAS, whereas the corresponding
estimate from SuperMix was 0.053 (SE=0.064). The slopes were in opposite directions,
although both estimates were not significantly different from zero. The effect of Legacy ad
exposure was estimated as −0.034 (SE=0.014, p=0.013) from SAS, whereas the
corresponding estimate from SuperMix was −0.176 (SE=0.096, p=0.066). The variance
estimates of random intercepts were 0.011 (SE=0.002) from SAS and 0.003 (SE=0.001)
from SuperMix, although the variance estimates of the random slopes were close between
the two packages. Another interesting result was that the computed −2 times the log-
likelihood values (−2LL) were quite different: SAS=361,633 versus SuperMix=100,496.
These different values of −2LL were observed even in a simpler model that had only
intercepts randomly vary across media markets.

We suspected that this different result between SAS and SuperMix might be related to the
huge sample size of the data (N=391,389), ranging from a few hundred to several thousand
per media market. When the likelihood function is formed for a given cluster as in Equation
(2), the product of individual likelihood values becomes extremely close to zero when ni is
very large and the probability of an event is close to zero or one. Statistical packages are not
identically programmed in handling “positive tiny numbers” and “negative huge numbers”.
To investigate whether the observed difference between SuperMix and SAS is due to the
huge sample size, we conducted a small simulation study, which we discuss in the next
section.

6. SIMULATION II
We generated data that resembled our smoking and TV advertising data. The assumed
model equation for a respondent j nested in media market i is given by

where (β0, β1, β2, β3)T = (−2, −0.03, −0.002, 0.278)T, u0i, is normally distributed with mean
0 and variance, θ0 = −0.002, and x1, x2 and x3 correspond to the time of survey dates, the
state-sponsored ad exposure, and gender, respectively. The variable x1 has values of (0,
0.67, 1, 2, 2.5, 2.75, 4, 4.5, 7, 7.25) within each media market. The variable x2 has a mixture
distribution; random variables having exponential distribution with a rate parameter 0.2
were generated, and then among those, 0 was assigned to randomly selected values with the
probability 0.25. This distribution was intended to reflect the right-skewed distribution with
inflated probability at zero for GRP values. x3 is an individual-level dichotomous variable
with the probability 0.45. Each dataset has 70 clusters with varied sizes from 50 to 7000.
The total number of observations is 139,300, which is smaller than the sample size of our
smoking and TV advertising data. The simulation involved 20 replications, and we
computed averages and RMSEs of the estimates. We also computed the mean of −2LL
values, which was obtained from the fitted models, to compare their average model-fit. The
mean values of −2LL from fitted fixed-effects models (i.e., u0i = 0 for all i) were 104,097
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and 104,101 for SAS and SuperMix, respectively, and the maximum absolute difference in
−2LL values was 0.005.

The simulation results are presented in Table 4. The mean values of −2LL are quite different
between two packages; the mean −2LL from SAS is more plausible, considering the mean
−2LL values of the fixed-effects models. The parameter estimates of both packages appear
to be unbiased, but the RMSEs of SuperMix estimates are larger than those of SAS. The
initial value is the main difference between SAS and SuperMix in this simulation, as well as
the integration methods. For SAS, the estimates obtained by fitting a fixed-effects model
with a limited number of iterations (at most four iterations according to the SAS User’s
Guide) are used as the default starting values. The starting values in SuperMix are maximum
a posteriori (MAP) estimates, but they can also be completely assigned by users.
Accordingly, to eliminate any differences attributable to starting values, we also set the SAS
GLIMMIX Laplace estimates and the true values as the initial values for SuperMix.
However, SuperMix provided the same parameter estimates and −2LL values for all 20 data
sets resulting in the identical numbers in Table 4. This suggests that the starting values were
not responsible for the different log-likelihood values. This simulation result indicates that
SAS computes the log-likelihood better than SuperMix does in fitting logistic mixed models
to the data with very large clusters. We elaborate further about SAS and SuperMix in
connection with the sample size in Section 7.

7. DISCUSSION
In this article we conducted simulation studies to compare the maximum likelihood
estimation methods available in several statistical packages in order to find a reliable
estimation method and statistical package for fitting a logistic regression with multiple
correlated random effects. The number of replications was 100, and the proportion of events
was close to 0.30. The PQL estimates were noticeably biased in the simulation of both two-
and three-level logistic regression models. This is because PQL estimates tend to be biased
towards zero when (a) the proportion of events is close to zero or one, or (b) the variances of
random effects are large, or both. This was reported in other studies as well (Breslow and
Clayton 1993; Zhou et al. 1999; Diaz 2007). In our simulation study for the three-level
logistic model, which clearly demonstrated differences between estimation methods and
statistical packages, SAS GLIMMIX Laplace and SuperMix AGQ performed better than
other packages and estimation methods considering the criteria in (5) and the convergence
rate. The estimates obtained by HLM Laplace 6 and R lme4 Laplace had larger RMSEs than
others; the same pattern was observed when we restricted computation of RMSE to only the
33 fitted models in which the algorithm of HLM Laplace 6 had converged.

There are limitations in our simulation study. First, we did not consider correlation between
covariates. In most situations one covariate is correlated with another to some degree.
Although assuming correlation among covariates may be more realistic, we believe that our
main findings are still valuable. Second, there are other statistical packages that have the
ability to estimate the GLMM—SPSS, SAS NLMIXED, etc. We chose SAS GLIMMIX and
SuperMix because they were recently released, and thus up-to-date developments were
likely to have been incorporated in those packages. Furthermore, there is no published
research article to date that evaluated their performance. SAS NLMIXED was widely used
to estimate GLMM until SAS Institute Inc. released the GLIMMIX procedure, but its
exceedingly slow convergence has been a major drawback. We did not examine it in our
simulation study because one of our purposes was to find a statistical package with
endurable convergence speed for fitting a large dataset. We would like to comment that SAS
NLMIXED is still an excellent procedure in estimating nonstandard mixed models. In late
2010, SPSS released version 19 with a new tool for GLMM and HLM released version 7
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that offers AGQ. Since SPSS and HLM are widely used in the social and educational
sciences, it would be worthwhile to explore their performance via simulation. Nonetheless,
our study provides the most comprehensive assessment to date of statistical packages and
estimation methods in fitting logistic mixed-effects models. Third, we simulated data
assuming multivariate normal random effects primarily because the algorithms implemented
in the statistical packages considered in this article were developed based on that
assumption. Although the normal random effects assumption is reasonable in many
situations, it would be interesting to see how well these packages and estimation methods
perform when that assumption is moderately to seriously violated, especially in making an
inference. When the normality assumption is not reasonable, Bayesian models are
particularly useful. We leave this for our future research.

We observed substantial computational burden in estimating the three-level logistic models.
The integration over the multivariate random effects distribution is a difficult numerical
problem in association with the optimization of a likelihood function. HLM Laplace 6 failed
to produce parameter estimates for 67 datasets out of 100. The error message was “Fisher
scoring is unable to compute a maximum likelihood estimate within the parameter space.” In
HLM, Fisher scoring is employed to estimate a three-level logistic model, but an EM
algorithm is used for a two-level logistic model. The EM algorithm converges to an estimate
within the parameter space, but its convergence speed can be very slow (Raudenbush and
Bryk 2002; West et al. 2006). Fisher scoring, on the other hand, quickly converges in most
situations, but it may produce estimates outside the parameter space such as a nonpositive
definite variance-covariance matrix of random effects. A Cholesky decomposition of the
variance-covariance matrix sometimes helps, but not all software provides this alternative
(as SAS GLIMMIX does). Some algorithms are numerically more stable or feasible than
others depending on the characteristics of data and complexity of models. For instance, for
fitting more complex mixed-effects models to our smoking and advertisement data,
Newton–Raphson often failed to compute a positive definite variance-covariance matrix,
whereas quasi-Newton was able to compute it. An algorithm that requires the second-order
partial derivatives, like Newton–Raphson, tends to be more reliable yet computationally
more demanding than an algorithm that requires only the first-order partial derivatives, like
quasi-Newton. West et al. (2006) discussed different algorithms for the likelihood function
optimization for linear mixed models. Further studies are necessary to find reliable and
efficient maximization techniques for GLMM estimation that involve multidimensional
integrals.

In the simulation for the three-level models using SAS GLIMMIX, AGQ-10 failed to
perform the computation from the first iteration for all 100 datasets because of “insufficient
resources”, yet Laplace produced reliable results. This confirms that AGQ is
computationally intensive. Estimation with more quadrature points appears to require more
memory in SAS because reducing the number of quadrature points for AGQ sometimes
solve this problem. In addition, AGQ is time-intensive at every iteration. However, we
experienced a 99% convergence rate and fast computing time with SuperMix AGQ;
specifically, 40% of the models fit to the simulated data converged in less than 10 iterations
and in 15 CPU minutes. The MAP estimation is integrated in SuperMix to find initial
parameter estimates. This unique feature helps reduce the required number of iterations by
providing good candidates for parameter estimates.

SuperMix should be used carefully when the sample size is huge, particularly the cluster
size, as demonstrated in Section 6. How does the large cluster size start affecting the
computation of log-likelihood function? We made a few sets of data by randomly sampling
varying numbers of respondents from our smoking and TV advertising data and fit the
logistic mixed-effects model. When we fit the model to randomly sampled data with 30,000
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or more respondents, the evaluated values of log-likelihood functions were quite different
between SAS GLIMMIX Laplace and SuperMix AGQ. In another dataset with 25,000
respondents, there were four clusters with 1,000 to 1,500 respondents and one cluster with
more than 1,500 respondents; the difference between two −2LL values was about 200. In a
dataset with 20,000 respondents, all cluster sizes were below 1,500; −2LL values were
virtually identical, and parameter estimates and their standard errors were fairly close
between the two packages. This provides evidence that the difference between the two
packages observed in Sections 5 and 6 were not due to different programming of the
likelihood function. A small difference in the log-likelihood function can result in a
significant difference in parameter estimates (Lesaffre and Spiessens 2001). We do not
recommend using SuperMix when fitting a logistic mixed-effects model to a large dataset
especially when the number of subjects nested in clusters is larger than 2,000.

Finally, the accuracy of Laplace approximation depends on sample sizes, the number of
clusters and the number of subjects per cluster, due to its asymptotic properties (Table 1;
Clarkson et al. 2002; Diaz 2007). Therefore, we recommend using AGQ when analyzing
data with a small sample size. For instance, AGQ is more suitable than Laplace
approximation for a longitudinal study with a few time points. Clarkson and Zhan (2002)
observed in their simulation study, which considered 100 subjects and 7 time points per
subject, that Laplace estimates were biased. The first and second derivatives of the
likelihood function involved in maximization are often not a smooth function of random
effects (Lesaffre and Spiessens 2001). AGQ calculates the first and second partial
derivatives more precisely than Laplace does, provided that a sufficient number of
quadrature points are used. This is because Laplace is an approximation that expands the
objective function around one point, whereas AGQ uses multiple points (Clarkson and Zhan
2002). The difference between Laplace and AGQ estimates, however, decreases as the
sample size increases. In addition, with respect to computing time, Laplace approximation is
far superior to AGQ when the sample size is very large.
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APPENDIX
Table A.1

Descriptive statistics of 2000-2007 TUS-CPS and Nielsen ratings data (N=391,389)

Smoking Status N (%)

  Current smokers 79040 (20.2)

  Non-smokers 312349 (79.8)

Antismoking TV advertising1 Mean (Median, Min-Max)

  State (/1000) 0.42 (0.08, 0 – 4.65)

  Legacy (/1000) 0.37 (0.31, 0 – 1.80)

Other Predictors Mean (SD)

Cigarette price/pack($)2 1.98 (0.31)

SFA3 score with preemption 11.82 (10.18)
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Smoking Status N (%)

Age (in year) 41.45 (14.50)

Race/ethnicity N (%)

  White 278809 (71.2)

  American Indian/Alaskan Native 2240 (0.6)

  Asian/Pacific Islander/Hawaiian 17403 (4.4)

  Hispanic 46075 (11.8)

  Black 44724 (11.4)

  Others 2138 (0.5)

Education

  Less than 12th grade 62231 (15.9)

  High school Grad/GED 110557 (28.3)

  Some college/Associate's 106211 (27.1)

  Bachelor/Master/Prof/Doctor 112390 (28.7)

Gender

  Male 170191 (43.5)

  Female 221198 (56.5)

Marital status

  Married 213485 (54.5)

  Widow/Divorced/Separated 69277 (17.7)

  Never Married 108627 (27.8)

Employment/work area

  Full-time/indoor 187773 (48.0)

  Part-time/indoor 48274 (12.3)

  Part & full-time/home 5749 (1.5)

  Part & full-time/outdoor 23719 (6.1)

  Not in labor force 109508 (28.0)

  unemployed 16366 (4.2)

Region

  South 122225 (31.2)

  Midwest 91029 (23.3)

  Northeast 85737 (21.9)

  West 92398 (23.6)

1
10 exposures for four months prior to the date of TUS-CPS

2
The average real price per pack of cigarettes calculated using information from The Tax Burden on Tobacco and the US

Bureau of Labor Statistics Consumer Price Index.
3
Smoke-free air index
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Figure 1.
Simulation results for the two-level logistic model: the standardized biases and RMSEs.
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Figure 2.
Simulation results for the three-level logistic model: the standardized biases and RMSEs.
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Table 4

Simulation results for the random-intercept logistic model:The average of parameter estimates (RMSE).

Parameter SAS GLIMMIX
Laplace

SuperMix
AGQ-15

β0=−2.00 −1.9950 (0.0262) −2.0143 (0.0324)

β1=−0.03 −0.0302 (0.0035) −0.0307 (0.0072)

β2=-0.002 −0.0018 (0.0018) −0.0024 (0.0041)

β3= 0.278 0.2790 (0.0122) 0.2924 (0.0300)

θ00= 0.027 0.0275 (0.0050) 0.0272 (0.0102)

−2LL 103,805.38 (1278.76)§ 71,636.92 (418.28)§

§
Empirical standard deviations
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