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Abstract
A collaborative framework was initiated to establish a community resource of ground truth
segmentations from cardiac MRI. Multi-site, multi-vendor cardiac MRI datasets comprising 95
patients (73 men, 22 women; mean age 62.73 ± 11.24 years) with coronary artery disease and
prior myocardial infarction, were randomly selected from data made available by the Cardiac
Atlas Project (Fonseca et al., 2011). Three semi- and two fully-automated raters segmented the left
ventricular myocardium from short-axis cardiac MR images as part of a challenge introduced at
the STACOM 2011 MICCAI workshop (Suinesiaputra et al., 2012). Consensus myocardium
images were generated based on the Expectation-Maximization principle implemented by the
STAPLE algorithm (Warfield et al., 2004). The mean sensitivity, specificity, positive predictive
and negative predictive values ranged between 0.63-0.85, 0.60-0.98, 0.56-0.94 and 0.83-0.92,
respectively, against the STAPLE consensus. Spatial and temporal agreement varied in different
amounts for each rater. STAPLE produced high quality consensus images if the region of interest
was limited to the area of discrepancy between raters. To maintain the quality of the consensus, an
objective measure based on the candidate automated rater performance distribution is proposed.
The consensus segmentation based on a combination of manual and automated raters were more
consistent than any particular rater, even those with manual input. The consensus is expected to
improve with the addition of new automated contributions. This resource is open for future
contributions, and is available as a test bed for the evaluation of new segmentation algorithms,
through the Cardiac Atlas Project (www.cardiacatlas.org).

© 2013 Elsevier B.V. All rights reserved.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Med Image Anal. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
Med Image Anal. 2014 January ; 18(1): . doi:10.1016/j.media.2013.09.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cardiacatlas.org


1. Introduction
Cardiac magnetic resonance (CMR) imaging has been widely adopted in many clinical
institutions to routinely diagnose patients with cardiac diseases (Ishida et al., 2009;
Muzzarelli et al., 2011; Karamitsos and Myerson, 2011). CMR is non-ionising, non-invasive
and provides a range of contrast mechanisms. This makes it a versatile diagnostic technique
that enables multiple protocols, e.g. cine functional studies, tissue characterization,
perfusion, stress imaging, velocity and flow, within a single session (Pennell, 2010). In
particular, CMR is widely acknowledged as the most accurate method for the left ventricular
(LV) mass and volumes calculation. Due to its non-invasive and well validated accuracy,
CMR is now being used in several large epidemiological studies including MESA (Bild et
al., 2002) and the UK Biobank (Ollier et al., 2005). There is therefore a pressing need for
robust fully automated segmentation of LV myocardium in the CMR domain.

However, automated delineation of myocardial boundaries remains a difficult problem, due
to artifacts arising from flow, motion, off-resonance behavior and noise. Smooth intensity
gradients around the myocardium create different opinions even among expert analysts
(Paetsch et al., 2006). Papillary muscles, trabeculae and intensity inhomogeneities also
contribute to this problem. These problems give rise to differences in ground truth
delineations arising from different observers. Figure 1 shows examples of the disagreements
among expert analysts, particularly on papillary muscle (Fig. 1(a)), trabeculae structures
(Fig. 1(b)), and LV outflow tract (Fig. 1(c)).

The difficulty to delineate myocardial borders has been a major challenge for researchers to
develop automated segmentation algorithms for more than a decade. Different approaches of
automatic CMR segmentation methods have been proposed (see surveys in Petitjean and
Dacher, 2011; Frangi et al., 2001). Qualitative and quantitative segmentation results have
been presented. However, few of these methods have been compared on substantial datasets
using an objective comparison technique. Each published method conducted experiments
with private image data-bases and different reference contour definitions. This makes
objective comparisons between methods difficult to perform.

In a recent survey of automated segmentation methods from cardiac MRI (Petitjean and
Dacher, 2011), the lack of publicly available image datasets and a common performance
evaluation protocol have been outlined as an open problem in LV segmentation. In the
absence of an exact ground truth, a consensus method must be employed to provide
reference segmentations for the evaluation of automated methods (Warfield et al., 2004). A
consensus ground truth for myocardium segmentation should therefore be established in the
CMR research community using widely available images in order to enable proper
benchmarking and validation. Similar resources have been made available in other domains,
for example in the segmentation of the carotid arteries for stenosis evaluation (Schaap et al.,
2009; Hameeteman et al., 2011), the detection of pulmonary nodules from lung CT images
(van Ginneken et al., 2010; Murphy et al., 2011), airway tree segmentation (Lo et al., 2012),
and brain image segmentation (Shattuck et al., 2009).

In the cardiac domain, such a benchmarking resource has only been available for small
datasets at a few cardiac frames. For instance, the 2009 MICCAI LV segmentation challenge
included 45 cases at end-diastole and end-systole (Radau et al., 2009). The main problem is
that collecting many manually drawn expert contours from a large number of cases, defined
on all slices and cardiac frames, is physically impractical. Expert segmentation is a time
consuming and painstaking process which involves a considerable resource expense. To
date, there have therefore been no large datasets with validated ground truth available for
this purpose. To solve this problem, we initiated a collaborative framework to establish
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common consensus myocardium images that were estimated by combining the knowledge of
human observer expertise with the objectivity of automated segmentation methods. The
approach we have adopted is to leverage a variety of published and validated semiautomatic
and automatic methods applied to a widely available, clinically important dataset in order to
develop a consensus ground truth. Hence, our contributions in this paper are the following:

1. To establish a community resource of ground truth images based on common data
for the development, validation and benchmarking of LV segmentation algorithms.

2. To present a pipeline for building consensus myocardium images by involving
independent multi-center automated methods, which allows the inclusion of
automated results into the consensus under certain conditions, so that the consensus
will be iteratively refined as new centers participate.

3. To demonstrate that the consensus images built using this framework are more
consistent than any particular rater, even those with manual input.

4. To quantify for the first time the regional and temporal variation in agreement
between raters in the left ventricle segmentation application domain.

In this initial study, five raters were involved: three which included manual input (one which
defined contours through an interactive customization of a 3D+t LV shape representation by
an experienced operator and two which were initialised by manually drawn contours) and
two fully-automated raters. These represent all groups who participated in the 2011 LV
Segmentation Challenge held at the MICCAI 2011 workshop Statistical Atlases and
Computational Models of the Heart (STACOM) Suinesiaputra et al. (2012).

To estimate the consensus images, we adapted an Expectation Maximization (EM) based
algorithm (STAPLE) for cardiac MRI. STAPLE collates evidence from each rater to
estimate the best possible segmentations by maximizing the performance of all raters
(Warfield et al., 2004). A useful feature of the STAPLE algorithm is its well-founded
formulation to estimate true segmentation images from the input raters using objective
evaluation criteria. This is inherited from the basic principles of EM algorithm (Dempster et
al., 1977). STAPLE has been applied successfully in the validation of human brain images
(Liu et al., 2007; Archip et al., 2007), consensus guidelines in prostate MRI (Hwee et al.,
2011) and observer reliability study in pelvic MRI (Hoyte et al., 2011). In cardiac
applications, a preliminary work to identify cardiac landmarks by using STAPLE was
reported in (Xing et al., 2011).

This paper describes the framework for the consensus ground truth estimation process, the
resources established for the benchmarking and validation of automated segmentation
techniques, mechanisms for the inclusion of automated results into the consensus, and the
results obtained so far. To maintain the consensus images quality, a new set of criteria based
on clinical LV function and performance distribution is proposed for the inclusion of
automated raters. The resource is open for contributions on an ongoing basis, since we
expect that the consensus will become more robust with the addition of more raters. The
consensus segmentations are available on request from the Cardiac Atlas Project website1.

In the following section, we describe the infrastructure that we established for this study.
Brief explanations of each rater that contributed to this initial consensus estimation are
presented in Section 3. A short description about the STAPLE algorithm is presented in
Section 4 as the background for the consensus estimation framework. In Section 5, we
describe the appropriate prior estimation approach for the STAPLE algorithm in the context

1http://www.cardiacatlas.org
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of cardiac MRI. Section 6 defines the performance metrics used to evaluate the consensus
results, as well as an objective measure for the inclusion of a new rater to the consensus.
Section 7 describes validation experiments comparing different variations of consensus.
Section 8 presents the results. Section 9 discusses the characteristics of each rater and the
effects of adding fully automated raters to the consensus images, followed by conclusion in
Section 10.

2. Data
Two hundred patients were randomly selected from the DETERMINE cohort (Defibrillators
To Reduce Risk by Magnetic Resonance Imaging Evaluation) (Kadish et al., 2009). One
hundred were made available as training data, with manual segmentation, and the other
hundred were reserved for validation. Of these, five studies could not be processed by all
raters due to inconsistencies in the image parameters, e.g. a different image field of view in
one series, leaving 95 cases available for consensus. The DETERMINE study comprises of
patients with coronary artery disease and regional wall motion abnormalities due to prior
myocardial infarction. This is a clinically important patient group since mass and volume are
important diagnostic and prognostic indicators of adverse remodeling. Studies were acquired
at multiple sites using multiple scanner vendors. The data were made available through the
Cardiac Atlas Project (Fonseca et al., 2011). Characteristics of the patient data are shown in
Table 1.

The CMR images were based on the steady-state free precession (SSFP) pulse sequence.
CMR parameters varied between cases giving a heterogenous mix of scanner types and
imaging parameters. MR scanner systems were GE Medical Systems (Signa 1.5T), Philips
Medical Systems (Achieva 1.5T, 3.0T, and Intera 1.5T), and Siemens (Avanto 1.5T, Espree
1.5T and Symphony 1.5T). Typical short-axis slice parameters were either a 6 mm slice
thickness with 4 mm gap or 8 mm slice thickness with 2 mm gap. Image size was ranging
from 138 × 192 to 512 × 512 pixels. The temporal resolution was between 19 and 30 frames.
Long axis images in the four and two chamber orientations were also available.

Basal, mid-ventricle and apical slices were defined semiautomatically by using one of the
manual raters, which employed a finite element LV model. The LV model was divided for
each patient into three regions with equal height and slices were assigned into regions on the
basis of this division. Note that the consensus did not make any distinction between slices;
this division was only performed for the evaluation of the results.

3. Contributing raters
There were two fully-automated raters (SCR and INR) and three semi-automated raters with
manual input (AO, AU and DS) who participated to this study. A brief summary of each
rater segmentation method is given in the following subsections.

3.1. Deformable registration method (SCR)
This fully automatic algorithm segments all phases in one slice at a time using deformable
registration, taking advantage of the strong temporal correlation between phases. The main
idea of this algorithm is to use an inverse consistent deformable registration to register all
frames to the first frame in one slice. Then, the segmentation can be applied to any frame
and propagated to any other frame in the sequence through the forward and backward
deformation fields.

First, the LV blood pool is automatically detected based on the moving components using
the first harmonic of the Fourier transform over time in each slice (Jolly, 2008).
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Subsequently, connected components between slices are grouped using isoperimetric
clustering to form the 3D blood pool. When long axis slices are available, they are used to
generate a plane approximation for the mitral valve by using a machine learning algorithm,
which detects the mitral valve leaflet anchor points in ED and ES frames (Lu et al., 2010).

The LV segmentation method is based on an inverse consistent deformable registration
approach (Jolly et al., 2010). The registration method (Guetter et al., 2011) computes a
dense deformation field between any two frames in a slice without having to explicitly
register every possible pair of frames. This is achieved by making the registration inverse
consistent so that forward and backward deformation fields are recovered during the
registration of all frames to an arbitrary keyframe, e.g. frame 1. The deformation field
between frames i and j is obtained by composing the deformation field between frames 1
and j and the inverse deformation field between frames 1 and i.

The core of the algorithm is illustrated in Fig. 2. For each slice, the first frame is segmented
by recovering endocardium and epicardium contours using a shortest path algorithm in polar
space. The contours are then propagated to the other frames using the deformation fields and
cost function is evaluated. This process is repeated for all frames in the slice and the
segmentation that results in the smallest cost function is retained. These contours are
transferred to the next slice and used as priors to the contour-based segmentation. More
details of this approach are presented in (Jolly et al., 2012). No user input was required for
this method.

3.2. Layered spatio-temporal forests algorithm (INR)
An automatic machine learning based method was proposed in (Margeta et al., 2012) to
tackle the segmentation problem by using only the class labels provided without prior
knowledge, such as a statistical model or circularity of the ventricle. This method extends
the previous random forest segmentation algorithms for multiple sclerosis lesions from
multi-channel MRIs (Geremia et al., 2011) and for LV from 3D ultrasound images
(Lempitsky et al., 2009). The images were treated directly as 3D+t volumes and the
segmentation problem was defined as voxel-wise classification into myocardium and
background.

For each voxel, a large number of spatio-temporal regional average intensity differences
were generated by randomly varying size and position of the regions with respect to the
tested voxel (see Fig. 3). This resulted in a large number of possible measurements from
which only the ones relevant for segmentation of the left ventricle were selected. This
relevancy was determined by the information gain criteria and was used to determine
optimal parameters of the splitting function at each node (e.g. feature type, box positions,
size and threshold). By recursively splitting the data and selecting the optimal split
parameters from a random sample of the parameter subset, a tree-based representation of the
segmentation problem was constructed during the training. Class label probability
distributions were assigned to each leaf based on the class distributions of the voxels that are
falling into that leaf.

During the classification process, the voxel is passed through the nodes in all trees based on
the pre-trained split parameters and its final posterior probability class distribution is
obtained as the average distribution of all reached leaf nodes (see Criminisi et al., 2012, for
more details on random forests).

The algorithm used two classification layers to tackle the segmentation problem. Both layers
were trained to segment the LV myocardium, each for a different purpose. The probability
map from the first layer was used to correct the cardiac sequences for acquisition pose
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differences by applying a robust block matching algorithm (Ourselin et al., 2000) directly on
the probability maps. Furthermore, the probability map was used to estimate myocardial
intensity for MRI intensity standardisation (Nyúl and Udupa, 1999). The second layer was
then retrained on intensity and pose standardized images, added absolute voxel coordinates
as features and was used for a more accurate final segmentation.

To be used in this collation study, the second layer posterior probability maps were
reoriented to the original pose and each voxel was then assigned the class label
(myocardium or background) with the highest posterior probability, resulting binary images
of the myocardium. This method required no user input.

3.3. Contour-constrained optical flow tracking (AO)
In this approach, a modified optical flow (OF) algorithm was used to track an initial contour

manually drawn on the initial timeframe. Let  be the sth contour point at

timeframe t, that moves with a displacement of  to the next timeframe. It can be
shown that an estimate of this displacement can be given by minimizing the following
energy function (Fahmy et al., 2012):

(1)

The first term in (1) represents the optical flow constraint and is given by

(2)

where α is a weighting parameter, ∇I = [Ix Iy It]T and J(∇I) = (∇I) · (∇I)T.

The second term in (1) represents the desired properties of the myocardium contour, which
can be formulated by the cost function proposed by (Kass et al., 1988), i.e.

(3)

where β and γ are weighting parameters.

To find the optimal solution  that minimizes Et in (1), an iterative greedy algorithm
(Lam and Yan, 1994) was used. In this algorithm, the energy function is calculated at each
pixel in the local neighbourhood of the contour point. Subsequently, the contour point is
moved to the location with the minimum energy, and the process is repeated for all contour
points until a convergence is reached.

The solution obtained by this method simultaneously minimizes both the OF and the contour
properties constraints. This yields a solution that is more optimal than that of other methods
that first calculate the displacement of the contour points using OF tracking before feeding it
to an active snake algorithm as an initial contour (Mikić et al., 1998) or as an additional
force term (Hamou and El-Sakka, 2010). This method required manual input of the contour
on the first frame.
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3.4. Block-matching algorithm (DS)
In this method, epicardial and endocardial contours were manually drawn on an initial
timeframe, i.e., t = 0, and the contours were subsequently tracked by using the block-

matching technique (Shi and Sun, 1999; Ourselin et al., 2000). The next point  was

estimated by a point Q along the radial line extending from the centroid of the contour to .
This point Q maximizes the following function

(4)

where Wt is the average wall thickness calculated from the contours, NP is 5×5 block around
P and Corr(A, B) calculates the correlation between A and B (Song, 2011). This function
was used to calculate contour points at timeframe t + 1.

A moving average 3 × 1 filter was applied to smooth the contour to remove any jumps in
motion caused by erroneous estimation of motion parameters. Finally, the wall thickness
Wt+1 was recalculated from the resulting contours and the process was repeated for the next
time frames. This method required manual input of the contours on the first frame.

3.5. Manually guide-point modeling assisted fitting of cardiac model (AU)
The Guide-Point Modeling technique (Li et al., 2010) was used to assist the fitting of a finite
element cardiac model to the CMR data. This approach involves human observer input to
refine the segmentation results by positioning a small number of guide points interactively
on a sparse subset of slices and frames. Both long axis and short axis images were included
in the analysis. The model incorporated the basal margin of the left ventricle as a plane,
which was least squares fit to points placed by the user on the hinge points of the mitral
valve in the long axis images. The model surfaces were influenced by the placement of user-
defined guide points, and the automatic generation of edge points as well as the automated
tracking of contours through all frames using non-rigid registration. The model was spatially
and temporally consistent to reduce the amount of user interaction. However, inconsistency
in breath-hold position can lead to mismatches between the short and long axis images.
Images were manually shifted in-plane to compensate for breath-hold mis-registration, but
individual slices may show errors in segmentation due to inconsistency with surrounding
images in space and time. This expert-guided method has been previously validated in
animals against autopsy LV mass, in patients with regional wall motion abnormalities
against manually drawn contours, and in healthy volunteers against flow-derived
measurements of cardiac output (Young et al., 2000). This method required expert approval
of all slices and for all frames.

4. Consensus image estimation
The consensus images were estimated by using STA-PLE (Simultaneous Truth And
Performance Level Estimation) method (Warfield et al., 2004). The method is essentially an
instance of the EM algorithm (Dempster et al., 1977), which is a statistical method to
estimate the maximum likelihood of missing or hidden data from an incomplete data set. In
STAPLE, the incomplete data set is the collection of rater decisions, while the hidden data is
the true segmentation image.

Let D be an N × R matrix of R rater decisions on N image pixels. Let T be an N-elements
vector of the true segmentation image or the hidden data to be estimated. Each element of D
and T contains a decision of one of L labels, i.e. Dij, Ti ∈ {0, 1, …, L − 1}. The complete
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data likelihood is defined as L (θ|D, T) = f (D, T|θ). The parameter θ is defined for each
rater.

Hence, there are θj parameters for j = 1, …, R and each contains L×L conditional probability
values of a rater performance. In this application, L = 2 for myocardium (labeled as 1) and
non-myocardium (labeled as 0) pixels. The conditional probability is therefore

(5)

where

(6)

(7)

In (6), pj basically defines the sensitivity or the probability that rater j correctly identifies
myocardial pixels. Similarly in (7), qj is the specificity or the probability that rater j correctly
determines non-myocardial pixels.

The parameters θ are estimated by maximizing the log likelihood of the complete data, i.e.

(8)

Given an initial θ(0) and the prior probability of the ground truth f(T), the EM algorithm
solves (8) by iterating between the expectation computation of f(T|D, θ(k)) (E-step), and
estimating the parameters θ(k) given the previous θ(k-1) (M-step), where k denotes the
iteration number (see more details in Warfield et al., 2004).

The STAPLE algorithm was initialized by calculating  from the values of the
expert-guided rater AU. The consensus was initialized to the AU rater since this was the one
with the most manual input. This approach is stable enough to reach consistent optimal
solutions. In the absence of raters with expert input, the majority vote rule from all
contributing raters should give sufficient initial parameter values.

5. Setting the prior model
The STAPLE algorithm fundamentally combines the observed data (rater decisions) with a
prior model, or f (T), of the true segmentation image. A good prior model obviously leads to
a better solution, but setting the prior model is not a trivial task.

The prior model can be defined spatially γi = f(Ti) or by a single global value γ = f(Ti), ∀i
(Warfield et al., 2004). The spatially varying prior is recommended if a probabilistic atlas is
available. If this is not available, a single global prior can be estimated from the sample
mean of the relative proportion of each label, i.e.,
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(Zhu et al., 2008) argued that the prior model is not independent from the rater performance,
i.e. f(T, p, q) ≠ f(T). Hence, they proposed a Bayesian inference approach to model the prior
in the presence of rater performance.

The single global prior (9) is suitable if the number of pixels for each label are comparable
in the image space. However, for CMR images, the number of background pixels is much
higher than the number of myocardial pixels (ranging from 50 up to more than 1,000 times).
Applying γ on these images creates an adverse effect, particularly in the contentious areas
where only a few raters decide them as myocardium. Figure 4 demonstrates this effect.

To avoid such a problem, a region of interest around the myocardium can be introduced to
limit the number of pixels. In (Suinesiaputra et al., 2012), we used the expert-guided rater
AU decisions to define the region of interest, as well as the global prior model, by setting the
region size to include the same number of foreground and background pixels. Good results
were obtained, but this solution did not treat all raters equally when deciding the prior.

If all raters have agreed upon a pixel, or

(10)

then STAPLE will not change the pixel label during the iteration. It may therefore be
beneficial to consider only pixels with rater disagreement during the STAPLE computation,
which excludes all background and foreground pixels with agreement from all raters. This
approach basically creates a region of interest defined by all raters uniformly. Consequently,
the prior γ represents the proportion of undecided myocardial pixels in the input data.

In this study, we used the latter approach to determine the prior γ. The STAPLE
implementation2 supports this approach by enabling the “assign consensus voxels” (ACV)
option. Based on our investigations, this approach returned similar results with our previous
study (Suine-siaputra et al., 2012), which used the expert regions of interest to give the same
number of foreground and background pixels (see Fig. 4).

6. Evaluation and objective test criteria
To avoid bias due to large background areas, we used regions of interest defined by the
ACV option to calculate the accuracy and similarity indices. Let T1 and T0 be the number of
pixels which characterise correctly myocardium and non-myocardium. Let F1 and F0 be the
number of pixels, which misclassify myocardium and non-myocardium. The sensitivity (p),
specificity (q), positive predictive value (PPV) and negative predictive value (NPV) are
defined as follows

(11)

To measure the similarity of two binary images, we used the Jaccard index, which measures
the ratio of the overlap area. It is defined as

(12)

2http://crl.med.harvard.edu/software/STAPLE/index.php
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where | · | denotes the cardinality of a set for  and . Note that we did not use the
Dice index in this study, because the Jaccard indices are uniformly distributed, while the
Dice indices are more inclined toward high values (Chang et al., 2009).

Clinical LV functional parameters were assessed by means of endocardial volume (EDV),
epicardial volume (ESV), ejection fraction (EF) and LV mass. Endocardial and epicardial
volumes were computed by using pixel summation method. The EF measures the volumetric
fraction of blood pumped out of the LV, which is defined as EF = (EDV - ESV) /EDV ×
100%. The LV mass was calculated by the myocardial volume at ED, i.e. subtraction of
epicardial volume by endocardial volume, multiplied by the myocardial density (1.05 g/ml).
These are standard clinical parameters used to clinically evaluate LV function from MRI
(Salton et al., 2002).

In this paper, we also investigated an assessment test for the inclusion of an automated rater
into the consensus. We propose a global measure based on the joint distribution of
sensitivity (p) and specificity (q). Adapted from (Commowick and Warfield, 2010), the
distributions of p and q are first transformed into normal-like distribution using Logit
transformation (Collins et al., 1992):

(13)

where X ∈ (0, 1) is a random variable. Note that (13) is undefined for X = 0 and X = 1.
Since 0 ≤ p, q ≤ 1, the Logit transformation (13) can be directly applied to the sensitivity and
specificity distributions of each rater.

We used an unpaired two-sided t-test of the Bhattacharyya distances (Fukunaga, 1990) to
test whether the distances between the automated rater performance distribution and those of
the manual raters are different from the manual inter-rater distances. The Bhattacharrya
distance for two normal rater distributions (r1 and r2) is given as follows

(14)

where  is the estimated mean of a rater performance distribution, and Σ is the
corresponding covariance matrix.

7. Experimental setup
All raters delineated myocardium in short-axis cine MRI, producing binary images with 0
(background) or 1 (myocardium) pixel labels. The STAPLE algorithm was applied on each
2D image slice independently. The STA-PLE algorithm estimated the consensus binary
images with the ACV option enabled. Only images with more than two rater segmentations
were included in the experiment. The outputs of the STAPLE algorithm were probability
map images. A threshold value p > 0.5 was chosen empirically to determine myocardial
pixels. We performed experiments on different threshold values between 0.2 to 0.7 and the
average accuracies were similar within this range.

The consensus was initially applied to all five contributing raters, which we called CSALL.
Another consensus (CSMAN) was built from three raters with manual intervention, i.e. AU,
AO and DS. The two consensus sets were compared to investigate the effect of adding
automated raters. Comparisons of each rater with CSMAN could then be performed to
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establish clinical functional parameters and performance distribution criteria for the
incorporation of automated raters into the consensus.

In this paper, SCR and INR were used as examples of two automated raters which could
possibly be incorporated into the baseline consensus (CSMAN) to improve the overall
ground truth. Those raters passing the Bhattacharrya distances (14) t-test (within 95%
confidence intervals of intra-manual rater distances) were included in a new consensus,
called CS*.

8. Results
8.1. General rater performance

Figure 5 shows representative examples of segmentations from each rater with the two
consensus. In general, STAPLE generated acceptable consensus images if the region of
interest was limited to the rater disagreement area. The performance of each rater using both
the CSMAN, CSALL and CS* as reference are shown in Table 2. The performance of the
three manual raters (AU, AO and DS) were generally high for both sensitivity and
specificity. For INR, it was high in sensitivity but low in specificity, while SCR was high in
specificity but low in sensitivity. The highest similarity of segmented images were achieved
by the manual raters. Automated raters achieved slightly lower similarity performances.

Clinical functional parameters are compared in Table 4. These show the average difference
and standard deviation of the differences between each rater and the consensus, as well as
the root mean squared error (RMSE). AU was the closest to the consensus. AO had a
somewhat overestimated ESV relative to the other raters with manual input. Although INR
EF bias was small, INR produced the largest deviation from the consensus mass and
volumes. This was because INR included papillary muscles in the myocardium, not the
blood pool, in contrast to the other raters (see Fig 5). This can also be seen in Table 4 where
there are large mass biases for the INR rater.

Table 3 shows the average similarities between individual raters and between the three
consensus segmentations (CSMAN, CSALL and CS*). Higher similarity was achieved
between each rater and the consensus segmentations than between individual raters, which
shows that the consensus segmentations act as a better reference ground truth than any one
particular rater.

8.2. Regional and temporal variation of rater performance
Figure 6 compares PPV and NPV values in three regions of cardiac levels: base, mid-
ventricle and apex. In general, PPV and NPV had slightly higher values and less scatter at
the mid-ventricle, with reduced performance in apical slices.

Figure 7 shows the regional variation of agreement for a single representative case. Cohen’s
kappa coefficient (Cohen, 1960) was used to visualise areas of disagreement. The most
disagreement was found at the apex and base, particularly around the outflow tract (arrow).
Other areas of greater disagreement could be seen around the trabeculae and papillary
muscles.

Figure 8 shows the temporal variation of the rater performance. PPV was used in this case,
because it accounts for the accuracy of a rater to determine myocardium without the
influence of the number of background pixels. Hence, the difficulty to segment thin walled
myocardium compared to thick walled myocardium will be proportionally represented. The
behaviour shown in Fig. 8 varied among raters, showing different methods had different
temporal behaviour. Consistent with Table 4, AO performance was reduced at ES.
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8.3. Assessment of automated raters for new consensus
Figure 9 shows a graphical representation of joint sensitivity and specificity distributions
from all raters after being normalised with the Logit transformation (13). The four quadrants
of this graph represent different types of segmentation results (good, poor, over and under
segmentation). Ideally, a rater should have a distribution towards the top right corner of the
figure, which are demonstrated by the manual raters (AU, AO and DS).

Table 5 shows the Bhattacharrya distances (14) between each rater distribution. The
Bhattacharyya distances of INR vs. the manual raters were > 0.8, while those of SCR were <
0.3. The INR distances were significantly greater than the distances between manual raters
(p < 0.05, CI = 95%), whereas the SCR distances were not significantly different from the
distances between manual raters (p = 0.49). Thus the oversegmentation of INR seen in Fig. 9
was statistically significant, whereas the slight undersegmentation of SCR was not
significantly different from the manual raters. On the basis of this test, the SCR rater was
added with AO, AU and DS into CS*.

Table 2 also shows the rater performances against CS*. Performance results were quite
consistent between the CSMAN, CSALL and CS* consensus segmentations. Clinical
functional parameters (Table 4) show that the volume and mass differences of manual raters
were maintained in CS* from CSMAN. The changes were all under 5 ml or g, which is
clinically insignificant.

9. Discussion
STAPLE was designed to estimate hidden true segmentation images by maximizing the
performance (sensitivity and specificity) of all raters simultaneously by using no knowledge
other than their own decisions (Warfield et al., 2004). The resulting segmentation therefore
represents the maximum possible performance of each rater when they need to reach a
consensus amongst them.

9.1. The characteristics of input raters
The AU, AO and DS raters had manual input, either from manual contouring for
initialisation (AO and DS) or by full spatiotemporal interaction (AU). For AO and DS, the
initial contours placed on the first frame were tracked through the subsequent frames using
an optical flow algorithm (for AO) and a block matching algorithm (for DS). The initial
segmentation accuracy is therefore likely to have an effect on all frames. Since the manual
input varied between raters, the PPV differences in Table 2 were therefore mainly due to the
inter-observer variability.

Based on Table 2, the performance of the three manual raters were high, both in terms of
identifying correct myocardium and labeling background pixels. The segmentation image
similarities were also higher compared to automated raters. This high consistency was to be
expected because of human expertise was involved during the segmentation process. To
examine the performance of raters in subgroups of different cardiac function, we divided the
cases into three groups: EF < 40%, 40% ≤ EF < 60%, and EF ≥ 60%. The results were
similar in each case.

9.2. Locus of disagreement
Figure 7 shows a comparison of disagreements of a particular case between individual raters
and between raters and the consensus. In this case, there is a large disagreement at base and
apex, which corresponds to the difficulty to draw contours in these areas. The problem of
where to determine the LV boundary at the outflow tract is still an open question which

Suinesiaputra et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



must be addressed by the community (see arrow in Fig. 7). Additional problem areas arise
due to the low contrast ratio at apex, partly due to the partial volume effect, particularly at
late-systole where the blood cavity is poorly seen.

Similarity indices from all raters were higher for midventricular slices, than apex and base
slices. Thus raters did not experience a significant problem to segment midventricular
myocardium, due to crisp endocardial and epicardial boundaries throughout the whole
cardiac cycle. However, we found low similarity indices by INR with each consensus,
because of the inclusion of papillary muscle in their algorithm (Fig. 5(b)). Figure 7 also
shows this effect.

The temporal consistency of each rater to determine myocardium across normalised cardiac
cycle was shown in Fig. 8. This was variable between raters, and indicated the range of each
raters precision rate for segmenting myocardium. This can be useful for future development
of segmentation algorithms. For example, one rater may wish to improve their algorithm on
a specific timeframe, while others might wish to investigate improvement in all cardiac
frames.

9.3. Adding automated raters to the consensus
Although raters with manual intervention (AO, AU and DS) consistently outperformed the
automated raters (INR and SCR), there were benefits to adding automated raters to the
consensus segmentation. The test for Bhattacharrya distances confirmed that the SCR rater
could feasibly be included in the consensus, but that the INR rater should be excluded.

One benefit of adding automated raters is shown in Fig. 10 where the CSMAN consensus
was improved by the addition of the SCR rater (CS*). In Fig. 11, we show three
comparisons of the CS* consensus against the expert-guided rater AU, showing that the
consensus can be more robust than an expert-guided rater. This was confirmed in Table 3,
which showed that the agreement with the consensus was higher for all raters, indicating that
the consensus is more robust than any individual rater.

Problem areas arise at the LV outflow tract (Fig. 10 bottom). This needs further
consideration by the community before clinically meaningful segmentations can be derived.
Other problems that are commonly encountered in the segmentation of myocardium are
image artifacts due to gating or breathing issues, or off-resonance effects. The best way to
reach a definite consensus for these issues is to have as many raters as possible.

The inclusion of automated methods is valuable since they have a deterministic response to
image features. If there are only a limited number of expert manual raters available,
automated methods can therefore add value to the consensus. In this way, we expect that the
consensus estimate will become more robust as more participants contribute results.

9.4. Limitations
With only three raters in the initial consensus CSMAN, the test for inclusion of automated
raters based on the Bhattacharrya distance lacks power. However, with more raters being
contributed to the consensus, this test should become more powerful. Other tests are also
possible. Our work demonstrates the ability of such tests in the application of consensus
building and shows how raters can be compared and evaluated (in the example of the
oversegmenting INR rater).

The STAPLE algorithm estimates the probability of each pixel independently. Hence,
information about the neighboring pixel is not taken into account. As such, there is a
possibility of forming an unwanted over-segmentation of the cavity inside the myocardium.
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It would be beneficial to incorporate spatially correlated structure as suggested by (Warfield
et al., 2004). Particularly for cardiac image segmentation, one might want to include
spatiotemporal correlated structure embedded into the iteration to produce not only
homogenous myocardial areas, but also smooth temporal myocardium across cardiac phases.

We found that STAPLE produced high quality consensus images if the region of interest
was limited to the area of discrepancy between raters. Having a larger region of interest
tended to produce over-segmentations (see Fig. 4). Good results were also obtained if the
region of interest was limited to include roughly equal numbers of background and
foreground pixels. This issue requires further investigation.

In this study, the consensus segmentation images were generated based on pixels. The
drawback of this approach is that the myocardial borders are not smooth compared to
continuous model-based or contour-based segmentation methods with sub-pixel resolution.
Contour-based STA-PLE variation (Commowick and Warfield, 2009) may solve this
problem, which will produce better and smoother myocardial borders.

10. Conclusion
We have presented results of generating consensus images for myocardium from a mixed of
fully and semi automated segmentation algorithms. We have also investigated how adding
automated raters can add value to the consensus segmentation. The results show that the
STAPLE algorithm is a promising tool to generate the consensus images for cardiac MRI.
Some improvements are still needed to be done, particularly in incorporating spatiotemporal
information and resolving rater disagreements in some areas.

This collaborative framework is a first attempt towards establishing ground truth images for
validation and benchmarking of segmentation algorithms. The number of raters involved in
this study is still small. This is not a sufficient number of raters to produce a definite
consensus. The more raters involved the better the ground truth images will become.
Specific inclusion criteria for automated raters have been introduced to maintain the quality
of the consensus, which are based on the distribution of rater performance.

Currently, we are continuing this collaboration study as an open ongoing project through the
Cardiac Atlas Project website. The consensus images will be made available to research
groups who contribute to this work, and to other researchers for purposes other than
segmentation. In providing these consensus images, we require that they are not used to train
new segmentation algorithms, so they can continue to be used as an independent validation.
The consensus images will also be updated as new segmentation results are contributed.
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A collaboration to establish consensus ground truth segmentations for cardiac MRI.

Consensus contours combined automated algorithms with expert rater by using STAPLE.

Limiting regions of rater discrepancy maintained high quality consensus images.

More raters would further increase the quality of consensus segmentation images.

An objective measure based on global rater performance is introduced to test a candidate
rater.
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Figure 1.
Examples of expert rater differences (white arrows) to delineate myocardium due to
different interpretation of where the contours should lie.
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Figure 2.
Slice segmentation in SCR algorithm: for each frame p = 1, …, P, recover a contour using
Dijkstra’s algorithm in polar space, propagate the contour to all other frames, and repeat.
Choose the combination of contours (in this case recovered from frame 17) with the lowest
cost.
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Figure 3.
Illustration of extracted image based features in layered spatio-temporal forest algorithm. a)
Context rich features (Geremia et al., 2011) measuring differences between source regional
average intensity centered at tested voxel (white box) and the sum of remote region averages
(gray boxes). b) Extension of the features to the spatio-temporal domain, where remote
regions are placed in a frame offset from the current t by a constant value ∆ t.
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Figure 4.
The effects of different global priors to the STAPLE results on two cases. The leftmost
figures are rater decisions on top of each other with color scale from red = 1 rater to yellow
= 5 raters. The remaining four right figures are STAPLE computations with different ways
to compute global prior values. The ‘full’ column figures are STAPLE images from the
whole image region, the ‘60×60’ column shows STAPLE images from cropped rater images
by 60 × 60 rectangular pixels, the ROI denotes region of interest approach around
myocardium defined by the expert-guided rater (AU) to give the same number of foreground
and background pixels, and the ACV stands for “assign consensus voxels” option where
STAPLE only included pixels with rater disagreements during the estimation.
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Figure 5.
Three representative examples of raters and CS* taken from base (a), mid-ventricular (b)
and apical (c) slices.
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Figure 6.
Comparison of PPV and NPV values from each rater between CSMAN and CSALL
consensus.
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Figure 7.
Bullseye plots of rater disagreement from a particular case. Left: rater-rater disagreements.
Right: rater-consensus disagreement. Color coded values are median of weighted Cohen’s
kappa coefficients ranging from poor (red) to good (white) agreement.
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Figure 8.
Average positive prediction values (precision rates) over cardiac frames (ED=end-diastole,
ES=end-systole). Colors indicate short-axis levels: red = basal slices, green = mid-slices,
blue = apical slices.
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Figure 9.
Distributions of sensitivity and specificity values after Logit transformation (13). The value
of Logit(0) is equal to sensitivity/specificity at 0.5. Therefore regions centered at the origin
(dashed lines) define four characteristics of segmentation results. The rater labels are at the
peak of each distribution, with the colors are: INR in red, SCR in green, and manual raters
(AU, AO and DS) in black.
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Figure 10.
Some comparisons between CSMAN (left) and CS* (right) consensus images, which show
that adding automated raters can benefit the consensus in some cases.
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Figure 11.
Some comparisons between AU (top) with the CS* consensus (bottom). These examples
show that the consensus can be better than an individual expert-guided rater.
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Table 1

Patient data characteristics. Numerical data are expressed by ‘average (min–max)’ values.

Sex

 Male: 73 (76.8%)

 Female: 22 (23.2%)

Age: 62.73 (34–84)

Systolic blood presure (mmHg): 122.96 (70–195)

Diastolic blood presure (mmHg): 71.49 (42–106)

Heart rate (bpm): 67.41 (45–105)
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Table 2

Rater performance comparisons between CSMAN, CSALL and CS*. All values are expressed as ‘mean
(standard deviation)’.

sensitivity specificity PPV NPV Jaccard

AO

CSMAN 0.88 (0.15) 0.92 (0.09) 0.87 (0.13) 0.93 (0.08) 0.79 (0.19)

CSALL 0.85 (0.15) 0.95 (0.07) 0.92 (0.11) 0.92 (0.07) 0.79 (0.16)

CS* 0.88 (0.15) 0.91 (0.06) 0.82 (0.12) 0.94 (0.06) 0.74 (0.16)

AU

CSMAN 0.85 (0.16) 0.95 (0.07) 0.91 (0.13) 0.92 (0.08) 0.80 (0.19)

CSALL 0.80 (0.15) 0.97 (0.08) 0.94 (0.12) 0.90 (0.07) 0.77 (0.17)

CS* 0.89 (0.13) 0.96 (0.06) 0.91 (0.13) 0.95 (0.06) 0.84 (0.17)

DS

CSMAN 0.80 (0.18) 0.86 (0.10) 0.77 (0.17) 0.88 (0.10) 0.67 (0.21)

CSALL 0.78 (0.16) 0.90 (0.09) 0.84 (0.15) 0.88 (0.08) 0.69 (0.17)

CS* 0.80 (0.17) 0.86 (0.08) 0.74 (0.15) 0.90 (0.08) 0.64 (0.18)

INR

CSMAN 0.88 (0.17) 0.53 (0.18) 0.54 (0.09) 0.91 (0.10) 0.49 (0.10)

CSALL 0.86 (0.20) 0.60 (0.16) 0.56 (0.11) 0.90 (0.11) 0.51 (0.13)

CS* 0.89 (0.17) 0.56 (0.15) 0.50 (0.10) 0.93 (0.09) 0.43 (0.10)

SCR

CSMAN 0.66 (0.22) 0.92 (0.06) 0.83 (0.14) 0.83 (0.08) 0.59 (0.19)

CSALL 0.63 (0.24) 0.98 (0.04) 0.91 (0.16) 0.83 (0.09) 0.61 (0.24)

CS* 0.74 (0.23) 0.96 (0.05) 0.87 (0.16) 0.89 (0.09) 0.69 (0.23)
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Table 3

The average of Jaccard similarity indices between individual raters and between consensus images for
comparison.

AO AU DS INR SCR

AO — 0.64 0.59 0.44 0.53

AU 0.64 — 0.57 0.40 0.56

DS 0.59 0.57 — 0.42 0.48

INR 0.44 0.40 0.42 — 0.34

SCR 0.53 0.56 0.48 0.34 —

CSMAN 0.79 0.80 0.67 0.49 0.59

CSALL 0.79 0.77 0.69 0.51 0.61

CS* 0.74 0.84 0.64 0.43 0.69
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Table 5

Bhattacharyya distances between each distributions in Fig. 9.

AU DS SCR INR

AO 0.19 0.13 0.18 0.89

AU — 0.26 0.14 1.32

DS — 0.26 0.84

SCR — 1.06
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