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Abstract

This study examined the effects of recurrent sleep restriction on the plasma metabolome of adults
with familial risk of type 2 diabetes. Eleven healthy adults (6M/5F; mean [SD] age: 26 [3] years;
BMI 23.5 [2.3] kg/m?) with parental history of type 2 diabetes participated in a two-condition,
two-period randomized crossover study at the Clinical Resource Center at an academic hospital.
Each participant completed two 8-night inpatient sessions with restricted (5.5-h time-in-bed) vs.
adequate (8.5-h time-in-bed) sleep opportunity while daily food intake and physical activity were
carefully controlled. A combination of two UHPLC/MS/MS platforms and one GC/MS platform
was used to measure 362 biochemicals in fasting plasma samples collected from study participants
the morning after each 8-night sleep treatment. Relative concentrations of 12 amino acids and
related metabolites were increased when sleep was curtailed. Sleep restriction also induced
elevations in several fatty acid, bile acid, steroid hormone, and tricarboxylic acid cycle
intermediates. In contrast, circulating levels of glucose, some monosaccharides, gluconate, and
five-carbon sugar alcohols tended to decline when sleep was reduced. Recurrent sleep curtailment
affected multiple pathways of intermediary metabolism in adults at risk for type 2 diabetes. An
elevation in plasma amino acids and related biochemicals was the most pronounced metabolic
signature seen in response to 8 nights of sleep restriction.
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1. Introduction

Changes in sleep duration have been related to alterations in human energy and substrate
metabolism.! In addition, epidemiological data raise the possibility that insufficient sleep
may increase the risk of diabetes,2 but the biochemical pathways which underlie these
findings are poorly understood.

Individuals with parental history of type 2 diabetes have increased risk of developing the
disease, particularly in the setting of weight gain and physical inactivity,3 and may be more
susceptible to the metabolic effects of insufficient sleep. Metabolomic profiling can
identify biochemical signatures involved in the pathogenesis of type 2 diabetes.>® However,
this promising methodology has not been used to assess the impact of recurrent sleep
restriction on human intermediary metabolism. To identify biochemical signatures that may
reflect the effects of sleep curtailment on metabolic risk, we compared the plasma
metabolite profiles of healthy adults with parental history of type 2 diabetes following
experimental exposure to restricted and adequate sleep opportunity in metabolic-ward
settings with controlled food intake and physical activity.

2. Methods

2.1 Subjects and Experimental Procedures

Participants were part of a larger study on sleep loss and daily physical activity.10 Briefly,
men and women between the ages of 21 and 40 y with body mass index between 20 and 27
kg/m2 who lived in the greater Chicago area and had at least one parent with type 2 diabetes
were recruited through local media advertisements. We excluded subjects who had: any
acute or chronic medical condition; self-reported sleep problems (Pittsburgh Sleep Quality
Index score >7), night work or habitual daytime naps; recent (<4 weeks) travel across time
zones; history of irregular menstrual periods or pregnancy during the past year; depressed
mood (Center for Epidemiologic Studies Depression Scale score >15 confirmed by clinical
interview); excessive alcohol intake (>14 drinks/week for men; >7 for women); use of
tobacco, prescription, over-the-counter, and illicit drugs or supplements that can affect sleep
or metabolism; and abnormal findings on physical exam or laboratory testing. All subjects
were screened by full overnight polysomnography to exclude sleep pathology.19 To ensure
comparable daily activity during each study period,19 only subjects who did not exercise
were included in this analysis (n=11; 5 women and 6 men; mean [SD] age 26 [3] y; BMI
23.5 [2.3] kg/m?). The study protocol was registered (ClinicalTrials.gov Identifier
NCTO00721019) and approved by the Institutional Review Board of the University of
Chicago. Participants gave written informed consent and were paid for their participation.

Each participant completed two 8-night inpatient sessions with restricted (5.5-h time-in-bed)
vs. adequate (8.5-h time-in-bed) sleep opportunity in random order at least 3 weeks apart (6
participants were studied in the 5.5-h time-in-bed condition first and 5 in the 8.5-h time-in-
bed condition first).10 Women completed each study session during the same phase of their
menstrual cycle. To expose participants to comparable “occupational” activity during each
study, they performed office work tasks for 6 h/day and spent most of the remaining waking
time engaged in indoor leisure activities.1 No naps or exercise were allowed and a member
of the research staff monitored participant safety and compliance during all waking hours.
Continuous wrist actigraphy (Actiwatch-64; Mini-Mitter Respironics, Bend, OR) and waist
accelerometry (Actical; Mini-Mitter Respironics) were used to measure sleep and physical
activity during each session.10

Participants received the same 3d-cycle rotating menu customized to their individual food
preferences during each study session.1? This nutritionally balanced diet had initial caloric
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content equal to 1.5 times the resting metabolic rate of the participants at the time of
screening. Participants were weighed each morning before breakfast and energy intake was
adjusted as needed to avoid >1% changes in body weight. Daily calories were divided
among breakfast ( 25%, 8:00-9:00), lunch ( 30%, 12:30-13:30), dinner ( 35%,
18:30-19:30) and an evening snack ( 10%, 21:00). Participants were allowed a caffeinated
beverage with breakfast and lunch as needed to match their usual caffeine intake at home.
The caloric content and macronutrient composition of consumed meals, snacks, and
beverages were calculated using Food Processor SQL (version 10.10, ESHA Research,
Salem, OR). Energy intake records of one participant were incomplete and were not used for
analysis.

Fasting plasma samples were collected at the end of each study session in the morning
between 9:30-10:00 after 8 nights with 8.5 vs. 5.5-h time-in-bed. Samples were stored at
-20°C until the end of the study and shipped on dry ice to Metabolon, Inc., Durham, NC.

2.2 Metabolic profiling

The non-targeted metabolic profiling approach combined three independent platforms:
ultrahigh performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS)
optimized for positive ionization, UHPLC/MS/MS optimized for negative ionization, and
gas chromatography/mass spectrometry (GC/MS).11 For each 100uL biosample, protein was
precipitated from plasma with methanol that contained standards to report on extraction
efficiency. The resulting supernatant was split into equal aliquots for analysis on each
platform. Aliquots, dried under nitrogen and vacuum-desiccated, were subsequently either
reconstituted in 50uL 0.1% formic acid in water (acidic conditions) or in 50uL 6.5mM
ammonium bicarbonate in water, pH 8 (basic conditions) for the two UHPLC/MS/MS
analyses or derivatized to a final volume of 50uL for GC/MS analysis using equal parts
bistrimethyl-silyl-trifluoroacetamide and solvent mixture acetonitrile: dichloromethane:
cyclohexane (5:4:1) with 5% triethylamine at 60°C for one hour.

For UHPLC/MS/MS analysis, aliquots were separated using a Waters Acquity UPLC
(Waters, Millford, MA) and analyzed using an LTQ mass spectrometer (Thermo Fisher
Scientific, Inc., Waltham, MA). Derivatized samples for GC/MS were separated on a 5%
phenyldimethyl silicone column with helium as the carrier gas and a temperature ramp from
60°C to 340°C and then analyzed on a Thermo-Finnigan Trace DSQ MS (Thermo Fisher
Scientific, Inc., Waltham, MA).

Metabolites were identified by automated comparison of the ion features in the experimental
samples to a reference library of chemical standard entries that included retention time,
molecular weight (m/2), preferred adducts, and in-source fragments as well as associated
MS spectra, and were curated by visual inspection for quality control using software
developed at Metabolon, Inc.12

2.3 Data analysis and statistics

The effect of bedtime restriction on sleep and physical activity was examined using
repeated-measures analysis of variance controlling for sampling sequence, order-of-
treatment, and gender (SPSS 19.0, 2011, SPSS Inc. IBM, Chicago, IL). Weight maintenance
parameters during each sleep condition were compared using paired t-tests.

To assist with data visualization, raw area counts for each metabolite were rescaled by
dividing all sample values by the median value for each individual metabolite. Each
individual determination was then expressed as a ratio relative to this median value, to
determine fold-changes in metabolite concentrations. Missing metabolite values were
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assumed to be below the limits of detection and were imputed with the compound minimum
(minimum value imputation).

Statistical analysis of metabolomics data was performed using “R” software (http://cran.r-
project.org/). Relative observed concentrations for each metabolite were log transformed
prior to statistical analysis to produce a more normal data distribution. A crossover model
controlling for sampling sequence, order-of-treatment, and gender was used to compare the
two sleep conditions. Multiple comparisons were accounted for by estimating the false
discovery rate using ¢-values.13 P-values <0.05 were considered statistically significant and
values <0.10 were reported as trends.

As expected, participants fell asleep faster and had higher sleep efficiency during the 5.5-h
time-in-bed condition (P<0.001) when daily sleep was reduced by 2 h 12 min (SD 17 min)
(Table 1). Energy and macronutrient intake was comparable, and body weight was well
maintained without differences in pre- and post-treatment measurements between sleep
conditions (Table 1). The amount of total daily movement recorded during each study
session was also well-matched (Table 1).

3.1 Global metabolic profiling

Using a combination of two UHPLC/MS/MS platforms and one GC/MS platform, 362
biochemicals were identified in fasting plasma samples obtained from study participants at
the end of each sleep condition (see Tables 3, 4, and 5). Overall, 16 biochemicals changed
significantly (P<0.05) after sleep was curtailed (13 metabolites increased and 3 decreased).
In addition, 17 biochemicals showed trends towards change (0.05< p <0.10) when
comparing metabolic profiles at the end of the 5.5 and 8.5-h time-in-bed condition (12
biochemicals increased and 5 decreased). The greatest number of significant and trending
biochemical changes when comparing the two sleep conditions was related to amino acid
and peptide metabolism (12 biochemicals), followed by lipid metabolism (8 biochemicals),
carbohydrate and energy metabolism (6 biochemicals), xenobiotics (4 biochemicals),
cofactors and vitamins (2 biochemicals), and nucleotide metabolism (1 biochemical) (Table
2).

3.2 Changes in amino acid and peptide metabolism

All amino acids and associated degradation products that changed in response to sleep
curtailment showed elevated concentrations at the end of the 5.5-h time-in-bed condition
(Tables 2 and 3).

3.3 Changes in lipid metabolism

Sleep restriction was accompanied by elevations in biochemicals involved in free fatty acid,
bile acid, and steroid hormone metabolism, including increased levels of medium-chain fatty
acids (caproate), fatty acids conjugated to carnitine (2-decenoy! carnitine), secondary
(deoxycholate) and sulfate-conjugated (glycocholenate sulfate) bile acids, circulating
lysolipids (2-myristoylglycerophosphocholine), cholesterol, and the major bile acid
precursor 7-a-hydroxy-3-oxo-4-cholestenoate (7-Hoca) (Table 2). Only B-sitosterol - a
plant-derived sterol that reduces cholesterol absorption in the intestine and lowers plasma
cholesterol levels - was significantly decreased following sleep restriction (Table 4).

3.4 Changes in glucose and energy metabolism

There were several significant and trending changes in metabolites related to carbohydrate
metabolism and mitochondrial energy production via the Krebs cycle between the two sleep
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conditions (Table 2). In general, circulating levels of glucose and related monosaccharides/
sugar alcohols (mannose) were lower at the end of the restricted sleep condition, as were
gluconate and five-carbon sugar alcohols associated with the pentose phosphate pathway
(xylonate). In addition, a shift towards elevated Krebs cycle intermediates, including malate,
seemed to emerge when sleep was curtailed (Table 5). 3.5 Other changes.

Experimental sleep restriction was accompanied by additional changes in several
biochemicals related to cofactor/vitamin (pantothenate and y-CEHC) and xenaobiotic
(benzoate, 2-hydroxyisobutyrate, piperine, and theophylline) metabolism, as well as the
processing and/or excretion of some endogenous metabolites that can also be obtained from
outside sources (e.g. creatine, 1,6-anhydroglucose, gluconate, p-sitosterol, and cholesterol)
(Table 2).

4. Discussion

Self-reported lack of sufficient sleep has been hypothesized to contribute to the development
of insulin resistance and type 2 diabetes.2 14-17 Although experimental sleep deprivation is
known to alter substrate utilization and energy metabolism,! a detailed description of the
specific biochemical changes resulting from insufficient sleep is still lacking. The purpose of
this pilot study was to globally profile the plasma metabolome of healthy adults at risk for
type 2 diabetes exposed to recurrent sleep restriction (time-in-bed 5.5h/night) vs. adequate
sleep opportunity (time-in-bed 8.5h/night) in a carefully controlled metabolic-ward setting.
We were successful in changing daily sleep duration from 7hto 5h (which approximates
the epidemiologic sleep categories with low vs. high metabolic risk) while participants
maintained comparable levels of food intake, total daily activity, and body weight during
each study session (Table 1). The most pronounced metabolic signature when sleep was
curtailed was an elevation in multiple plasma amino acids and related metabolites (Table 2).
Despite previous reports of detrimental effects of sleep restriction on insulin sensitivity and
glucose tolerance,14-17 fasting plasma concentrations of glucose, some monosaccharides,
gluconate, and five-carbon sugar alcohols tended to be lower when sleep was curtailed
(Table 2). Also, a strong signature of atherogenic changes in lipid metabolism was not seen
at the end of the 5.5-h time-in-bed condition (Table 2). Overall, this pilot study indicates that
sleep-loss-induced changes in human plasma metabolome can be detected with a small
sample size under well-controlled experimental conditions.

Observed changes in plasma histidine, serotonin, isoleucine, y-glutamylglutamine, and
metabolites related to energy metabolism (creatine) may be related to some of the known
catabolic effects of sleep loss. Previous studies in rodents!® and humans!®-21 have suggested
that sleep loss has catabolic effects on whole-body protein metabolism and lean body mass.
For example, obtaining less sleep at times of reduced food intake may require additional
support of the energy needs of glucose-dependent tissues via increased protein breakdown
and loss of lean body mass.?! Together with the concomitant reduction in overnight insulin
secretion and fasting blood glucose concentrations in this setting,22 such findings suggest a
metabolic adaptation to limited carbohydrate availability in the face of increased demand
induced by extended wakefulness. The pattern of declining fasting plasma glucose and
pentose phosphate pathway intermediates (gluconate, xylonate) in the present study suggests
that postabsorptive carbohydrate availability may be reduced even when short sleep occurs
in combination with a weight-maintenance diet. Furthermore, we did not find a strong
signature of sleep-loss-related changes in glycolysis, gluconeogenesis, or glycogen
metabolism. Instead, declines in fasting glucose coupled with a pattern of elevations in
amino acids, related catabolites, and some tricarboxylic acid cycle intermediates (malate)
suggest enhanced anaplerotic contribution of amino acids to the Krebs cycle raising the
possibility that increased postabsorptive protein catabolism may contribute to overall energy
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homeostasis under short sleep conditions. In addition, plasma creatine - a nitrogenous
compound synthesized from the amino acids arginine, glycine, and methionine - was
elevated when sleep was curtailed. This may also have relevance to energy metabolism as
phosphorylated creatine synthesized primarily by the liver and kidneys is taken up by
peripheral tissues and serves as a reservoir for rapid generation of adenosine-triphosphate
(ATP) to satisfy acute elevations in local energy needs.

Large-scale metabolomic studies have consistently linked systemic insulin resistance with a
set of elevated amino acid concentrations in serum and plasma.6-9: 23. 24 Opservational and
experimental data also raise the possibility that increased insulin resistance may contribute
to the increased metabolic risk related to short sleep.14-17 Preliminary measurements in our
laboratory indicate that fasting insulin concentrations and homeostatic model assessment of
insulin resistance (HOMA-IR) estimates tend to be lower at the end of the 5.5-h time-in-bed
condition. This is consistent with observations in sleep-restricted overweight dieters?2 and
free-living participants in the CARDIA study with reduced quantity and quality of sleep who
also had reduced fasting insulin concentrations and lower HOMA-IR.2® In agreement with
the metabolic profiles associated with insulin resistance,%% 23. 24 the elevations in plasma
amino acids and related metabolites induced by sleep loss in the present study may be
related to systemically decreased insulin signaling, albeit as a result of reduced insulin
secretion and not sensitivity.2

Some of the sleep-loss-induced alterations in amino acids and related metabolites identified
via global metabolomic profiling are known to have biological activities relevant to the
control of the sleep-wake cycle. For example, the hypothalamic histaminergic system is
involved in the regulation of wakefulness and rapid-eye-movement sleep,2” and levels of
plasma histidine, which crosses the blood-brain barrier and can be metabolized to
histamine,28 were significantly increased by sleep restriction. In addition, sleep restriction
was accompanied by alterations in tryptophan metabolism including elevations in
glycosylated tryptophan and the neurotransmitter serotonin which is derived from
tryptophan. In the pineal gland, which is not protected by the blood-brain-barrier, serotonin
can be further metabolized to melatonin and once again contribute to the regulation of the
sleep-wake cycle.?? Finally, the most abundant amino acid in plasma, glutamine, can be
transported across the blood-brain-barrier3% and undergo conversion into glutamate - a
neurotransmitter which is increased in the posterior hypothalamic region of sleep-deprived
rodents.3! Interestingly, y-glutamylglutamine was elevated at the end of the short-sleep
condition of our experiment and addition of a y-glutamyl group to amino acids is often used
to enhance the transport of these metabolites.

A few significant or trending elevations in biochemicals related to lipid metabolism at the
end of the 5.5-h time-in-bed condition were consistent with previous reports of increased
fasting free fatty acid concentrations in sleep-restricted individuals.1”- 22 However, while
overweight individuals placed on a reduced-calorie diet had lower fasting cholesterol
concentrations when their sleep was curtailed,2? plasma cholesterol was higher when
participants in the present study receiving a weight-maintenance diet obtained less sleep. In
addition, short sleep was accompanied by elevations in bile acids and the major bile acid
precursor 7-Hoca, whereas the diet-derived cholesterol-lowering phytochemical p-sitosterol
was reduced. Since bile acid synthesis is a primary route for cholesterol excretion and can
affect intestinal absorption of dietary fats, these observations suggest that sleep duration may
interact with various dietary and intrinsic gastrointestinal factors to influence systemic lipid
metabolism.

Due to the high cost and technical difficulty of such inpatient sleep restriction studies, our
proof-of-concept analysis had a small sample size and expectedly high g-values. It should
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also be noted that despite the carefully controlled living environment and dietary oversight
of the study, some of the biochemical changes in the cofactor, vitamin, and xenobiotic
superpathways may have been related not only to sleep-loss-induced differences in their
metabolism and clearance, but also to potential variability in food intake and environmental
exposure during the home free-living period before each treatment. Despite its limitations,
this study was the first to perform global plasma metabolite profiling in healthy individuals
at risk for type 2 diabetes under restricted vs. adequate sleep conditions.

5. Conclusions

The results of this pilot analysis indicate that global plasma metabolite profiling in adults at
risk for type 2 diabetes can detect novel and potentially informative metabolic signatures
induced by recurrent sleep restriction. After 8 nights of recurrent sleep curtailment, multiple
pathways of intermediary metabolism were affected, particularly elevation in plasma amino
acids and related biochemicals. Larger discovery and validation studies should be
considered to expand our understanding of the metabolic consequences of insufficient sleep.
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Table 1

Sleep, diet, physical activity, and weight maintenance during each condition @

85hTIB® 55hTIBE

8-night average sleep data b

Going-to-bed time (h:min) 23:54 (0:20)  1:03 (0:02) ™~

Out-of-bed time (h:min) 8:26 (0:20)  6:32 (0:02)

Total sleep time (h:min/day) 6:56 (0:34)  4:44 (0:17)

Sleep onset latency (min) ¢ 0:18 (0:20)  0:09 (0:11) ™™

Sleep efficiency (%) 81 (7) 86 (5)
7-day average food intake b

Energy consumption (kcal/kg) 32(2) 32 (3)

Carbohydrate (% of energy) 50 (2) 50 (2)

Protein (% of energy) 16 (1) 16 (1)

Fat (% of energy) 34 (1) 34 (1)
7-day average physical activity b

Total activity count (thousands/day) 70.3(39.1) 71.0 (45.2)
Body weight maintenance ¢

Pre-treatment body weight (kg) 73.5(12.7) 73.1(12.4)

Post-treatment body weight (kg) 73.4 (12.6) 73.0 (12.7)

7-day change in body weight (kg) -0.1(0.5) 0.0 (0.6)

Body weight coefficient of variability (%) 0.5(0.2) 0.4 (0.1)

aData are mean (SD).

Page 10

Measures of sleep, food intake, and physical activity were compared using repeated-measures analysis of variance with order of treatment and
gender as between-subject factors.

Co\ . . .
Weight maintenance was assessed using paired t-tests.

d, .
Square root transformed data used for comparison;

®T1B: time-in-bed (h/day).

*ok
P<0.01.
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