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Abstract

In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely
targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of
thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast
(Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extra-
cellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is
observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic
locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns
suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we
identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical
mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations.
We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is
strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose
abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation,
which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and
nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating
their molecular genetic dissection.
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Introduction

The rate at which a population of cells proliferates (i.e., the
population growth rate) depends on both the rate of cell
growth (increase in mass and volume) and the rate of cell
division (increase in number). Understanding the physiolog-
ical principles and molecular determinants governing cell pro-
liferation rates is of broad importance in biology. Despite
many decades of research, major questions remain regarding
how cells regulate their rate of growth and how cell division,
cell growth, and diverse cellular processes including metabo-
lism and macromolecular synthesis are coordinated. At the
same time, new questions are emerging, including the iden-
tities of naturally occurring genetic variants that underlie her-
itable variation in proliferation rates (Cubillos et al. 2011), the
extent to which environmental conditions impact this varia-
tion (Liti and Louis 2012), and the molecular basis of hetero-
geneous growth strategies among genetically identical cells in
the same environment (Levy et al. 2012).

In all organisms, the rate of cell proliferation is sensitive to
the status of environmental nutrients required for biomass
accumulation and energy metabolism. In the single-celled
microbe Saccharomyces cerevisiage (budding yeast), the
molecular form and abundance of environmental carbon is
a major determinant of proliferation rates. The addition of

glucose to glucose-deprived cultures of S. cerevisiae results in
dramatic changes in cell physiology and metabolism, as well
as alterations in the expression of more than 40% of genes
(Zaman et al. 2008). The major transcriptional changes in-
clude increased expression of genes involved in ribosome bio-
genesis and repression of genes required for respiration, and
the metabolism of alternative carbon sources (Zaman et al.
2008), consistent with glucose lying upstream of a regulatory
network that coordinates cell growth with metabolism.
Although the study of glucose regulation has typically
entailed comparison of cells deprived of glucose with those
provided with an abundance of glucose (2% w/v or 111 mM
glucose in standard formulations), evidence suggests that cells
modulate their responses to environmental glucose across a
wide range of concentrations (Reifenberger et al. 1997; Yin
et al. 2003; Kaniak et al. 2004).

In single-celled microbes, variation in cell growth rates has
important implications for evolution (Blomberg 2011). A fast-
growing lineage will rapidly outcompete even slightly slower
growing lineages when nutritional resources are abundant.
However, microorganisms often face nutritionally poor envi-
ronments (Smets et al. 2010). How they respond to subopti-
mal nutrient availability and starvation and, conversely, the
kinetics with which they respond to nutrient replenishment
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are also major components of fitness. Moreover, it is not
just the average response that matters, but the variance
matters as well. If two lineages have identical arithmetic
mean growth rates, the lineage with the least individual-
to-individual variation around that mean will outcompete
the other during growth (Frank 2011). However, population
heterogeneity might provide an advantage in fluctuating
environments (Kussell and Leibler 2005; Frank 2017; Levy
et al. 2012). To date, most studies of microbial fitness have
focused on the population growth rate in nutrient-rich con-
ditions (Giaever et al. 2002; Hillenmeyer et al. 2008). However,
this laboratory condition is of unknown relationship to envi-
ronments encountered by natural isolates of yeast and anal-
yses restricted to nutrient-rich conditions are likely to miss
important, and potentially adaptive, variation. At the same
time, variation in proliferation rates among diverse natural
isolates of yeast in suboptimal conditions may provide unique
insight into the regulation of cell growth and how this
variation has been shaped by ecological and geographic
histories.

A more complete understanding of environmental and
genetic determinants of cell proliferation rates requires sur-
mounting two technical challenges: 1) accurate measurement
of proliferation rates across a wide range of conditions includ-
ing near-starvation conditions and 2) quantification of varia-
tion among genetically identical individuals. We recently
developed a growth assay that measures individual cells grow-
ing into microcolonies comprising up to ~100 cells that solves
both of these problems (Levy et al. 2012). An important
advantage of this approach over other high-throughput
methods of growth rate analysis is the capability of
determining distributions of growth rates derived from
thousands of individual microcolony growth rate
measurements.

In this study, we have used this approach to investigate cell
growth, in a range of glucose concentrations, of natural iso-
lates of S. cerevisiae with different ecological histories. We
extended our high-throughput microcolony assay to enable
measurement of both growth rate and lag time in single cells.
We find that cell growth rates vary with glucose concentra-
tions in accordance with a deterministic model of substrate-
limited growth (Monod 1949). We surveyed a panel of wild
yeast isolates across these conditions and find prevalent ge-
notype-by-environment interactions, suggesting that differ-
ent genetic factors underlie growth rate variation at
different glucose concentrations. Isolates also differ in
growth rate variance independently of differences in mean
growth rate. Using a fluorescent reporter of respirative me-
tabolism, we find that although increased respiration is anti-
correlated with growth rate between environments, within an
environment increased respirative enzyme expression is cor-
related with increased proliferation rates, perhaps reflecting
nongenetic variation in protein production capacity. By quan-
titatively analyzing variation in growth reinitiation, prolifera-
tion, and metabolism in a spectrum of glucose-containing
environments, we reveal a continuum of growth strategies
among yeast populations that is amenable to genetic
dissection.

Results

High-Throughput Analysis of Environmental
Determinants of Cell Growth Variation

The rate of proliferation of yeast cells is regulated in response
to both the form and abundance of environmental nutrients.
Using chemostat cultures it has been shown that populations
of yeast cells can modulate their rates of growth across at least
a 10-fold range (Brauer et al. 2007). In batch cultures, growth
in environments containing low nutrient concentrations that
are equivalent to the steady-state concentrations in chemo-
stats cannot be easily measured using conventional methods
(i.e., optical density or particle counting).

We hypothesized that our recently developed high-
throughput microcolony growth rate assay would provide
sufficient resolution to measure cell proliferation rates in
low-nutrient environments. Our assay uses time-lapse micros-
copy to monitor individual cells undergoing a small number
of divisions to form microcolonies in 96-well glass bottom
plates (Levy et al. 2012) (fig. 1A). Previously, we showed that
the rate of change in microcolony area is highly correlated
with the rate of change in cell number and thus provides an
accurate estimate of microcolony growth rate (Levy et al.
2012). To study the effect of environmental glucose concen-
tration on cell growth rates, we used minimal, chemically
defined media (Saldanha et al. 2004). Prior to each experi-
ment, cultures were grown to stationary phase in carbon-
limiting media to ensure cell cycle arrest due to carbon star-
vation. Starting from growth-arrested cells, rather than expo-
nentially growing cells, allowed us to observe the time to
reinitiation of growth (i.e, lag) in each environment. Each
microcolony growth profile is defined by two phases, a lag
phase and a growth phase (fig. 1B). We used a sliding window
regression method to locate the maximal rate of proliferation
(increase in log area) for each microcolony (see Materials and
Methods). Lag duration was defined by the intersection of
this maximal proliferation line with a horizontal line defined
by the initial cell size (see Materials and Methods). Using
96-well plates our assay enables us to measure the lag times
and growth rates of as many as 80,000 individual microcolo-
nies in a single 24-h experiment.

Microcolony Growth Rate is Determined by Glucose
Concentration in Agreement with the Monod Model
for Substrate-Limited Growth

We sought to determine 1) the relationship between popu-
lation growth rate and glucose concentration and 2) whether
the response to glucose concentration varies among natural
isolates of S. cerevisiage. In preliminary studies, we found that
mean growth rate was not affected in media containing
~25-fold less glucose than standard media. Therefore, we an-
alyzed microcolony growth rates in seven different glucose
concentrations, ranging from 0.05 to 4.44 mM glucose, for
four different prototrophic diploid strains. The strains
derive from the laboratory (FY4/5, isogenic to the reference
yeast strain S288c; hereafter lab), a North American oak
tree (BC248; hereafter oak), a Californian vineyard (BC241;
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Fic. 1. Calculation of growth parameters from microcolony growth profiles. Images (A) and growth profiles (B) for two representative microcolonies.
Growth of microcolonies follows a simple two-phase log-linear model. The exponential growth phase for each microcolony is determined by a sliding
window regression. The window of eight consecutive time points with the log-linear fit of greatest slope (and R” > 0.9) defines the maximal growth rate
(red points). Lag duration is defined by the intersection of the line defining the growth phase with a horizontal line defined by the initial cell size.

hereafter vineyard), and a cross between the oak and vineyard
strains (BC252, hereafter oak/vineyard F1) (Gerke et al. 2006).
The lab, oak, and vineyard strains are homozygous through-
out the genome. Each strain was grown in each glucose en-
vironment in three wells per plate and each plate was
replicated four times, resulting in more than 150,000 micro-
colony growth rate measurements (see Materials and
Methods). We confirmed that microcolony area is highly cor-
related with cell number for different strains growing in
022mM glucose (supplementary fig. S1, Supplementary
Material online).

To differentiate variation due to the factors of interest
(i.e, genetic background and environment) from variation
unique to individual wells and plates (which likely result
from variation in illumination, focus, and media preparation),
we used mixed-effect linear modeling in which we included
strain identity, glucose concentration, and their interaction as
fixed effects and the plate and well as random effects (see sup-
plementary note, Supplementary Material online). Estimates
for each genotype—environment combination clearly showed
growth rate to be a function of both genetic background and
environment (supplementary fig. S2, Supplementary Material
online). In order to combine growth rate measurements for a
given genotype from different wells and plates, we normalized
the data by subtracting plate and well conditional means
estimated from the mixed model from each microcolony
growth rate (see supplementary note, Supplementary
Material online). The normalized data were used for further
analysis.

We aimed to model the growth rate response to glucose
concentration as a continuous function. Monod (1949) pro-
posed that cell growth rate is related to the concentration of a
limiting nutrient with saturating kinetics that resemble the
Michaelis—Menten function. Using nonlinear least-squares re-
gression, the normalized data for each strain were fit to the
Monod model (fig. 2A and B; supplementary fig. S3 and
table S1, Supplementary Material online). This model requires
two parameters: the maximum growth rate (4ma) and the
glucose concentration at which growth rate is half-maximal
(K;). Our estimates of fima (043-052h7") and K,
(0.1-0.2 mM) are similar to values estimated for S. cerevisiae
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strains using bulk population growth rates in batch cultures
and chemostats (Snoep et al. 2009), respectively. As our esti-
mates are generated from a large number of measurements
(28,000-42,000 growth rates per strain), these parameters are
estimated extremely accurately with standard errors on the
order of 10~“ (i.e, three orders of magnitude smaller than the
parameters).

Alternatives to the Monod model have been proposed
(Kovarova-Kovar and Egli 1998). Several of the alternatives
are slight variations on the Monod model, containing an ad-
ditional maintenance term representing the need for sub-
strate even when cells are not growing (Kovarova-Kovar
and Egli 1998). A conceptually different model is that of
Westerhoff et al. (1982), which is based on nonequilibrium
thermodynamics and proposes a linear dependence of
growth rate on the logarithm of the substrate concentration
(Westerhoff et al. 1982). We fit the data on each of the four
strains to various alternative models (supplementary fig. S3
and table S1, Supplementary Material online). We compared
model fits by Akaike information criterion (AIC), Bayesian
information criterion (BIC), and, when appropriate, likelihood
ratio tests (supplementary table S1, Supplementary Material
online). With the exception of the lab strain, variants of the
Monod model with an additional parameter slightly im-
proved fit relative to the Monod model (supplementary fig.
S3 and table S1, Supplementary Material online). Moreover,
for all four strains, the Monod model fit substantially better
than the Westerhoff model (supplementary fig. S3 and
table S1, Supplementary Material online). The data therefore
support the Monod model, or slight variations of it, over the
most prominent competing model of substrate-limited
growth.

The Growth Rate Response to Different Glucose
Concentrations Varies among Yeast Strains

Each of the four strains is defined by a unique combination of
Mmax and K, parameters (fig. 2C). The oak strain grows faster
than both the vineyard and lab strains at all glucose concen-
trations; however, the data also display genotype-by-environ-
ment interactions. The oak/vineyard F1 has an intermediate
value for K, compared with the parental strains, whereas
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Fic. 2. Growth rate is determined by glucose concentration in agreement with the Monod model for substrate-limited growth and varies between
natural isolates of Saccharomyces cerevisiae. (A) Growth rate distributions for the lab strain in a range of glucose conditions. The line depicts the best fit
of the Monod equation (inset) to the normalized data. Glucose concentration is shown on a logarithmic scale for clarity. (B) Fits to the Monod equation,
showing growth rate as a function of glucose concentration for four strains. (C) K and /4. estimates for four strains. (D) Growth rates at 0.22 mM and
4.44 mM glucose are proxies for Ks and (4 may respectively. (E) Competitive growth rate assays between oak and vineyard strains at two dilution rates in
chemostats (lower dilution rates correspond to lower glucose concentrations). Replicate experiments were centered by mean subtraction; lines depict

linear regressions of log-transformed ratios against generations.

its Lmax is identical to the oak parental strain (fig. 2C).
This suggests distinct genetic effects underlying variation in
these two parameters, which we estimated using the mid-
parent heterosis (MPH) metric (Zorgo et al. 2012) (see
Materials and Methods). In the case of K, the net genetic
effect is largely additive (MPH = 0.25), whereas in the case
of max the net genetic effect is primarily dominant
(MPH = 1). Genetic variation in ftma and K; is reflected in
growth rate in high and intermediate glucose concentrations,
respectively: the growth rate of the oak/vineyard F1 at
0.22 mM glucose yields a MPH =0.22, whereas at 4.44 mM
the MPH = 0.9 (fig. 2D).

We sought to independently confirm the effect of envi-
ronmental glucose concentration on the growth rates of the
oak and vineyard strains. Therefore, we measured the relative
growth rate differences between the oak and vineyard strains
using competitive growth rate assays in chemostats
(see Materials and Methods). Because the steady-state resid-
ual glucose concentration increases with increased dilution
rate, we performed competition assays in glucose-
limiting media at a low (D=0.18-02h"") and a high
(D=035-039h"") dilution rate. Consistent with our

microcolony growth rate results, the growth advantage of
the oak strain at a low dilution rate is greater than at a
high dilution rate (9.6 +0.28% vs. 0.6 +0.2%) (fig. 2E). Thus,
both competition assays in chemostats and our microcolony
growth rate assay reveal that growth rate differences between
these two strains are conditional upon environmental glucose
concentration.

To more broadly survey genetic variation in the response
of growth rate to glucose concentrations, we used the micro-
colony assay to analyze additional strains (see Materials and
Methods) covering a range of genetic backgrounds and ecol-
ogies (Liti et al. 2009). Each strain was measured in 0.22 and
4.44 mM glucose, resulting in more than 300,000 microcolony
growth rates. These diverse strains exhibit a range of growth
rates in both glucose concentrations (fig. 3), which is delim-
ited by the fastest growing oak strains and the slowest grow-
ing lab strain. The majority of strains have similar,
intermediate growth rates in 4.44mM glucose, but show
more pronounced differences in growth rates in 022 mM
glucose. Similarity in growth rates does not appear to be
determined solely by common ecologies or genetic related-
ness (as defined by Liti et al. [2009]).
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Natural Variation Exists in the Distributions of
Growth Rates within an Environment

In addition to variation in the average growth rate response to
different glucose concentrations between genotypes, we ob-
served substantial variation in growth rates within each envi-
ronment for a given genotype. In contrast to our previous
study in which we observed left-skewed distributions (Levy
et al. 2012), growth rate distributions among diverse strains
and glucose concentrations are largely symmetric. Therefore,
we studied the effect on the shape of the growth rate distri-
bution of ploidy, growth condition, and the recent history of
the cells. We find that diploid strains have fewer slow-growing
cells than haploid strains, growth in minimal medium yields
fewer slow-growing cells than growth in rich media, and these
effects of ploidy and nutrient conditions are particularly
strong in the lab strain genetic background (supplementary
fig. S4, Supplementary Material online).

We aimed to determine whether the variance of growth
rate distributions differs among the different strains and
glucose concentrations. We used log-transformed absolute
values of the residuals from the mixed model as a measure
of growth rate deviation (see supplementary note,
Supplementary Material online). These deviations were
then used as random variables in a new linear mixed model
with the same structure as the original model. By using
mixed modeling, we control for confounding technical
effects of wells and plates on our estimates of average
growth rate deviations for each strain at each nutrient
concentration.

We find significant differences in the variability of growth
rates among strains (fig. 4A) that are independent of the
mean growth rate. Consistent with a lack of correlation
between growth rate means and variances (supplementary
fig. S5, Supplementary Material online), there is no clear rela-
tionship between the variances in growth rates in the two
glucose concentrations (fig. 4A). Notably, two European soil
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strains, which have nearly identical mean growth rates, show
significantly different deviations from the mean in both glu-
cose concentrations (Wilcoxon test on normalized data,
P value < 2.2e—16). Comparison of their growth rate distri-
butions shows that the Dutch soil strain has a broader distri-
bution than the Finnish soil strain, including both slower and
faster growing cells (fig. 4B). These observations provide evi-
dence that variability in growth rates within environments is
genetically determined and may be affected by genetic factors
that are independent of those factors that affect the mean
growth rate response.

Natural Variation in Time to Reinitiation of Growth

Our assay enables estimation of the time each cell takes to
reinitiate growth in a defined environment (fig. 1). The frac-
tion of cells that undergo a detectable lag decreases as glucose
concentration increases (fig. 5A). In 4.44 mM glucose, few cells
lag, whereas in lower glucose concentrations the majority of
cells display a delay before initiating growth. The fraction of
cells that lag also displays genetic variation, as a greater pro-
portion of vineyard and lab cells lag than oak cells in almost all
environments. The percentage of lagging cells (at 0.11 and
0.22 mM glucose) correlates with estimates of K across strains
(Pearson correlation coefficient >0.969, P value < 0.03).
Although 30% of oak strain cells do not have a detectable
lag time (in 0.05 MM glucose), the unimodal distribution of
lag times for all strains suggests that a nutrient concentration
threshold exists at which all cells exhibit a lag regardless of
genotype.

To quantify the difference in lag duration between strains,
we used mixed-effect modeling (see Materials and Methods
and supplementary note, Supplementary Material online).
We find that the average duration of lag is inversely correlated
with mean growth rate, yet this relationship is variable be-
tween strains (fig. 5B). Strikingly, the lab and vineyard strains
have longer average lag durations than the oak strain even
when the subsequent growth rate is similar. This observation
suggests that reinitiation and proliferation rates are under
distinct genetic control.

We wanted to determine whether strains differ in the
variability of lag time in addition to their differences in
average lag duration. In contrast to growth rate, there is
a strong relationship between average duration of lag and
the associated variance within environments (fig 5C and
supplementary fig. S6A, Supplementary Material online). In
low-glucose environments, cells exhibit extremely heteroge-
neous behaviors with some cells initiating growth immedi-
ately, whereas others lag for more than 10h before
initiating growth. To control for this inherent relationship,
we used smoothed local regression to estimate and control
for the relationship between mean and variance.
Specifically, median absolute deviations were regressed on
medians and the residuals were compared between strains
(supplementary fig. S6, Supplementary Material online). No
significant difference was found between strains (F=1.618,
P=0.185).
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times for the lab strain at four glucose concentrations.

A Marker of Respiration Correlates with Growth Rate
Negatively across Conditions and Positively within
Conditions

As environmental glucose concentrations are known to affect
whether yeast cells ferment or respire, we sought to deter-
mine the metabolic states of microcolonies growing at differ-
ent glucose concentrations. CITT encodes a citrate synthase
that catalyzes the first step in the TCA cycle. CIT1-GFP ex-
pression has been shown to correlate with the degree of res-
piration on different carbon sources (Fendt and Sauer 2010),
and the relative abundance of CIT1T mRNA is negatively cor-
related with growth rate in glucose-limited chemostats
(Brauer et al. 2007). Therefore, we used the average expression
of a CIT1-GFP fusion protein (in the lab strain genetic back-
ground) as a marker of respiratory activity in growing micro-
colonies (see Materials and Methods).

To define the range of CIT1 expression, we measured pro-
tein fluorescence and growth rates in the lab strain growing
in 1) a nonfermentable carbon source (acetate); 2) a high
concentration of glucose (2%, 111 mM), in which respiration

is minimal; and 3) galactose, in which cells simultaneously
respire and ferment (Fendt and Sauer 2010). We then mea-
sured CIT1 expression and growth rate simultaneously in the
range of glucose concentrations over which all strains exhibit
glucose-dependent growth rate variation. Across all condi-
tions CIT1 expression is negatively correlated with growth
rate (fig. 6A). These data are consistent with a near-complete
absence of respiratory activity in cells growing in concentra-
tions as low as 4.44 mM glucose and a systematic increase
in respiration as environmental glucose concentration
decreases.

By contrast, within environments there is a positive corre-
lation between CIT1 expression and growth rate in different
carbon sources (fig. 6B) and different glucose concentrations
(fig. 6C). The strength of this relationship increases as average
growth rate decreases. That is, although the average growth
rate in conditions that promote increased respiration (low
glucose concentrations or alternative carbon sources) is
lower, within these conditions cells that have higher expres-
sion of CIT1 tend to grow faster than cells with lower levels of
CIT1 expression.
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Discussion

The quantitative analysis of microbial growth was initiated by
Jacques Monod and colleagues in the middle of the 20th
century (Monod 1949). The advent of genomics and systems
biology has stimulated renewed interest in understanding cell
growth as recent advances make it clear that the rate of cell
growth is a major determinant of the transcriptional
(Regenberg et al. 2006; Brauer et al. 2007; Gutteridge et al.
2010) and metabolic state (Boer et al. 2009; Gutteridge et al.
2010) of the cell. Moreover, modeling cell behavior requires
incorporation of cell growth rate as a parameter (Scott and
Hwa 2011). Here, we have extended and enhanced our re-
cently reported microcolony growth assay (Levy et al. 2012),
which combines the advantages of accurate measurement of
variation in growth rates between individual cells with high-
throughput capacity enabling investigation of growth rate
distributions across genetic backgrounds and environments.

We have used this assay to study growth rate variation in
response to changes in extracellular glucose concentrations.
We have shown that the growth rate response of S. cerevisiae
to glucose concentration agrees with the Monod model of
nutrient-regulated growth. The growth rate of yeast cells is
continuously adjusted in response to the concentration of
environmental glucose, and maximal growth rates are
achieved at low millimolar concentrations of glucose.
Although it has been suggested that differences in genotype
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can influence the parameters of the Monod model (Ferenci
1999), these parameters had not been compared between
different natural isolates in any organism. We found that
the growth rate response to glucose shows natural variation
among yeast strains. Comparisons of two homozygous paren-
tal strains and their F1 hybrid as well as a number of wild
strains suggest that K, and . are under distinct genetic
control. As fluctuating nutrient availability and nutrient lim-
itation are probably important aspects of the natural habitats
of microbes, we expect that identifying the genetic factors
underlying variation in growth rates at different glucose con-
centrations would prove informative about both the genetic
control of cell growth and the evolutionary histories of diverse
yeast strains.

Although functional genomic studies have shown that de-
letion of many genes can affect cell growth rates in rich media
conditions (Giaever et al. 2002; Hillenmeyer et al. 2008), there
are few examples of natural alleles that underlie variation in
cell growth rate. Natural variation in components of the RAS/
cAMP pathway (IRAT and IRA2) has been implicated in reg-
ulating quantitative growth at high temperature (Parts et al.
2011) and expression of growth-related transcripts in glucose
and ethanol (Smith and Kruglyak 2008). The Monod constant
(K,) relates to the affinity of the cell for the nutrient, but its
biological interpretation is a subject of debate (Liu 2007). K
may be related to the K, of the relevant transporter, but the
relationship between K and K, depends on assumptions
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about the kinetics of the transport system, and the extent of
control that the transport step has on the growth rate can
change between different substrate concentrations (Snoep
et al. 2009). Increased expression of the high-affinity glucose
transporters HXT6 and HXT7 has been shown to confer in-
creased fitness in experimental evolution in glucose-limited
conditions (Brown et al. 1998; Gresham et al. 2008), suggest-
ing that growth rates at submaximal glucose concentrations
may be largely determined by substrate transport rates.

A unique aspect of our assay is the ability to monitor lag in
individual cells. Lag duration in bulk populations is usually
poorly defined and the accuracy of its estimation is limited by
the power to detect growth at low cell density. In population
growth curves, the transition between lag and growth phases
is typically smooth, due to variability between individual cells
(Buchanan et al. 1997), making the determination of a single
lag time somewhat arbitrary. When measuring single cells, our
data are best described by a distinct transition between lag
and the exponential growth phase. Our results support pre-
vious observations (Peleg and Corradini 2011) that these dif-
ferent phases of growth can vary independently. We observe
significant heterogeneity in the duration of lag particularly as
environments become increasingly poor in glucose.
Understanding the molecular basis of heterogeneity in lag
will provide insight into the processes that underlie exit
from quiescence and reinitiation of cell growth and may
have practical applications; for example, in the food industry
(Swinnen et al. 2004), where outgrowth of a small number of
individual cells is a major concern.

We observed phenotypic variability in both lag and growth
phases. The advantage of increased cellular variability in the
face of novel and fluctuating environments is relevant to the
evolutionary rates of cancer progression and drug resistance
(Frank and Rosner 2012). Although the extent of nongenetic
phenotypic variation has important implications for evolu-
tionary dynamics, it has been understudied in part because of
the difficulties of accurately assessing phenotypes of individ-
ual cells. Consequently, the mechanisms regulating nonge-
netic phenotypic variability remain poorly understood
(Pelkmans 2012; Geiler-Samerotte et al. 2013). One possible
source of phenotypic variability is differences in gene expres-
sion between individual cells. Possible mechanisms by which
these differences can be enhanced or reduced include regu-
lation of chromatin modification (Levy and Siegal 2008), pro-
moter structure (Ferguson et al. 2012), and variability in the
inheritance and functionality of mitochondria (Johnston et al.
2012). Furthermore, variation in protein translation capacity
between cells (possibly as a result of variation in ribosomal
content), may contribute to variation in growth rates (Scott
and Hwa 2011). For cell growth in particular, variability in the
lengths of different cell cycle stages had been observed (Talia
et al. 2007; Son et al. 2012), but the impact of natural variation
on mechanisms controlling variability of cell cycle timing has
not been explored. Our identification of strains that differ
substantially in their growth rate variances, despite nearly
identical means, presents an ideal scenario for identifying
the genetic and molecular basis of natural variation in
growth rate variability.

We find that a decrease in cell growth rate corresponds
with increased respirative activity, as measured by CIT1 ex-
pression, consistent with previous studies of the diauxic shift
and yeast metabolic cycle (Brauer et al. 2005; Silverman et al.
2010). Because cells increase their respiratory activity at low
glucose concentrations, differences in the efficiency of respi-
ration between the oak and vineyard strains (Gerke et al.
2006) may underlie variation in K. Intriguingly, in contrast
to the negative correlation between CIT1 expression and
growth rate between glucose environments, we find that
within a glucose environment, increased expression of CIT1
is correlated with increased growth rate. We suggest that this
correlation may represent global differences in rates of protein
production between cells that are not necessarily specific to
CIT1. The fastest growing cells within the same environmen-
tal conditions may have greater translational capacity. In this
scenario, the environmental conditions specify the metabolic
state of the cell, but inter-individual variation in protein pro-
duction capacity underlies heterogeneity in growth rates. As a
result, different combinations of metabolic and translational
capacity can specify the same growth rate. Continued inves-
tigation of variation both within and between environments
will provide a deeper understanding of the genetic and
nongenetic sources of this variation and how cells optimize
their growth potential in a particular environment.

Materials and Methods

Yeast Strains and Media

All strains used in this study are prototrophic diploids, with
the exception of two prototropic haploids used to investigate
the effect of ploidy on the shape of the growth rate distribu-
tion (supplementary fig. S4, Supplementary Material online).
All wild strains were obtained from the lab of Barak Cohen
(Washington University). The strains used in this study are
the oak (BC248), vineyard (BC241), the F1 hybrid (BC252), an
additional North American oak strain (YPS126), two
European strains isolated from soil samples (DBVPG1373
and DBVPG1788), three genetically diverse strains isolated
from plants/fruit in Malaysia, Hawaii, and the Bahamas
(UWOPS03-461.4, UWOPS87-2421, and UWOPS83-787.3),
an African palm wine isolate (Y12), and a West African Bili
wine isolate (DBVPG0644). Strains shown in supplementary
fig. S4, Supplementary Material online, are the prototrophic
diploid laboratory strain FY4/5; its haploid parent of mating-
type a, FY4; the oak strain from which BC248 was derived,
YPS606; and its MATa haploid spore (after HO was knocked
out), YPS2056.

For competitive growth rate assays, the HO locus was
replaced with the mCherry fluorescent protein and a nour-
seothricin resistance marker (natMX4) in both the oak and
vineyard strains using high-efficiency transformation as in
Gerke et al. (2006). A haploid CIT1-GFP strain (from the
yeast-GFP collection [Huh et al. 2003]) was purchased from
Invitrogen and mated to FY5 (a prototropic alpha haploid),
creating a functionally prototrophic diploid. All media used in
this study were chemically defined carbon-limiting media
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(Saldanha et al. 2004; Brauer et al. 2005) without amino acid
or nucleotide supplements.

Inoculation of Microcolonies

For all growth rate experiments, frozen cell stocks were
streaked out on YPD plates and single colonies were used
for inoculation. Cells were cultured in 4.44 mM glucose media
for ~24 h, diluted 1:300 into fresh 4.44 mM glucose media, and
cultured for ~48 h. This procedure reduced variability in cul-
ture density at the initiation of growth rate experiments and
ensured that cells were starved for carbon. Cells were then
diluted to a concentration of 1-2 x 10*cells/ml in fresh
media containing defined glucose concentrations and
plated in 96-well glass bottom plates coated with concanav-
alin A. Each well was loaded with 400 pul of diluted cells (i.e,
~6000 cells). The glucose concentration is assumed to remain
approximately constant throughout the experiment due to
the low cell density and large media volume within each well.

Microscopy and Automated Image Analysis

Experiments were conducted as described in Levy et al.
(2012), including all equipment and software for computing
and tracking microcolony areas over time. The focusing rou-
tine was updated to a manual assignment for each well based
on a single field (which took ~10min per 96-well plate).
Images were taken every hour for 2,880 fields (30 fields per
well) for 20-24 h. CIT1-GFP fluorescence was captured for 2 s
at 10x gain; due to the long exposure time, these experi-
ments contained only 32 wells per plate and 20 fields per well
(640 fields total).

Growth Profiles and CIT1 Expression Analysis

Microcolony growth profiles were analyzed according to a
two-phase log-linear model. The use of a simple model is
preferred (Buchanan et al. 1997; Peleg and Corradini 2011),
particularly as microcolony growth profiles do not exhibit the
smooth transition between phases caused by variability
among cells in population growth curves (Buchanan et al.
1997). For each microcolony, a sliding window approach
was used to determine the phase of maximal growth. The
natural log of microcolony area was regressed against time for
each set of eight time points and growth rate was calculated
as the greatest slope of a regression with R® >09.
Subsequently, lag duration was estimated as the intersection
of this regression with a horizontal line determined by the
area of the microcolony at the first time point. Lag duration
was not calculated for colonies that were not tracked in the
first time point. A small proportion of microcolonies with
aberrant growth parameters (growth rate <0.075h™", lag
duration >15h, or initial size >250 pixels) were omitted
from further analysis. All calculations and analysis were con-
ducted in R.

CIT1 fluorescence was averaged over area and time. First,
total fluorescence intensity was measured for each microcol-
ony and divided by the area of the microcolony, resulting in a
measurement of fluorescence per pixel for each microcolony
at each time point. Measurements were then averaged across
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four time points, during the period of maximal growth rate.
Values were also log-transformed to reduce hetero-
scedasticity.

MPH Metric
MPH was calculated as:

XOak + Xvineyard
=5
XOak — XVineyard
2

MPH =

where X is either the estimate of K; and 4, Or the combined
fixed-effect  parameters (see  supplementary  note,
Supplementary Material online) for growth at 022 or
4.44 mM glucose.

Competitive Growth Rate Assays

Competitive growth rate assays were performed in chemo-
stats as described (Gresham et al. 2008). Each strain was com-
peted against a mCherry-labeled strain in reciprocal
experiments. Competitions were initiated with equal propor-
tions of each strain and samples were obtained every 3—-6 h
over 20 generations. The proportion of each strain at each
time point was measured using flow cytometry and the
relative growth rate difference was determined by linear
regression of In(strain1/strain2) against time (measured in
generations). The slope of the regression is the proportional
difference in growth rate (i.e, the fitness advantage) of one
strain relative to the other. Each competition was performed
in replicate and data from replicate and reciprocal competi-
tions were normalized by mean subtraction and pooled.
Competitions were performed in chemostats at two different
dilution rates, approximately 0.2 h~" (low) and 0.4 h~" (high).

Statistical Analysis

All statistical analyses used R (R Core 2013). Mixed-effect
modeling was performed using the package Ime4 (Bates
et al. 2011) to analyze all measurements obtained from the
microcolony growth assay, including distributions of growth
rates, lag durations, and fluorescent measurements. We use
mixed-effect modeling to estimate parameters and eliminate
various aspects of technical variation on cell growth measure-
ments. A discussion on the use of mixed-effect models in-
cluding determination of terms and evaluation of parameters
is contained in a supplementary note, Supplementary
Material online. Reproducibility of the analysis presented in
this article is also discussed in the supplementary note,
Supplementary Material online. Estimation of the nonlinear
regression parameters for the Monod growth model was
performed using the nls function in R. These parameters’
standard errors were estimated both by linearization and by
bootstrapping, which yielded similar estimates. Correlation
between growth rates and CIT1-GFP fluorescence was visu-
alized by type Il ranged major axis regression (Legendre 2011),
as both measurements are dependent variables, using the
Imodel2 package.
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Supplementary Material

Supplementary note, file, figures S1-59, and table S1 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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