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Abstract
Introduction—Osteoporotic fractures are a vital public health concern and have created a great
economic burden to our society. Therefore, early diagnosis of patients with high risk of
osteoporotic fractures is essential. The current gold standard for assessment of fracture risk is the
measurement of bone mineral density using dual-energy X-ray absorptiometry. However, such
techniques are not very effective in the diagnosis of patients with osteopaenia. Doctors are usually
unable to make an informed decision regarding the treatment plan of these patients. In addition to
bone mineral density, advanced imaging modalities have been explored in recent years to assess
bone quality in other contributing factors, such as microarchitecture of trabecular bone,
mineralisation, microdamage and bone remodelling rates. Currently, the microarchitecture of
trabecular bone can be evaluated in vivo by high-resolution peripheral quantitative computed
tomography techniques, which have a resolution of 80 µm. However, such imaging techniques still
remain a high-end research tool rather than a diagnostic tool for clinical applications. Thus, the
limited accessibility and affordability of high-resolution peripheral quantitative computed
tomography have become major concerns for the general public. Alternatively, combining bone
mineral density measurements with stochastic assessments of spatial bone mineral density
distribution from dual-energy X-ray absorptiometry images may offer an economic and efficient
approach to non-invasively evaluate skeletal integrity and identify the at-risk population for
osteoporotic fractures. The aim of this critical review is to assess bone fragility with clinical
imaging modalities.

Conclusion—High-resolution quantitative computed tomography imaging technique may
provide direct measurements of microarchitectures of trabecular bone in vivo. However, it is an
expensive method of imaging modality.

Introduction
Osteoporosis is a skeletal disease in which loss of bone mass and deterioration of bone
microarchitecture cause a reduction in bone stiffness and strength, thus resulting in an
increased risk of fragility fractures1. Early diagnosis of patients with high risk of fragility
fractures is important due to the elevated rate of morbidity and even mortality, which has
made it a vital public health concern and a great economic burden to our society2,3. The
current gold standard for diagnosis of osteoporosis and assessment of fracture risk is the
bone mineral density (BMD) measured using dual-energy X-ray absorptiometry (DXA).

Although BMD from DXA provides important information about risk of fragility fractures,
assessments on BMD alone do not cover the full spectrum of the fracture risk. Numerous
studies have indicated that bone strength is only partially explained by BMD4,5. In fact,
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BMD is a measure of bone mass or quantity of bone. However, bone fragility is not only
dependent on its quantity, but also its quality. Bone quality is defined as the totality of
features and characteristics that influence a bone’s ability to resist fracture6. Such features
may include, but may not be limited to, ultrastructure, microarchitecture, microdamage and
remodelling rates in bone. Among the features, the microarchitecture of trabecular bone has
been recognised as a major contributor to bone fragility.

There are several recently developed approaches that can provide complementary
information for assessing fracture risks in addition to BMD. One of them is to develop high-
resolution imaging modalities to directly visualise three-dimensional (3D) structure of
trabecular bone. The underlying hypothesis is that bone architecture contributes to bone
strength. With recent advancement in imaging techniques, high-resolution images using
computed tomography (CT) and magnetic resonance imaging (MRI) could be directly used
to assess 3D microarchitectures of trabecular bone.

Another approach is to make full use of the existing two-dimensional (2D) projection image
modalities and to employ stochastic image-processing techniques to extract useful
information on microarchitecture characteristics of bone. In this case, the resolution of the
image is no longer essential. The important thing is to recover the information that is
indicative of architectural characteristics of bone and can be used to assess the resistance of
bone to fracture. To this end, the objective of this article is to review the current progress in
using imaging modalities, both 2D projection images and 3D high-resolution images, to
assess bone fragility in the clinical settings. The focus of this review article is on 2D
imaging modalities since numerous review articles are available for 3D imaging
modalities6–9.

Discussion
The authors have referenced some of their own studies in this review. The protocols of these
studies have been approved by the relevant ethics committees related to the institution in
which they were performed.

2D imaging modalities
Radiographs and DXA images are two major modalities of 2D projection images for
assessing bone fragility in the clinical settings. Conventional X-ray radiography offers
higher resolution (up to 50 µm) for diagnosis of fragility fractures, whereas DXA images
have lower resolution but provide a better estimation on average BMD. Improved prediction
of bone fragility can be achieved when fractal and stochastic texture analyses of 2D
projection images are conducted in addition to the measurement of BMD.

Fractal texture analysis of radiographs
Fractal texture analysis, a useful imaging technique, has been successfully applied to high-
resolution 2D radiography images (Figure 1) to extract the hidden geometric and
microstructural features10–19. Such analyses are based on the concept of fractal geometry.
Fractal geometry can be used to define the complex objects that cannot be described by
traditional geometric features, such as size and shape. Such objects possess a character of
self-similarity, meaning that they can be split into different self-similar pieces at various
scales or magnifications while the fractal geometry of these pasts remains similar to that of
the whole object. Fractal dimensions are the characteristic dimensions of fractal geometry,
with the dimension of a point, a line, a surface, and a volume being defined as 0, 1, 2, and 3,
respectively. Different from conventional geometry, the fractal dimension is not an integer
but fractional, representing something between the conventional dimensions (e.g. point,
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plane). Fractal dimension is a measure of how complex the structure of a self-similar object
is, which is defined as a ratio of the logarithm of the number of self-similar pieces to the
logarithm of the magnification factor. Fractal dimensions can be determined using a box
counting algorithm10. This measure provides a statistical index of complexity of structure
pattern and its changes with varying measuring scales.

In clinical studies, fractal analyses of trabecular bone from calcaneus and distal radius
radiographs have helped distinguish the patients with osteoporotic fractures from those in an
age-matched control group. For example, the fractal analysis of texture on calcaneus
radiographs was able to discriminate osteoporotic patients with vertebral fracture from
controls20. In addition, multi-centre texture analyses on bone images from calcaneus with a
direct digital X-ray device have demonstrated that three texture parameters (co-occurrence,
run-length, and fractal parameter Hmean) were significantly lower in osteoporotic fracture
cases than in control cases18. Fractal analysis was also applied to radiographs of distal radius
and found that fractal dimensions were significantly different between subjects with and
without hip fractures13. The power of fractal dimension analyses for predicting fracture risks
is comparable to BMD for trabecular bones at the distal radius, but lower than that of total
hip BMD13. In dental settings, fractal analysis of panoramic images has also detected
osteoporotic changes in mandibular canine/premolar trabecular bone21.

In in vitro studies, fractal analysis of radiographs has been used to predict 3D
microarchitecture of trabecular bone. For example, 2D texture analyses of calcaneus and
femoral neck from micro-CT images17,22, and femoral head from magnetic resonance
images14 have predicted 3D microarchitecture parameters of the trabecular bones. Another
study has examined the high-definition macro-radiography of trabecular bone in human
lumbar vertebrae using the fractal analysis and has found that the horizontal and vertical
trabecular organisation patterns are different between low- and high-BMD groups11. The
fractal feature of trabecular bone in knee osteoarthritis is a more sensitive marker of the
disease than BMD16. Combining BMD values with fractal textural analysis of femoral
radiographs from a high-resolution X-ray device has shown significant improvement for
predicting the fracture load of human femurs, compared with the results obtained from either
of the two measurements alone19.

In addition to plain radiographs, texture analysis has also been applied to other imaging
modalities. For example, it has been applied to quantitative CT (QCT) of human vertebral
bodies and photomicrography of transiliac crest biopsies and has helped distinguish
osteoporotic bone structure from normal bone structure10. Fractal analysis is also used in
high-resolution MRI of distal radius from cadavers23. The fractal analysis provides the
information independent of BMD in predicting failure loads of distal radius.

Although texture analysis on high-resolution radiographs has been performed to identify the
parameters that are correlated with microarchitectures of trabecular bone, it has rarely been
applied to 2D projection images from DXA scans. The reason is largely due to the limited
resolution of DXA sans because fractal dimension analysis requires a large projection
surface and distinguishable textures from high-resolution images24. These constraints make
it unsuitable for analysis of small surface with moderate resolution, such as DXA images.

Stochastic analysis of 2D projection images
Bone heterogeneity and random field—Although it was still debatable on what spatial
resolution is required for clinical assessments of bone fragility, the current consensus is that
the image resolution required for clinical evaluations may be much less than that needed in
basic research6. The improvement of imaging resolution would become non-essential if
useful information from bone microarchitecture, such as heterogeneity of spatial mineral
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distribution, can be extracted from the low-resolution images. Theoretical arguments and
empirical data have indicated that the heterogeneity of mineral spatial distribution in bone
may be used to reflect some features of trabecular architecture that contribute to the
resistance of bone to failure25,26. Therefore, there is the clinical significance to assess such
spatial heterogeneity in bone. Luckily, variations of grey values in 2D projection images,
such as DXA images, actually represent the spatial distribution of bone mineral. In addition,
the variation of bone mineral distribution is statistically random as it results from numerous
complex biological processes (e.g. mineralisation, bone remodelling) in a highly non-linear
and unsystematic fashion. Thus, we need to adopt stochastic approaches to examine the 2D
projection images and quantitatively assess the heterogeneity of spatial mineral distribution.

Stochastic processes and experimental variograms—Stochastic parameters can be
used to represent spatial variations in BMD through a random field approach characterised
by an exponential covariance function. Current techniques for quantifying bone
heterogeneity consist of descriptive statistics such as mean and standard deviation. However,
these parameters do not describe the spatial variations of bone properties. Stochastic
assessment of distribution of BMD in 2D projections images of trabecular bone can be
described by experimental variograms, which have been widely used in geosciences27–29.

Previous studies have introduced experimental variograms to describe the inhomogeneity of
bone properties24,30,31. To determine experimental variograms, a semi-variance, γ(h), needs
to be defined first as the half of the expected squared differences of BMD between any two
locations with a lag distance of h.

(1)

where Z(x) is a function describing the random field of BMD in 2D projection images; x and
h are vectors; x is the spatial coordinates of the data location and h is the lag distance,
representing the Euclidean distance and direction between any two data locations.

Then, the experimental variogram is calculated as an average of semi-variance values at the
locations that have the same value of lag distance (h).

(2)

where m(h) is the number of data pairs for observations with a lag distance of h. A typical
experimental variogram of DXA images at the hip region (Figure 2) indicated that semi-
variance of BMD in DXA images increased with increasing lag distance and reached a
plateau, also known as the sill of variograms. It is suggested that as the lag distance
increased, the local BMD became more dissimilar on average. This is consistent with the
description of a random field in that values at widely separated places are less similar.

Moreover, mathematical (authorised) models are needed to quantitatively describe the
mineral distribution in bone using experimental variograms. Examples of simple authorised
models are exponential, Gaussian and spherical models. Among them, exponential model
fits well with experimental variograms and has the highest R2 value in describing the
distribution of BMD. Using the model, the semi-variance (γ) of BMD in DXA images can
be represented by the following formula:

(3)
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where γ(h) is the semi-variance as a function of lag distance (h); L (correlation length)
describes the degree of smoothness or roughness in the map of BMD. A relatively larger
correlation length implies a smooth variation, whereas a smaller correlation length
corresponds to acute changes in BMD over the spatial domain; c0 is the nugget variance, and
c is the sill variance. The semi-variance converges to the sum of the nugget variance and the
sill variance when the separation distance (h) approaches infinity.

The stochastic measures of BMD distribution from 2D projection images, i.e. correlation
length (L), sill variance (c) and nugget variance (c0), can be obtained by fitting the
aforementioned exponential model to the experimental variogram using the least-square
estimate.

Stochastic measures of BMD distribution from DXA images—A recent study has
introduced the stochastic assessments of DXA images in predicting hip fractures for patients
with osteopenia whose T-scores are between −1.0 and −2.5 (ref. 32). DXA scans of the total
hip region obtained from 17 post-menopausal women with osteopaenia were analysed. The
fracture group (N = 9) included subjects with a history of hip fractures, whereas the control
group (N = 8) consisted of age-matched subjects without osteoporotic fractures. The
stochastic parameters (i.e. correlation length, sill variance and nugget variance) were
estimated from the distribution of BMD in the total hip region (Figure 2).

Logical regression models were used to estimate the combined power by both BMD and
stochastic parameters in predicting the risk of hip fractures. The outcome of logical
regression is represented by a receiver–operator curve (ROC; Figure 3). The area under the
ROC (AUC) indicates the accuracy of the logical regression model, with AUC = 1
representing a perfect prediction, whereas AUC = 0.5 representing a worthless test. The
analyses indicate that none of the measurement alone has a statistically significant power in
predicting bone fracture risks (Table 1). However, the combined power with both BMD and
stochastic parameters is statistically significant (p < 0.05) in predicting bone fractures,
showing AUC = 0.792 with confidence intervals between 0.562 and 1.000 (Table 1, Figure
3).

Stochastic measures of 2D projection images of trabecular bone—Assessments
using stochastic analyses of 2D projection images are significantly correlated to the
microarchitecture and mechanical properties of trabecular bone33. Using a set of
experimental data (micro-CT images and mechanical properties) of 15 cylindrical trabecular
bone specimens from six male human cadavers (48 ± 14 years old)34–37, a recent study was
performed to verify the correlation of the stochastic assessments based on 2D projection
images with the real microarchitecture and mechanical properties of the specimens. In this
study, 2D projection images of trabecular bone were generated from high-resolution micro-
CT scans by averaging the areal grey values of all scans. Stochastic assessments were
performed on the 2D projection images through the aforementioned stochastic analysis. The
specimens were divided into two groups with distinct bone porosities (Figure 4a, d). The
corresponding 2D projection images exhibited a smoother variation of BMD distribution for
the high-porosity group (Figure 4b) and a more acute variation of BMD distribution for the
low-porosity group (Figure 4e). The semi-variance in the variogram of trabecular bone with
a high porosity or low bone volume fraction (BV/TV = 0.13) reached the plateau slowly at a
low sill variance (Figure 4c; c = 1928) whereas the other one (BV/TV = 0.33) arrived at the
plateau relatively rapidly at a higher sill variance (Figure 2f; c = 4097).

Significant positive relationships were observed between sill variance and the elastic
modulus (Figure 5a, R2 = 0.81, p < 0.001) and between sill variance and ultimate strength
(Figure 5b, R2 = 0.82, p < 0.001). Additionally, the sill variance of BMD distribution in
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bone was correlated with microarchitecture parameters. Linear regression analyses indicated
a significant positive relationship between sill variance and bone volume fraction (Figure 6a,
R2 = 0.56, p = 0.001). Similar relationships were also observed between the sill variance of
BMD distribution and other microarchitecture parameters, i.e. bone surface-to-volume ratio
(Figure 6b, R2 = 0.54, p = 0.002), trabecular thickness (Figure 6c, R2 = 0.54, p = 0.002),
trabecular number (Figure 6d, R2 = 0.48, p = 0.004), trabecular separation (Figure 6e, R2 =
0.50, p = 0.003), and anisotropy (Figure 6f, R2 = 0.37, p = 0.02).

Moreover, combining BMD with the sill variance (Table 2) derived from 2D projection
images (R2 = 0.83) provided a better prediction of bone strength than BMD alone (R2 =
0.63). Thus, it is promising to extend the stochastic assessment of 2D projection images to
routine DXA scans, thus offering an improved methodology to predict bone fragility with
marked clinical significance.

3D imaging modalities
The advantages of 3D imaging modalities are that the microarchitectures of trabecular bone
can be directly assessed and trabecular bone can be separated from cortical bone. 3D CT and
MRI have been used to assess bone fragility in both research and clinical settings.

Standard clinical CT scanners can be transformed into a QCT by placing a specific mineral-
equivalent phantom to calibrate the image data6. Current techniques include single-slice
technique, row-spiral technology and flat-panel volume system. Multi-slice spiral CT
scanners have achieved an in-plane resolution of approximately 200 µm and slice thickness
of 500 µm. It has been used in vivo to evaluate the lumbar spine, yet its performance with
regard to differentiating patients with and without fractures has not been substantially better
than BMD. The latest high-resolution peripheral QCT systems (HR-pQCT) are reported to
achieve resolutions of up to 80 µm at tolerable radiation doses (Figure 7).

Images of trabecular bone at appendicular sites can be obtained using MRI-based approach6.
Such imaging technique makes use of specially designed coils in the newest high magnetic
field clinical scanners. Such in vivo imaging technique can achieve an in-plane resolution of
150 µm and a slice of thickness of 250 µm38. The apparent trabecular properties obtained
from the MRI technique have shown strong correlations with measurements of trabecular
microarchitecture from high-resolution techniques such as HR-pQCT39. Some have reported
that the patients with hip and vertebral fractures can be distinguished from control subjects
using MRI-derived parameters38. Future developments need to address the current
limitations of high-resolution MRI, such as the requirement for specialised coils, the
limitation to assessment at peripheral sites, and the relatively long acquisition times6.

One of the most promising 3D imaging techniques is HR-pQCT (i.e. in vivo micro-CT
technique). The effectiveness of assessing trabecular microstructures of tibia and distal
radius with HR-pQCT has been demonstrated in a number of recent studies in clinical
settings. For example, deterioration of microstructure of distal radius and tibia has been
observed in women during and after prolonged bed rest40. Differences in bone
microarchitecture are detected between post-menopausal Chinese-American and white
women41. By examining the distal radius and tibia in daughter–mother pairs using HR-
pQCT, it has been demonstrated that trabecular bone in childhood can be used to predict
both trabecular and cortical morphology in adulthood42. In addition, HR-pQCT has also
been used to monitor the usefulness of countermeasures of bone loss such as exercise and
nutrition40, whole-body vibration43 and oral ibandronate44.

Furthermore, in vitro studies have also verified the effectiveness of HR-pQCT in assessing
bone microstructures. Comparison of bone microarchitecture of femoral necks evaluated by
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HR-pQCT and conventional histomorphometry has demonstrated that significant
correlations were found between both techniques for trabecular bone volume, trabecular
number, trabecular thickness, trabecular separation and trabecular connectivity45. Individual
trabecular segmentation-based morphological analysis has been applied to both HR-pQCT
images and micro-CT images of human tibias and indicated that individual trabecular
segmentation measurements of HR-pQCT images are highly reflective of the trabecular
bone microarchitecture46.

The major limitations to the HR-pQCT technique are that it needs specialised equipment, is
restricted to evaluation at appendicular sites and employs ionising radiation, which may
limit its use in certain patient populations.

Conclusion
HR-pQCT imaging technique may provide direct measurements of microarchitectures of
trabecular bone in vivo. However, we have limited access to such facilities and the
affordability is a major concern for the general public. Such an imaging modality may
remain a high-end research tool to help understand bone fragility. On the other hand, the
combination of BMD and stochastic assessment of distribution of BMD may offer an
economic and effective approach to non-invasively evaluate skeletal integrity and identify
the at-risk population for osteoporotic fractures.
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Figure 1.
X-ray images were taken from calcaneus of postmenopausal women with a direct X-ray
device. Texture analysis was performed on the region of interest to obtain texture parameters
such as co-occurrence, run-length matrices and the fractal parameter Hmean (adapted from
ref. 18, with permission from Springer Link).
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Figure 2.
Stochastic assessment of bone mineral density distribution from DXA scans of hip. (a) DXA
images; (b) variogram and exponential model to fit the experimental variogram.
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Figure 3.
The ROC for a combination of BMD and stochastic parameters. ROC, receiver–operator
curve.
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Figure 4.
Quantification of spatial distribution of bone mineral density in 2D projection images. (a) a
slice of micro-CT images with a low bone volume fraction (BV/TV) = 0.13; (b) 2D
projection image of the specimen with low bone volume fraction; (c) the variogram of the
trabecular bone specimen with low bone volume fraction; (d) a slice of micro-CT images of
a dense specimen with BV/TV = 0.33; (e) 2D projection image of the dense specimen; (f)
the variogram of the dense specimen.
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Figure 5.
Sill variance of bone mineral density distribution had significantly positive relationships
with (a) elastic modulus (R2 = 0.81, p < 0.001), and (b) ultimate strength (R2 = 0.82, p <
0.001).
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Figure 6.
Sill variance of distribution of bone mineral density had significantly positive relationships
with microarchitecture parameters (a) bone volume fraction; (b) bone surface-to-volume
ratio; (c) trabecular thickness; (d) trabecular number; (e) trabecular separation; and (f)
anisotropy.
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Figure 7.
Human tibia images obtained from HR-pQCT technique (Xtreme CT, Scanco Medical AG,
Basserdorf, Switzerland). Imaging source is from www.scanco.ch.
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Table 1

The AUC for logistical regression models

Model AUC SE p-value

BMD 0.553 0.146 0.7

Correlation length 0.736 0.131 0.102

Nugget variance 0.653 0.137 0.29

BMD + correlation length +
nugget variance

0.792 0.117 0.043

AUC, area under the receiver–operator curve; BMD, bone mineral density; SE, standard error.
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Table 2

Regression analyses of combination of BMD and sill variance from high resolution 2D projection images (50
µm)

Model R2 Adjusted R2 p-value

Strength ~ BMD 0.63 0.61 <0.001

Strength ~ BMD + sill variance 0.83 0.80 <0.001

BMD, bone mineral density; 2D, two-dimensional.
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