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Abstract
This two-part paper uses graph transformation methods to develop methods for partitioning,
aggregating, and constraint embedding for multibody systems. This first part focuses on tree-
topology systems and reviews the key notion of spatial kernel operator (SKO) models for such
systems. It develops systematic and rigorous techniques for partitioning SKO models in terms of
the SKO models of the component subsystems based on the path-induced property of the
component subgraphs. It shows that the sparsity structure of key matrix operators and the mass
matrix for the multibody system can be described using partitioning transformations.
Subsequently, the notions of node contractions and subgraph aggregation and their role in
coarsening graphs are discussed. It is shown that the tree property of a graph is preserved after
subgraph aggregation if and only if the subgraph satisfies an aggregation condition. These graph
theory ideas are used to develop SKO models for the aggregated tree multibody systems.
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1 Introduction
The investigation of the structural properties of multibody system dynamics remains an
active area of research. Graph techniques have been developed for the systematic
formulation of the equations of motion [20,24, 28, 30]. The sparsity structure of the
equations of motion have been exploited to develop efficient dynamics computational
algorithms [3, 7, 8, 23, 25]. Furthermore, analytical techniques such as system-level mass
matrix factorization, and diagonalizing coordinate transformations have also been explored
[1, 2, 9, 18, 19, 26] to simplify the dynamics formulations.

Recently, graph techniques have been used to identify general structural properties of tree
multibody systems that underlie a broad family of analytical techniques and low-order
algorithms for the systems [13-17]. It is seen that tree system dynamics can be described
using abstract spatial kernel operator (SKO) models, and that several operator results
including analytical mass matrix inversion follow directly from the SKO model structure—
independent of the specific details of the system. Furthermore, these analytical results lead
to a large family of low-order, scatter/gather recursive computational algorithms for
important dynamics problems.
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This two-part paper, further develops graph theory concepts and techniques for multibody
system dynamics subjected to partitioning and aggregation graph transformations.
Partitioning transformations decompose the system graph into simpler component
subgraphs, while aggregation transformations collapse one or more component subgraphs
into nodes to obtain coarser system graph representations. For example, a tree-topology
system can be decomposed into a simpler tree of interconnected serial-chain segments in the
system. In other instances, decompositions can reflect the natural structure of the system,
e.g., a mobile platform with robotic arms equipped with multi-fingered hands for grasping
and manipulating task objects. Applications of partitioning and decomposition techniques in
multibody dynamics include: hierarchical dynamics and control; assembly of the overall
equations of motion from those of simpler component subsystems; organizing dynamics
computations (e.g., mass matrix, forward dynamics) from those of the component sub-
systems for serial or parallel computations. Furthermore, partitioning techniques can help
identify the sparsity structure of key dynamics matrices associated with the system dynamics
that can be exploited to improve computational efficiency.

The contributions of this part are in the use of graph theory techniques to systematically
study and derive results on the effect of partitioning and aggregation transformations on the
SKO models for tree-topology systems. We derive the explicit partitioned structure of the
system SKO model that is induced by partitioning transformations of the system graph.
Since subgraph aggregation can destroy the tree graph structure, we derive rigorous
sufficient conditions for tree structure preservation after the application of aggregation
transformations. Preservation of the tree-topology structure leads to the natural question
about the structure of the SKO model for the aggregated system. We derive explicit
expressions for these aggregated SKO models. Our focus on SKO models is motivated by
the easy availability of the large family of analytical and algorithmic techniques for these
models. Furthermore, we show how the sparsity structure of key matrices and operators
associated with tree-topology systems can be completely understood by applying the
partitioning techniques developed in this paper. Part 2 of this paper [12] applies the
aggregation transformation ideas developed here to develop constraint embedding
techniques that extend the notion of SKO models to non-tree topology multibody systems.

The paper is organized as follows. Section 2 provides an overview of key graph theory ideas
and the notion of SKO models. Section 3 focuses on partitioning transformations for SKO
models. Toward this, the graph theory concepts of induced and path-induced subgraphs are
introduced and their role in partitioning of abstract graphs is discussed. These ideas are used
to partition dynamics models for tree multibody systems in Sect. 4. Section 5 studies the
notion of subgraph aggregation for coarsening graphs. These ideas are subsequently used to
apply aggregation transformations to dynamics models in Sect. 6. The aggregation
techniques are then used to analyze the sparsity structure of the SKO model operators as
well as the mass matrix in Sect. 7. The second part of this two-part paper uses the techniques
derived here to develop a constraint-embedding technique that extends the notion of SKO
models to nontree multibody systems.

2 Background: SKO models for tree multibody systems
Directed graphs (digraphs) provide natural mathematical constructs for describing the
topology and connectivity of bodies in a multibody system. This section contains a brief
review of key graph concepts and their use for multibody dynamics modeling.

2.1 Directed graphs and trees
A graph is a collection of nodes, and edges connecting pairs of nodes. A directed graph
(also known as a digraph) is a graph where the edges have direction, i.e., an edge from one
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node to another is not the same as an edge in the reverse direction [27]. Each edge in a
digraph defines a parent/child relationship between the node pair of that edge. Nodes
defining an edge are said to be adjacent nodes. The node from which the edge emanates is
referred to as the parent node, and the destination node is said to be the child node. The set
of parent nodes of the kth node is denoted ℘ (k), and the set of its children nodes is C(k).
Nodes without parent nodes are referred to as root nodes. Digraphs can have zero, one, or
multiple root nodes. We assume that there is at most a single edge in the same direction
between any pair of nodes, i.e., parallel edges between a pair of nodes are not allowed.

A node, j, is said to be the ancestor of another node, i, if there is a directed path from the
node j to the node i. We use the notation i ≺ j (or equivalently j ≻ i) to indicate that node j is
an ancestor of node i. The notation i ⊀ j implies that node j is not an ancestor of node i.
Node i is said to be the descendant of node j if j is an ancestor of node i. A pair of nodes, i
and j, are said to be related if one of them is the ancestor of the other; otherwise they are
said to be unrelated.

1. A connected digraph is a digraph such that there is an undirected path connecting
any pair of nodes, i.e., it is a digraph without disjoint components.

2. A rooted digraph is a connected digraph with a single root node that is the
ancestor of every other node in the digraph.

3. A directed acyclic graph (DAG) is a connected digraph without any directed
cycles, i.e., there is no directed path from any node back to itself.

4. A simply connected graph, or a polytree is a DAG in which nodes are not
multiply connected, i.e., there is at most one directed path between any pair of
nodes.

5. A tree, is a polytree where a node has at most one parent node, i.e., ℘ (k) contains
at most one node for any node k. All trees have a unique root node.

6. A serial-chain is a tree where each node has at most one child. Unlike trees, serial-
chains have the stronger property that all node pairs are related, i.e., for any pair of
nodes in the serial-chain, one of the nodes is necessarily an ancestor of the other.

7. A forest is a collection of disjoint trees. Removing an edge or a node from a tree
converts it into a forest. Adding a common root node to the independent trees in a
forest converts them into a single tree.

A tree is said to be canonical1 if the index of a parent node is always greater than the index
of its child node, i.e., ℘ (k) > k for any node k. Every rooted digraph has a spanning tree,
i.e., a tree that contains all the nodes in the digraph and whose edges belong to the digraph.
The edges removed to convert a rooted digraph into its spanning tree are referred to as cut-
edges. The adjacency matrix,  for a digraph with n nodes is an n × n matrix where the (k,
j) element is 1 if there is an edge between the kth and jth nodes, and zero otherwise.

2.2 Multibody digraphs
The standard digraph for a multibody system is a digraph with the inertial frame as the
root node, and all the links in the system as the remaining nodes in the digraph. Thus, an n-
link multibody system has a standard digraphwith n + 1 nodes.

1More precisely, the canonical property of a tree depends only on the way indices are assigned to the nodes, and not the topological
structure of the tree itself.
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The edges in the digraphare defined by the motion constraints among the bodies, and
between the bodies and the inertial frame. Thus, each hinge is represented by an edge, with
the edges oriented from the inboard to the outboard body. Additional edges are assigned to
other nonhinge motion constraints in the system. All motion constraints with respect to the
inertial frame are defined so that edges from the inertial frame node to the link nodes are
directed away from the inertial frame root node. These assignments result in a rooted
digraph representation for the multibody system. Figure 1 illustrates the tree multibody
system and its standard digraph. The convention is to depict the inertial frame node as
unfilled, and the edges from the node as dashed lines. Multibody systems are classified as
follows, based on the topology of their standard digraph:

• systems with tree standard digraphs are referred to as tree-topology systems;

• systems with serial-chain standard digraphs are referred to as the familiar serial-
chain systems. They are special cases of tree-topology systems;

• systems with nontree standard digraphs are referred to as closed-chain or
constrained systems. These digraphs can have directed cycles and/or multiply-
connected nodes. Recall that every rooted digraph can be decomposed
(nonuniquely) into a spanning tree together with a set of cut-edges. A
decomposition into a spanning tree with n + 1 nodes and a set of cut-edges is often
used when working with closed-chain systems.

2.3 Equations of motion for tree-topology, rigid body systems
Consider a canonical n-link rigid body serial-chain system. The tip link is denoted link 1 and
the base-body link as link n. The associated serial-chain tree associated with this graph is a
strictly canonical tree with the parent/child relationship given by ℘(k) = k + 1.

Using 6-dimensional spatial coordinate-free notation with  denoting the spatial

velocity (angular and linear) of the kth link,  the kth hinge generalized velocities, H*(k)
the kth hinge map matrix,  the vector between the (k + 1)th and kth body frames,
and

(1)

the rigid body transformation matrix, the link-to-link spatial velocity relationship between
the (k + 1)th links and its child body k can be expressed as [7, 11]:

(2)

The overall velocity degrees of freedomfor the system is denoted  and is defined as the
sum of all the individual hinge degrees of freedom.

Now, we introduce stacked vectors needed to define system level relationships. The stacked
vectors  and θ are defined as
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(3)

The  stacked vector consists of the component body-level  spatial velocity vectors
combined into a single large vector. Correspondingly, the θ stacked vector consists of the
component body-level θ(k) generalized coordinates combined into a single large vector. The
link-level (2) relationship can now be expressed equivalently at the system level [11] as

(4)

where the spatial operator  is defined as

(5)

 denotes a block-vector containing zero entries except for the kth slot which is a
6 × 6 identity matrix. The block-diagonal  spatial operator is defined as
follows:

(6)

The εφ spatial operator is in fact a BWA2 matrix for the system digraph, and is referred to as
a spatial kernel operator (SKO) for the system [14]. Observe that (4) is an implicit equation
with  appearing on the both sides. However, it is explicit at the component-level, i.e., if we
look at the kth row of this matrix equation, we obtain back the explicit (2) form.

The key difference between serial-chain and tree-topology multibody systems is that, in a
tree system, bodies can have multiple children bodies. Examining the kinematic velocity
relationships across the links, the interlink velocity relationship in (2) generalizes as follows
for bodies in a tree-topology system:

2A block-weighted adjacency (BWA) matrix [14] for a digraph is its adjacency matrix with block matrix entries. The(k, j) element
of a BWAmatrix is a mk × mj weight matrix, w (j, k), when there is an edge between the × kth and jth nodes. Here, mk denotes the
weight dimension associated with the kth link.
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(7)

That is, the spatial velocity of the kth link can be expressed as the sum of the rigidly

propagated spatial velocity of the parent body and the relative spatial velocity, ,
across the kth hinge. Defining the  and  stacked vectors and the H spatial operator in the
same way as shown earlier, it is easy to verify that the following operator expression is a
system-level re-arrangement of the component-level velocity relationship in (7)

(8)

with εφ is defined more generally as [13, 15]

(9)

The εφ SKO operator continues to be a BWA matrix for the system digraph. This time, the
φ(℘ (k), k) matrices are its 6 × 6 weight matrices. Observe that (4) and (8) have identical
form, even though the former was derived specifically for a canonical serial-chain system,
while the latter holds for arbitrary tree-topology systems.

For trees, εφ is nilpotent3 and, therefore, has a well-defined 1-resolvent,4φ = (I − εφ)−1 [14].
φ is referred to as the spatial propagation operator (SPO) associated with the εφ SKO
operator. Equation (8) can thus be transformed into the following explicit form:

(10)

Differentiating the above leads to the following expression for the link spatial accelerations
α:

(11)

where  denotes the state-dependent Coriolis acceleration stacked vector.

With  denoting the interbody interaction spatial force between the parent ℘ (k)
and the kth links, the following is the force balance expression for the kth body in a tree-
topology system:

(12)

where  is the kth link spatial inertia and  is the state-dependent
gyroscopic spatial force for the kth body. Switching to the system-level stacked vector form,
we obtain

(13)

3A matrix A is nilpotent if An = 0 for some finite n.
4A 1-resolvent of a matrix A is defined as the (I − A)−1 matrix.
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where M is a block-diagonal spatial operator with link spatial inertias along the diagonal,
and  is the state-dependent stacked vector of gyroscopic terms. Continuing in this mode, the
following expressions summarize the equations of motion for tree-topology systems:

(14)

 is the stacked vector of generalized forces. Using φ = (I − εφ)−1, these expressions can be
transformed from implicit ones into the following explicit operator expressions:

(15)

Combining the expressions in (15) leads to

(16)

where

(17)

 denotes the mass matrix for the tree-topology system, and  is the
vector nonlinear Coriolis and gyroscopic velocity dependent terms.

2.4 SKO models for tree systems
References [13-15] have shown that SKO and SPO operators such as εφ and φ occur in
internal-coordinate tree multibody kinematics and dynamics formulations. The occurrence
of these operators is invariant to specific details such as body indexing, rigid/flexible links,
regular or flexible/geared joints etc. Only the details of the weight matrices change with the
system—not the SKO and SPO 1-resolvent properties. In general, the weight matrices can
be nonsquare, noninvertible, and of nonuniform size. We formalize this general property
with the definition of SKO models for multibody systems.

An SKO model for an n-links tree-topology multi-body system consists of the following:

1. A tree digraph reflecting the bodies and their connectivity in the system.

2. An  SKO operator and associated SPO operator, 

3. A full-rank block-diagonal, joint map matrix operator, H.

4. A block-diagonal and positive-definite spatial inertia operator, M.

5. Stacked vectors:  ˙ denoting independent generalized velocities,  the generalized
forces,  the node velocities, α the node accelerations,  the interbody forces,  the
body Coriolis accelerations,  the body gyroscopic forces,  the number of
degrees of freedom, and equations of motion defined as:
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(18)

Thus,

(19)

where

(20)

 is the symmetric and positive-definite mass matrix for the tree system and  is
the vector of non-linear Coriolis and gyroscopic velocity dependent terms.
Equation (20) is the Newton–Euler operator factorization of the mass matrix.

SKO models are also referred to by the (H,  M) triplet of operators that define them.

References [13, 15] show that several analytical techniques and efficient algorithms follow
directly from the SKO model structure for multibody systems. Examples of these include:

• Recursive  procedures for computing SPO operator and stacked vector
products.

• General  Newton–Euler inverse dynamics algorithms.

• Solutions for the forward Lyapunov equations and decomposition of X  operator
product.5

•
General  algorithm for computing the mass matrix.

• Solution for the backward Lyapunov equations and decomposition of X operator
product.

• Recursive algorithms for computing the X operator product.

• The general  articulated body inertia solution of the Riccati equation.

• The alternative Innovations Operator Factorization of the mass matrix.

• An analytical expression for the inverse of the mass matrix.

• The analytical expression for the determinant of the mass matrix.

• The general  AB forward dynamics algorithm.

These results require no assumptions on the SKO model regarding the SKO weight matrices,
the components of the other spatial operators, or the structure of the tree digraph. Thus, any
multibody system formulation satisfying the requirements of the SKO model has available
to it the full spectrum of these techniques and efficient algorithms.

5Here, and denote an arbitrary pair of SPO operators, and X a compatible block diagonal matrix, for the SKO model.
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3 Partitioning digraphs
In this section, we study the partitioning of SKO models for tree multibody systems. We
begin with a discussion of partitioning concepts from graph theory and subsequently apply
them to multibody systems.

A subgraph  of a digraph, , is defined as a digraph containing a subset of the nodes and
edges in .  is said to be induced if all edges in  connecting node pairs in  are also in 
[4, 27]. In other words,  is induced if all node pairs in  that are adjacent in  are also
adjacent in . Thus, induced subgraphs preserve the adjacency property for node pairs, so
that a pair of nodes in an induced subgraph are adjacent if and only if they are adjacent in
the parent digraph. The induced subgraph  for a subgraph  is the minimal subgraph
containing  that is also an induced subgraph. A subgraph, and its induced subgraph,
contain the same nodes, and differ only in the edges they contain.

A subgraph  of  is said to be path-induced if it contains all the paths (nodes and edges)
in  that connect node pairs in . A path-induced subgraph has no missing nodes or edges
for paths in  that connect the nodes in . Thus path-induced sub-graphs preserve the
relatedness property for node pairs, so that a pair of nodes in a path-induced subgraph are
related if and only if they are related in the parent digraph. The path-induced subgraph 
for a subgraph  is the minimal subgraph of  containing  that is path-induced. Figure 2
illustrates a subgraph, and its induced and path-induced subgraphs. The path-induced
property applies even to disconnected subgraphs. A path-induced subgraph, will generally
contain more nodes and edges than the original subgraph or its induced subgraph. That is,

(21)

The following corollary shows that nontree path-induced sub-graphs are “complete”, in the
sense that if such a subgraph contains part of a loop, then it must necessarily contain all the
nodes and edges in the full loop, or, if it contains multiply-connected nodes, then all nodes
and edges on paths connecting these nodes must also belong to the subgraph.

Corollary 3.1 (Non-tree path-induced sub-graphs) Let  be a path-induced subgraph of a
digraph .

1. If  contains an edge that is a part of a directed cycle in , then the full cycle must
also be in .

2. If  contains a pair of multiply-connected nodes (i.e., nodes connected by more
than one path), then all the paths connecting them must also be in .

Proof

1. Since a directed cycle containing an edge, represents a directed path connecting the
node pair for the edge, the path (and the cycle) must belong to  since it is path-
induced.

2. Similarly, all paths connecting a pair of nodes in  must be in the subgraph since it
is path-induced, and the result follows.

3.1 Partitioning by path-induced subgraphs
We now turn our attention to partitioning of digraphs. The following lemma shows that
path-induced subgraphs are special in that they partition digraphs into component sub-
graphs that are themselves path-induced.
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Lemma 1 (Induced partitions of digraphs) Assume that  is a path-induced subgraph of a
digraph . Define the  and  sub-graphs as follows:

•  child subgraph is the induced subgraph for the set of nodes that are not in , but
are descendants of the nodes in , and

•  parent subgraph is the induced subgraph for the remaining nodes that are
neither in  nor in .

The ,  and  subgraphs represent a disjoint partitioning of the nodes in . The following
properties hold for the  and  subgraphs:

1.  is path-induced.

2.  is path-induced.

Proof

1. Assume that there are nodes i ≻ j ≻ k where i, . Since j is a descendant of i, it
must belong to either  or . We will show that node j must necessarily belong to

. First, since , by definition there is a node  which is an ancestor of
node i, i.e., l ≻ i ≻ j.

If node j , we would have l ≻ i ≻ j. Since i , this would contradict the
assumption that  is path-induced. Hence,  and . Therefore,  is path-
induced.

2. Assume that there are nodes i ≻ j ≻ k, where i, . We will show that node j
must necessarily be in ≻.

3. If j , then, since node k is its child, k must be either in  or , which would
contradict our assumption that . Thus .

If instead , then there must a node  that is the ancestor of j, i.e., l ≻ j.
This would imply that l ≻ k as well, since j ≻ k. Since k will then be a descendant
of , it must belong to either  or . This would contradict our assumption that

. Hence, node j must be in . This establishes that  is path-induced.

 contains nodes that are ancestors of the nodes in  but are not themselves in , together
with all nodes that are unrelated with any of the nodes in . While all nodes in  belong to
one of the ,  and  subgraphs, connecting edges between these subgraphs do not belong
to any of the subgraphs.

4 Partitioning SKO models
When  is a tree digraph, a path-induced subgraph of  is in fact a path-induced sub-forest,
i.e., it is a collection of one or more disjoint path-induced subtrees. Thus, in the partitioning
described in Lemma 1, , , and  are all path-induced subforests. This is illustrated in
Fig. 3. The partitioning process can be continued on the component sub-forests to further
subdivide them into finer-grain path-induced subforests, if desired.

4.1 Partitioning SKO model operators
When  is the tree digraph for an SKO model, the disjoint partitioning induced by a path-
induced subgraph  also partitions the bodies in the multibody system into disjoint
component multibody systems, corresponding to the , , and  path-induced subforests.
Since these are subforests, each of the component systems have well-defined SKO spatial

operators, denoted , , and , respectively.
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For ease of exposition, we assume that  is a canonical tree. The , , and  sub-graphs

are then also canonical. Therefore, the , , , and  SKO operators are all strictly
lower-triangular. The system-level  SKO operator can be expressed in the following
block-partitioned form:

(22)

The SKO operators of the individual subforests form the block-diagonal elements of ,
with:

1. The  SKO operator for —with the smallest indices—being in the upper left
corner.

2. The  SKO operator for —with the largest indices—being in the lower right
corner.

3. The AS SKO operator for  being in the middle.

4.  is a connector block, whose nonzero elements are for the parent/child edges
between the nodes in  and their children in .

5.  is also a connector block, whose nonzero elements are for the parent/child edges
between the nodes in  and their children in .

6. The lower-left block is zero because none of the nodes in  are the children of the
nodes in .

It is worth pointing out that the block lower-triangular structure of  in (22) continues to
hold even under the more relaxed condition where the component systems are not
necessarily canonical systems themselves, but are only canonical with respect to each other.
In this situation, the index of a node in  whose parent is in  is required to be less than that
of its parent. Similarly, the index of a node in  whose parent is in  is required to be less
than that of its parent.

Since the component systems are subforests, their corresponding SPOoperators are well-
defined, and given by:

(23)

The following lemma describes the corresponding partitioned structure of the system level
SPO operator in terms of the SPO operators of the component systems.

Lemma 2 (Partitioning of the SPO operator) The SPO operator for the full system has
the following partitioned structure corresponding to the partitioned structure of  in (22):

(24)
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Observe that the SPO operators for the component subgraphs are the block-diagonal
elements of 

Proof Start with the partitioned expression for  in (22), and observe that

The result follows by verifying that the product of this expression for −1, with in (24), is
indeed the identity matrix.

If the  subgraph is empty, then the rows and columns for the parent subgraph do not exist
in the partitioned structure. Similarly, if  is empty, then the corresponding columns and
rows for the child subgraph do not exist in the partitioned structure.

4.2 Partitioning of an SKO model
The partitioning of the tree digraph for an SKO model also induces the following
corresponding partitioning of the system-level block-diagonal H and M operators:

(25)

Observe that ( ), ( ), and ( ) define SKO models for the
component tree-topology multibody systems associated with the , , and  subgraphs,
respectively.

The following corollary looks at the case where a system is partitioned into just outer and
inner subsystems, and shows that the mass matrix subblock corresponding to the outer
system is simply the mass matrix of the outer subsystem itself.

Corollary 4.1 (Mass matrix invariance of the outer sub-system) Consider an SKO model
partitioned as in (22), but with empty . That is, the system is partitioned into inner, , and
outer, , SKO models. Then the overall SKO model mass matrix has the following
partitioned structure:

(26)

where
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(27)

Proof The expressions in (26) and (27) are obtained by directly evaluating 
using the following component partitioned expressions from (24) and (25):

Observe that  and  are the respective mass matrices for the  and  SKO models.
Also, observe that the upper right sub-block  of  is independent of quantities
associated with the  subgraph, i.e., the elements of the  mass matrix do not depend
upon the properties or generalized coordinates of inboard bodies.

5 Aggregating sub-graphs
In this section, we use the partitioning techniques developed so far to study sub-structuring
of SKO models using subgraph aggregation. We begin with the development of the
aggregation concepts for digraphs and subsequently apply them to SKO models.

5.1 Edge and node contractions
In graph theory, edge-contraction is referred to as the process of collapsing the node pair
for an edge, into a single node [27]. The node and edge neighbors of the original pair of
nodes become neighbors of the new aggregated node. Thus, the parent and children nodes of
either of the original nodes (not including the node pair themselves) are the parent and
children nodes of the aggregated node in the transformed digraph.

For a tree, the result of each such edge-contraction is once again a tree, with one fewer node.
The edge-contraction process can be repeated to aggregate multiple edges in a tree. Thus,
aggregating a sub-tree of a tree, using edge-contraction, results in a digraph that is also a
tree.

Node-contraction is a more general concept that applies to pairs of nodes that are not
necessarily connected by an edge. The node-contraction of a pair of nodes replaces the pair
of nodes with a single aggregated node, where all the neighboring nodes and edges of the
original pair become neighbors of the new aggregated node. Thus, edge-contraction is
equivalent to node-contracting the node pair for an edge. Unlike edge-contractions, node-
contractions generally do not preserve the tree property of a digraph. Node-contractions can
be applied repeatedly to aggregate multiple nodes in a subgraph. Formally, subgraph
aggregation is defined as the process of transforming a digraph by applying node-
contraction to all the nodes in the subgraph. This is illustrated in Fig. 4. It shows examples
of trees transformed into multiply-connected and cyclic digraphs, following subgraph
aggregation. Later, we will examine the conditions under which the tree property is
preserved following subgraph aggregation.
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The following lemma shows that aggregating a subgraph or its induced subgraph result in
the same transformed digraph.

Lemma 3 (Aggregation of a subgraph and its induced subgraph) Let  denote the subgraph
of a digraph . Then the new digraph, , created by aggregating , is the same as the one

obtained by aggregating the induced subgraph, , i.e., .

Proof  and  contain the same nodes, while the latter contains all the edges connecting the
nodes as well. Node-contraction of a pair of nodes removes all edges connecting the node-
pair. Thus, aggregating  by node-contraction removes all edges connecting the nodes in ,
whether or not the edges are in  itself. This implies that the aggregation of  or  results
in the same transformed digraph.

One implication of this lemma is that the nodes and edges missing from the transformed
tree, after aggregating , are precisely the nodes and edges in the  induced subgraph of .

5.2 Tree preservation after subgraph aggregation
Let  denote a subgraph of a tree digraph, . The aggregation of  results in a new 
digraph, where all the nodes associated with the nodes in  are replaced by a single node.
We will henceforth refer to this aggregated node, as node . Topologically, all the parent
nodes of the  subgraph, denoted , are now the parents of node , and all the children
nodes of the  subgraph, denoted , are now the children of node . In general, 
obtained by this topological transformation will not be a tree.

The following defines the aggregation condition for subgraphs.

Assumption 1 (Aggregation condition) A subgraph , of a tree digraph , is said to satisfy
the aggregation condition if:

1.  is an induced subgraph, i.e., .

2.  contains exactly one node—one that is necessarily the ancestor of all the
nodes in .

The induced requirement for a  satisfying the aggregation condition is a mild one since
Lemma 3 states that aggregating a subgraph, or its induced subgraph, lead to the same
transformed digraph. Some examples of a tree subgraph , satisfying the aggregation
condition, are:

• a single node

• a serial-chain segment

• a subtree

The following lemma shows that any subgraph of a tree satisfying the aggregation condition
is a path-induced subgraph.

Lemma 4 (Aggregation condition and path-induced subgraphs) If a subgraph  of a  tree
satisfies the aggregation condition, then it is path-induced, i.e., .

Proof Since  satisfies the aggregation condition, it is an induced subgraph. An induced
subgraph of a tree can differ from its path-induced subgraph in the nodes and edges that lie
on the paths connecting nodes in .
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First, let us consider the case where the node sets are the same. Since  is induced, there are
no missing edges in , and, therefore, even the set of edges are exactly the ones in the path-
induced subgraph. Hence,  and its path-induced subgraph are the same.

Let us now consider the case when the node sets are not the same. Then there exists a node k
in the path-induced subgraph  that is not in . Node k must lie on a path connecting a pair
of nodes in . This implies that there is a node l on this path that belongs to . However,
since k is in the interior of the path, node l is not the ancestor of all the nodes in . This
contradicts the assumption that  satisfies the aggregation condition, which allows for only a
single ancestor node for . Hence,  must be a path-induced subgraph.

The converse is not true, i.e., not all path-induced subgraphs satisfy the aggregation
condition. Figure 5 illustrates cases of path-induced subgraphs that do, and do not, satisfy
the aggregation condition.

The following lemma shows that the aggregation condition is a necessary and sufficient
condition for the  aggregated digraph to be a tree.

Lemma 5 (Tree property after subgraph aggregation) Let  denote an induced subgraph of a
tree digraph . Let us assume that  is aggregated to create a new  digraph with
aggregated node . Then the aggregated  digraph is a tree if and only if the original sub-
graph  satisfies the aggregation condition.

Proof

1. First, let us assume the  is indeed a tree, and we will show that  must
contain a single node. Since  is a tree, all of its nodes, including node , can have
at most one parent. Thus,  can have at most one node. The  subgraph
therefore satisfies the aggregation condition.

2. Now, let us consider the converse case, i.e., assume that  contains a single
node that is the ancestor for all the nodes in . We will prove that  must then be a
tree. We need to show that  is not a polytree, is not multiply-connected, and does
not have directed cycles.

a. To show that  is not a polytree, we need to focus only on node  and
show that it cannot have multiple parents. This follows directly from the
assumption that  contains only one node.

b. To show that  is not multiply-connected, we need to focus only on the
node  and show that there is no node in  from which there is more than
one directed path to the node . Since  is a tree, it has no multiply-
connected nodes. Thus, the only way for node  to be multiply-connected
is for multiple paths to end at node . This would mean that the node 
has multiple parents—one from each of the paths that end on it. This
would contradict the assumption that  contains a single node.

c. Now, we show that  cannot have directed cycles. Again, we need to
focus on node , and show that it cannot be part of a directed cycle.
Assume that such a cycle exists. This implies that there are nodes ,
and a node  such that k ≻ i ≻ j. In other words, there is a path from k
to j containing node i. This would imply that there is a node, l, on the path
from i to j that is a parent node for . Since  contains only one node,
l must be this ancestor node. This would imply that node l, and hence node
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i, is an ancestor of k. However we know that k is an ancestor of i. Hence,
node  is not part of any directed cycles.

Lemma 5 shows that preservation of the tree property after subgraph aggregation requires
that the subgraph satisfy the aggregation condition. Intuitively, this result is not surprising,
once we recall that edge-contractions preserve the tree property, and that the aggregation of
a path-induced subgraph is equivalent to applying edge-contraction to all the edges in the
subgraph.

5.3 The  aggregation subgraph
The aggregation subgraph, for a subgraph  of a tree, is defined as the minimal subgraph
containing  that also satisfies the aggregation condition. The aggregation subgraph of a
subgraph  is denoted .

Lemma 6 (Properties of )

1.  is a path-induced subgraph.

2. The following containment relation holds

(28)

3.  is the subforest obtained by deleting the root node from the smallest subtree
containing .

Proof

1. By definition,  satisfies the aggregation condition, and hence by Lemma 4, it is
path-induced.

2. By definition, . Hence, the path-induced subgraph of , , is contained in
the path-induced subgraph of , which is  itself. This establishes the last
containment in (28). The rest are restatements of (21).

3. Since  satisfies the aggregation condition, it has a single parent node. Thus, with
the parent node added in, the new subgraph is a subtree. The minimality of the sub-
tree follows from the definition of a aggregation subgraph, which is required to be
minimal.

This lemma helps us better understand the relationship between a subgraph, , and its
induced, path-induced and aggregation subgraphs. Starting with the  subgraph, we obtain
its induced subgraph  by adding in the missing edges between the nodes in .
Furthermore, adding in any missing nodes and edges on paths connecting nodes in  leads
us to the path-induced  subgraph. To obtain the  aggregation subgraph, we need to
further grow the path-induced subgraph until we get to the smallest sub-tree containing it,
and then drop the root node from this subtree. The aggregation subgraph for a subgraph is
important because, as shown by Lemma 5, while the aggregation of a subgraph  will
generally not preserve the tree property, aggregating  instead ensures that the aggregated
digraph remains a tree. Preserving the tree property is necessary requirement for the
aggregated tree to have an SKO model.
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6 Transforming SKO models via aggregation
6.1 SKO operators after body aggregation

Let  be a tree digraph associated with a multibody system. We assume without loss in
generality that it is canonical. Let  denote a subgraph satisfying the aggregation condition.
By Lemma 5, the aggregated  digraph, with aggregated node , is also a tree. Let us now
develop an SKO model for the system with the  aggregated tree.

To define SKO operators for , we first need to assign weight dimensions to the nodes in
. All nodes unaffected by the aggregation process inherit the weight dimensions from the

nodes in . The weight dimension for node  is defined as the sum of the weight dimensions
of all the nodes in the  subgraph, i.e.,

(29)

Since the  subgraph satisfies the aggregation condition it is path-induced. From Lemma 1,
 induces a disjoint partitioning of  into path-induced parent  and child  subgraphs,

respectively. These partitionedsubgraphs allow us to express the εφ SKO operator for  in
the partitioned form shown in (22):

(30)

Lemma 7 (SKO operator for the  tree) With  satisfying the aggregation condition, define
the a matrix using the partitioned sub-blocks of (30) as follows:

(31)

The following facts hold for a:

1. a is an SKO operator for the original tree, .

2. a is an SKO operator for the aggregated tree, .

Proof

1. Since  satisfies the aggregation condition,  contains a single node. Let us
denote this node as node j. Comparing the expression for a in (31) with that of 
in (30), the only term that needs further examination to establish the SKO property
is the  block, which differs from the  block. Recall that the  connector
block contains non-zero entries for the edges connecting nodes in  to nodes in 
subgraphs. Therefore,  has the form

(32)
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In the above equations, we have taken some notational liberties; the ex vectors
represent appropriate size vectors for the  and  subgraphs, instead of the full-
sized ones for the  tree. It follows that

(33)

The  product is the kth row of . Since  is an SPO operator, its kth row 
(k, i) entry is nonzero only when node i is a descendant of the kth node. Hence,
(33) can be reexpressed as

(34)

In the last expression, j ≻ i, denotes the condition that the jth node is an ancestor of
the ith node. From (34), it is clear that only the jth row of  is nonzero. The
only nonzero entries in this row are for nodes in  that are descendants of the jth
node.6 Thus, each column of , has at most a single nonzero element, and since
the central block of a is zero, this implies that the same column has only a single
nonzero entry in the full a matrix as well. Thus, the single nonzero entry per
column requirement for an SKO operator for  is satisfied. Hence, a is an SKO
operator for .

2. We have seen that a is an SKO operator for . For , the central rows and
columns of a correspond to the single  node in the  tree. For a to be an
SKO operator for , we need to show that it satisfies the SKO operator structural
requirements, as represented by (9). That is,  must be of the form ejX for
some X. Equation (34) satisfies this requirement, and, thus, a is an SKO operator
for .

Having derived the expression for an a SKO operator for , the following lemma derives
the expression for the corresponding SPO operator for .

Lemma 8 (The a SPO operator for the  tree) Using the same assumptions and notation
from Lemma 7, the SPO operator, a, for  is given by the following expression:

(35)

6In fact all nodes in  are descendants of j and, therefore, the row is fully populated.
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Proof Since Lemma 8 established a as an SKO operator for the  tree, we need to show

that  for it to be an SPO operator for . Now

The result follows by verifying that the product of the above, with a in (35), is the identity
matrix.

Node  in  contains all the bodies associated with the nodes in the original subgraph .
Unlike regular rigid links, the geometry of node  is variable, and depends on the hinge
coordinates of the component links within the subgraph . Such variable geometry bodies
have been used in other dynamics modeling contexts [5, 10, 29].

6.2 SKO model for the  aggregated tree
The key difference between the aggregated and the original tree is that the former treats the
set of bodies in subgraph  as a single body. The aggregation process provides a way of
transforming and substructuring SKO models for tree-topology multibody systems into
coarser SKO models. The aggregation process induces the following partitioning of the , ,
 and  stacked vectors:

(36)

For the  aggregated tree, the ,  etc., subvectors of the  and  stacked vectors
correspond to the single  aggregate link. This partitioning of the system-level  and 
stacked vectors extends to other stacked vectors such as the Coriolis spatial accelerations
vector , the gyroscopic spatial forces vector , and to the other spatial operators.

Lemma 9 shows that the transformed system with the aggregated tree possesses a well-
defined SKO model, and defines the equations of motion for the model.

Lemma 9 (SKO model for an aggregated tree) Let (H, , M) denote an SKO model with
tree digraph . Let  be a subgraph of  satisfying the aggregation condition. Then the (Ha,

a, M) spatial operators define an SKO model for the  aggregated tree, where

(37)
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Ha defines the new joint map matrix for the  aggregated tree, with , , and 
denoting the component joint map matrices as defined in (25). The transformed version of
the equations of motion from (18) are given by:

(38)

Thus,

(39)

with

(40)

The mass matrix expression above represents the Newton–Euler operator factorization of the
mass matrix for the SKO model of the aggregated system.

Proof Lemma 8 established that a is the SPO operator for . With the central row and
column of Ha corresponding to node  in , Ha is block-diagonal for . Lastly, M has
remained unchanged in going from  to . Thus, the structural requirements 1 through 4 for
an SKO model in Sect. 2.4, are satisfied for the  tree, by the (Ha, a, M) operators.

The equations of motion in (38) follow by substituting the expressions for Ha and a from
(35) and (37) in the original equations of motion in (18).

Observe that, while  is block-diagonal,  is no longer block-diagonal.
Consequently, Ha is not block-diagonal for  and the (Ha, a, M) operators do not satisfy
the structural requirements for an SKO model for the original . Nevertheless, the above
lemma shows that these operators do satisfy the SKO model structural requirements for the

 tree. This implies that all of the SKO model formulation techniques and algorithms,
including mass matrix factorization and inversion, are applicable to the SKO model of the
aggregated tree.

The following corollary formally verifies that at the system-level, the mass matrix and
Coriolis terms in the equations of motion are identical across the original and the aggregated
systems. This of course is to expected, since the aggregation process only changes the form
of the equations of motion and not the system dynamics.

Corollary 6.1 (Mass matrix invariance with aggregation) The mass matrix, , and the
Coriolis vector, , of a tree-topology system remain unchanged after subgraph aggregation.
In other words, the expressions for  and  in (40) agree with the quantities defined in
(20), i.e.,
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(41)

Proof First, we have

(42)

Using this directly establishes the  equalities in (41). Moreover,

This establishes the  equalities in (41).

The aggregation process provides a way to apply substructuring to develop alternative SKO
models for a multibody system.

7 SKO model sparsity structure
Researchers have used system-level matrices and operators to analyze and exploit the
sparsity structure of the mass matrix to develop efficient computational algorithms for the
inverse and forward dynamics problems [3, 7, 21, 23]. In this section, we apply the
partitioning and aggregation techniques developed to identify the sparsity structure of the
SKO and SPO operators and the mass matrix for tree-topology systems.

Tree and serial-chain subgraphs are always path-induced and satisfy the aggregation
condition. Thus any tree system can be successively partitioned using such subgraphs.
However, only in serial-chains are all node pairs related resulting in the most dense SKO
and SPO operators. Thus, serial-chain subgraphs are well suited for analyzing the sparsity
structure of SKO models. Toward this, the system digraph can be decomposed into disjoint
serial-chain branch segments, which are subsequently aggregated to obtain a coarser tree
model for the system. Figure 6 illustrates such a transformation of a tree with five serial-
chain segments into a coarser tree with all the serial-chain segments aggregated into nodes.

The sparsity structure of the system’s spatial operators (e.g., SPO, mass matrix) directly
reflects the structure of the aggregated tree. Subblocks of these matrices are associated with
the aggregated serial-chain segment nodes, and are the most dense because all the nodes in a
serial-chain are related. Equation (43) illustrates the sparsity structure of the system-level 
SKO operator via its decomposition in terms of the SKO operators for each of the
aggregated serial-chain nodes

(43)

Jain Page 21

Nonlinear Dyn. Author manuscript; available in PMC 2013 November 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



εφj denotes the SKO operator for the jth branch segment. Also, when the kth branch is a
child of the jth branch, the j,k block denotes the non-zero connector block between them.
All other blocks are zero. The structure of j,k is as follows:

(44)

where 1j denotes the tip body on the jth branch that is the parent of the nk base-body of the
kth branch. This partitioned structure of  is a generalization of the partitioned structure in
(22). We see that the only nonzero blocks in the lower-triangular part of the  matrix in
(43) are for the adjacent nodes in the aggregated tree.

With  denoting the SPO operator the jth branch, the overall structure of the
system level SPO operator for Fig. 6 tree is illustrated in (45):

(45)

The j,k blocks denote the nonzero connector block between related serial-chain segments.
All other blocks are zero. This partitioned structure of  is a generalization of the
partitioned structure in (24). The general expression for the j,k elements is:

In the above, . We see that the only nonzero blocks in the lower-triangular part of
the matrix in (45) are for the related nodes in the aggregated tree.

Figure 7 illustrates the sparsity structure of the mass matrix for the tree-topology system in
Fig. 6. As expected, the sparsity structure of the mass matrix mirrors the sparsity of the 
SPO operator and its transpose. The block-diagonal of the mass matrix contains dense
blocks, one for each of the branch segments in the tree. The off-diagonal blocks are zero for
unrelated nodes in the aggregated tree. The topology dependency of the mass matrix’s
sparsity structure was initially described in [22].

8 Conclusions
SKO models play a pivotal role in the analysis and algorithm development for tree
multibody systems. In this paper, we have studied the effect of topological transformations
on such SKO models. Path-induced subgraphs are shown to partition tree digraphs into
parent and child path-induced subgraphs. We derive the relationship between the SKO
models of the original multibody system and the SKO models of the partitioned subsystems.
We further show that SKO models can be substructured into coarser SKO models by
aggregating path-induced subgraphs into aggregated nodes. We show that the path-induced
property for the aggregated subgraph is a necessary and sufficient condition for preserving
the tree structure of the aggregated system and derive the SKO model for the aggregated
system. Lastly, we use these topological insights to understand the relationship between the
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topological structure of the system digraph and the sparsity of the system SKO and SPO
operators and its mass matrix. In the companion second part, we use these aggregation
methods to develop a constraint embedding technique that extends the notion of SKO
models from tree to closed-topology systems.

We anticipate future applications of these substructuring ideas in the development of parallel
algorithms for distributing computations across component SKO models. Featherstone’s
divide and conquer (DCA) forward algorithm [6] exemplifies such a use of a hierarchy of
substructured component models to parallelize the solution for the forward dynamics
problem. We also expect that partitioning and substructuring ideas to be useful in managing
the dynamics computations for humanoid and legged robotic platforms subject to varying
topologies and constraints. Furthermore, we anticipate the sparsity structure insights to
facilitate the further development of sparsity based computational algorithms.
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Fig. 1.
The correspondence between a tree-topology multibody system and its standard tree
digraph.
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Fig. 2.
Examples of a subgraph  and its induced and path-induced sub-graphs  and ,
respectively
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Fig. 3.
Illustration of the disjoint partitioning of a  tree by a path-induced sub-forest  into parent

, and child  path-induced sub-forests
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Fig. 4.
Examples of subgraph aggregation using node-contraction
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Fig. 5.
Examples of path-induced subgraphs that do, and do not, satisfy the aggregation condition
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Fig. 6.
Illustration of a tree-topology system on the left transformed into the coarser tree on the
right by aggregating the serial-chain segments
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Fig. 7.
Structure of the mass matrix  for the tree topology system in Fig. 6

Jain Page 31

Nonlinear Dyn. Author manuscript; available in PMC 2013 November 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


