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Mature adipocytes possess the capability to dedifferentiate and form proliferative-competent progeny cells. Little is 
currently known about the daughter cells, or the impact of such in vitro physiology in an in vivo situation, and the 
daughter cells may actually represent cells with stem-like cell potential. The present paper introduces implications 
of and impact of this physiology in terms of animal adiposity and composition.
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  Adipose tissue accumulation is associated with obesity, 
insulin resistance and many other metabolic diseases. In 
animal production, excessive adipose tissue deposition re-
duces feed efficiency and leads to waste (1). Adipose tissue 
is a dynamic tissue, and from a cellular perspective, some 
adipocytes in adipose tissue depots die and are replaced 
with new adipocytes (2). In general adipose depot-specific 
hyperplasia may occur into adulthood (3). A key question 
is where do these new adipocytes come from? The classic 
view is that these cells are derived from the precursor cells 
in the connective tissue fraction of adipose tissue (4), and 
recently bone marrow stem cells in circulation are con-
firmed as a significant contributor to new adipocytes in 
adipose tissue (5, 6). Here, we propose that the dediffer-
entiation of mature adipocytes and daughter cell pro-
liferation constitutes another significant source of new 
adipocytes.
  In basic terms, development is formally comprised of 
two different parts: determination (the range of cells that 
any one cell may form) and differentiation (proceeding 

from a lower to a higher level of complexity, and being 
composed of determination, morphogenesis, maturation 
and senescence. From a traditional view, then, mature adi-
pocytes are incapable of dedifferentiating, or even return-
ing to proliferative competency. But they do.... and more 
and more people are realizing the potential significance. 
For example, we have previously shown that mature adi-
pocytes from both ruminant animals like beef cattle (7-10) 
and monogastric animals like pigs (11, 12) possess ability 
to dedifferentiate (7-10, 13, 14) and from proliferative 
competent progeny cells in vitro (7, 10-12). These cells are 
capable of undergoing population expansion (10), and 
may re-differentiate to form lipid-filled adipocytes (7, 
10-12). Potential of the progeny cells to form other cell 
types (15, 16) is presently being examined. Collectively, 
significant unto itself, this system provides an alternative 
system to stromal vascular cells and cell lines to examine 
variables of adipogenesis and lipid metabolism (11-13, 15, 
17-20). However, it still needs to be determined whether 
mature adipocytes possess similar capability to perform 
such actions in vivo (1). Moreover, considering the ram-
ifications of such occurring, would such a physiological 
event make any impact on adipose depot size and amount? 
  Drawing from previously published papers, it is possi-
ble to speculate on the contribution of adipocyte dediffer-
entiation/redifferentiation on overall adiposity. Such 
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might provide some impetus for others to enter into this 
area of research and facilitate uncovering answers to this 
(potentially) important area. Classic research showed that 
specific numbers may be assigned to different adipose de-
pots in beef cattle throughout postnatal aging (3). Moreover, 
the total amount of adipose tissue (in kg) has been de-
termined on an animal and adipose tissue depot basis (3). 
Fernyhough et al. (7) proposed that 1 cell out of every 100 
mature adipocytes possessed the ability to dedifferentiate 
and form proliferative-competent progeny cells in vitro. 
Presently, no established estimate of overall (lifetime) pro-
liferative capacity has ever been established for the prog-
eny cells, but Webster et al. (21) proposed that 104 myo-
genic satellite cells can be obtained from 0.1 g of muscle 
tissue, and that these (isolated) cells may produce 1 kg 
of new cells. Should the adipose tissue-derived mature 
cells possess similar cellular characteristics, then the ef-
fects of adipocyte dedifferentiation/redifferentiation may 
account for a significant amount of adipose tissue hyper-
plasia into adulthood of animals. For example, in the sub-
cutaneous adipose depot of 19 month old beef steers 
(alone) there exists 43.2 kg of tissue and 14.306 billion 
cells (3). Should, in fact, 1/100 mature adipocytes possess 
the ability to dedifferentiate and form proliferative-com-
petent progeny cells, then approximately 100 million of 
the cells are potentially capable of forming new adipo-
cytes, or other types of cells, if subjected to the appro-
priate physiological regulation. 
  The possibility that almost every cell type in the adipo-
cyte lineage, including mature adipocytes, are capable of 
proliferation and differentiation affords a great potential 
to very adipocyte-filled tissues, and supersedes the tradi-
tional idea that new cells added to any adipose depot are 
only from preadipocytes, adipofibroblasts, or (as yet) un-
defined stem cells residing in the depot (7). This research 
needs to be resolved (15). Animal influences on cell physi-
ology, and depot-specific regulation differences must be 
included in any research design. However, the potential 
of outcomes of this research being applied to animal 
growth and development, human health and dysfunction 
resolution and alleviating the adverse effects of aging on 
body composition make the research area ripe for much 
participation. Indeed, the potential impact of mature adi-
pocyte dedifferentiation in terms of cell numbers may 
benefit new modalities such as tissue regeneration, may 
change current ideas regarding postnatal stem cells, and 
may be useful in a variety of applications of tissue en-
gineering (16).
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