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Abstract
Group testing is frequently used to reduce the costs of screening a large number of individuals for
infectious diseases or other binary characteristics in small prevalence situations. In many
applications, the goals include both identifying individuals as positive or negative and estimating
the probability of positivity. The identification aspect leads to additional tests being performed,
known as “retests,” beyond those performed for initial groups of individuals. In this paper, we
investigate how regression models can be fit to estimate the probability of positivity while also
incorporating the extra information from these retests. We present simulation evidence showing
that significant gains in efficiency occur by incorporating retesting information, and we further
examine which testing protocols are the most efficient to use. Our investigations also demonstrate
that some group testing protocols can actually lead to more efficient estimates than individual
testing when diagnostic tests are imperfect. The proposed methods are applied retrospectively to
chlamydia screening data from the Infertility Prevention Project. We demonstrate that significant
cost savings could occur through the use of particular group testing protocols.

Keywords
Binary response; Generalized linear model; EM algorithm; Latent response; Pooled testing;
Prevalence estimation

1 Introduction
Pooling specimens to screen a population for infectious diseases has a long history dating
back to Dorfman’s (1943) proposal to screen American soldiers for syphilis during World
War II. Today, testing individuals in pools through group testing (also known as “pooled
testing”) has been successfully adopted in many additional areas, including entomology (Gu
et al. 2004), veterinary medicine (Muñoz-Zanzi et al. 2000), DNA screening (Berger et al.
2000), and drug discovery (Kainkaryam and Woolf 2009). When compared to testing
specimens individually, group testing can provide considerable savings in time and costs
when the overall prevalence of the disease (or some other binary characteristic of interest) is
low. This makes the use of group testing particularly desirable in applications where there
are limitations in resources.
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Group testing is generally used for two purposes: case identification and prevalence
estimation. The goal of case identification is to identify all individuals as being positive or
negative. Individual specimens are initially pooled into groups, and these groups are tested.
Individuals within positive testing groups are then retested in some prior specified way to
distinguish positive individuals from those that are negative. The goal of prevalence
estimation is to estimate the prevalence of positivity in a population. Retesting is not needed
in this case because initial group test responses alone can be used to estimate the prevalence.
However, when prevalence estimation and case identification are simultaneous goals, the
additional retesting information can be used for estimation as well. Intuitively, one would
expect statistical benefits (e.g., in terms of efficiency) from including retest outcomes as part
of the estimation process. Our paper examines how to include retests while also quantifying
the benefits from their inclusion.

The majority of group testing estimation research has focused on inference for an overall
prevalence p using only the results from the initial group tests (e.g., Swallow 1985;
Biggerstaff 2008; Hepworth and Watson 2009). A few papers, such as Sobel and Elashoff
(1975) and Chen and Swallow (1990), discuss including retests to estimate p, but under the
restriction of perfect testing and without positive case identification. More recently,
estimation research has focused on regression modeling to obtain an estimate of individual
positivity, given a set of risk factors. The seminal papers in this area, Vansteelandt et al.
(2000) and Xie (2001), both propose likelihood-based estimation and inference using binary
regression models, but their approaches differ. Vansteelandt et al. (2000) use a likelihood
function written in terms of the initial group responses, and standard techniques for
generalized linear models are used to find the parameter estimates that maximize this
function. Xie (2001) uses a likelihood function written in terms of the true latent individual
statuses and then employs the expectation-maximization (EM) algorithm to maximize the
likelihood function. The main advantage of Xie’s approach is that it allows for the inclusion
of retests.

Given the large number of ways to retest individuals within positive groups (see Hughes-
Oliver (2006) for a review), it is important to determine if there are benefits from including
retest outcomes when estimating a group testing regression model. The purpose of our paper
is to determine first if benefits truly exist, and then to determine which group testing
protocol (algorithm used for the initial testing and subsequent retesting) is the most efficient.
This is especially important because group testing is typically applied in settings where cost
and time considerations are a primary concern. Ideally, one would want to apply a protocol
that results in the fewest number of tests while also producing the most efficient regression
estimates. Also, model estimation plays a significant role in the application of informative
retesting procedures for case identification (e.g., see Bilder et al. (2010) and Black et al.
(2012)). These identification procedures rely on group testing regression models to identify
which individuals are most likely to be positive, so having the best possible estimates is
crucial.

Our research is motivated by the Infertility Prevention Project (IPP; http://www.cdc.gov/std/
infertility/ipp.htm) in the United States, where both prevalence estimation and case
identification are important. The purpose of the IPP is to prevent complications from
chlamydia and gonorrhea infections in humans. Testing individuals for these diseases is a
central part of the IPP, and over 3 million screenings are reported to the IPP annually. In
addition to being tested, each individual provides demographic background information and
risk history, and healthcare professionals provide clinical observations on each individual.
The specific information available on each individual varies by the state in which the
individual is tested. Using this information, probabilities of positivity can be estimated to
obtain a better understanding of disease positivity for a particular state. In our paper, we will
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focus on the testing performed by the Nebraska Public Health Laboratory (NPHL), which
completes all tests for people screened in Nebraska. This laboratory has an interest in
adopting group testing–not only to reduce the number of tests, but also to estimate risk
factor - specific probabilities of infection. Using past individual diagnoses, we will assess
which group testing protocol provides the most cost effective approach.

The order of our paper is as follows. Section 2 reviews three commonly used group testing
protocols. None of these protocols were examined specifically in Xie (2001), so this is the
first time that the EM algorithm details have been formally presented for them. In Section 3,
we use simulation to investigate the benefits from including retests and to determine which
protocol is the most efficient. This section also shows that group testing can actually be
more efficient than individual testing when estimating regression parameters. In Section 4,
we examine these protocols with respect to chlamydia screening in Nebraska. Finally,
Section 5 summarizes our findings and discusses extensions of this research.

2 Estimation of group testing regression models
Define Ỹik = 1 if the ith individual in the kth initial group is truly positive and Ỹik = 0
otherwise, for i = 1, …, Ik and k = 1, …, K. Our goal is to estimate E(Ỹik) = p̃ik, conditional
on a set of covariates x1ik, …, xg-1,ik, using the regression model

(1)

where f(·) is a known monotonic, differentiable function. The log-likelihood function can be
written as

(2)

where β = (β0,…,βg−1)′ and we assume that the Ỹik’s are independent Bernoulli(p̃ik) random
variables. If the true individual statuses Ỹik were observed, likelihood-based estimation for
the model would proceed in a straightforward manner.

In group testing applications, the individual statuses Ỹik are unknown because only group
responses may be observed and because groups and/or individuals may be misclassified due
to diagnostic testing error. To fit the model, Xie (2001) proposed the use of an EM
algorithm to find the parameter estimates that maximize the likelihood function. The
algorithm works by replacing the unobserved outcomes ỹik in Equation (2) by (ωik ≡ E(Ỹik |
ℐ), where ℐ denotes all information obtained by group tests and retests under a particular
group testing protocol. The expectation and maximization steps of the algorithm alternate
iteratively until convergence is reached to obtain the maximum likelihood estimate of β,
denoted by β̂. The estimated covariance matrix of β̂ is obtained by standard methods; e.g.,
see Louis (1982) and Xie (2001, p. 1960).

The most difficult aspect of the EM algorithm application is to obtain the conditional
expectations ωik. Xie (2001) provides details only for the protocol outlined in Gastwirth and
Hammick (1989), which involves testing individuals in non-overlapping groups and
performing one confirmatory test on groups that test positive. While this protocol can be
extremely useful for estimation purposes, it can not be used to identify positive individuals.
In this paper, we consider three group testing protocols commonly used in practice for case
identification. The following subsections elaborate on how to calculate the conditional
expectations ωik for each protocol. Given these details, the EM algorithm for estimating the
model in Equation (1) becomes straightforward to implement.
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2.1 Initial group tests from non-overlapping groups
Initial tests from groups that are non-overlapping (i.e., each individual is within only one
group) do provide enough information to estimate Equation (1), although not as efficiently
as other case identification protocols to be discussed shortly. We begin by describing how
models can be fit under this setting to motivate model fitting when retests are included.

Define Zk as the response for initial group k, where Zk = 1 denotes a positive test result and
Zk = 0 denotes a negative test result. Because diagnostic tests are likely subject to error, we
define the true status of a group by Z̃k where a 1 (0) again denotes a positive (negative)
status. The sensitivity and specificity of the group test are given by η = P(Zk = 1 | Z̃k = 1)
and δ = P(Zk = 0 | Z̃k = 0), where we assume these values are known and do not depend on
group size. These assumptions are consistent with most research for group testing
regression, including Vansteelandt et al. (2000) and Xie (2001). When only the initial group
responses are observed, ωik is easily found as

(3)

where

is the probability that group k tests positive and φ = 1 − η − δ.

2.2 Dorfman
After initially testing individuals in non-overlapping groups, Dorfman (1943) proposed to
individually retest all specimens within the positive testing groups. Individuals within
negative testing groups are declared negative. Because of its simplicity, Dorfman’s protocol
is the most widely adopted protocol for case identification, and its applications include
screening blood donations (Stramer et al. 2004), chlamydia testing (Mund et al. 2008), and
potato virus detection (Liu et al. 2011).

Because specimens are retested, ωik is no longer the same as given in Equation (3) when a
group tests positive. Let Yik denote the retest outcome for individual i in group k and
assume that the same assay for group tests is also used for individual retests (thus, η is the
sensitivity and δ is the specificity for properly calibrated tests). For observed positive groups
(Zk = 1), we have calculated

Derivation details are provided in Web Appendix A of the Supporting Information for this
paper.
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2.3 Halving
As its name suggests, halving works by first splitting a positive testing initial group into two
equally (or as close to as possible) sized subgroups for retesting. Whenever a subgroup tests
negative, all of its individuals are declared negative and no further splitting is performed.
Whenever a subgroup tests positive, continued splitting occurs in the same manner until
only individuals remain. Early origins of the halving protocol go back as far as Sobel and
Groll (1959). More recently, halving and its close variants have been used in a number of
infectious disease screening applications, including Litvak et al. (1994) and Priddy et al.
(2007). Halving has even been described in the product literature for high throughput
screening platforms (Tecan Group Ltd. 2007).

For a group of size Ik = 2s, there are s possible hierarchical splits that contain a particular
individual specimen, where the last split results in individual testing. For practicality
reasons, all possible hierarchical splits are rarely implemented. Instead, individual testing is
performed on subgroups at a pre-determined tth split, where t ≤ s. For this reason, we will
only consider the t = 2 case, so that an individual can be tested at most three times (twice
within a group and once alone).

To derive ωik under halving, we continue to define Zk as the initial group response for group
k, k = 1, …, K. If the initial group tests positive (Zk = 1), it is split into two subgroups that
we denote by k1 and k2. The two subgroups are subsequently tested and provide the
corresponding binary responses Zk1 and Zk2. If either subgroup tests positive, the third and
final step is to individually test all members within a subgroup, where we continue to define
Yik as the individual retest outcome for individual i from initial group k. To denote the true
statuses for the groups, subgroups, and individual tests under halving, we again use a tilde
over the respective letter symbol. We also continue to assume constant sensitivity and
specificity for each test regardless of the group size.

For the halving protocol outlined above, there are five possible testing scenarios involving
the initial group and its two subgroups. These scenarios are:

1. Zk = 0: Group k tests negative,

2. Zk = 1, Zk1 = 0, Zk2 = 0: Group k tests positive, but both subgroups test negative,

3. Zk = 1, Zk1 = 1, Zk2 = 0: Group k tests positive, subgroup k1 tests positive leading
to individual testing for its members, and subgroup k2 tests negative,

4. Zk = 1, Zk1 = 0, Zk2 = 1: Group k tests positive, subgroup k1 tests negative, and
subgroup k2 tests positive leading to individual testing for its members,

5. Zk = 1, Zk1 = 1, Zk2 = 1: Group k tests positive and both subgroups test positive
leading to individual testing for members of both subgroups.

In Table 1, we provide expressions for ωik in each of these scenarios. Derivations are similar
to those for the Dorfman protocol in Section 2.2, but they are much more tedious due to the
additional split in the testing process. We present the derivations in Web Appendix B of the
Supporting Information for this paper.

2.4 Array testing
Both Sections 2.2 and 2.3 describe protocols where individuals are initially tested in non-
overlapping groups. Phatarfod and Sudbury (1994) proposed a fundamentally different
protocol where specimens are arranged into a two-dimensional array. Samples from
specimens are combined within rows and within columns so that each individual is tested
twice in overlapping groups. Specimens lying outside of any positive rows and columns are
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classified as negative. Specimens lying inside a positive row and/or column are potentially
positive. This protocol is known as array (matrix) testing, and it is widely applied in high
throughput screening applications, such as infectious disease testing (Tilghman et al. 2011),
DNA screening (Berger et al. 2000), and systems biology (Thierry-Mieg 2006).

Because individuals are initially tested within one row and one column, we must modify our
notation to reflect this. Define Ỹij as the true binary status (0 denotes negative, 1 denotes
positive) for the individual whose specimen is located within row i and column j, for i = 1,
…, I and j = 1, …, J. With this slight change in notation, our group testing regression model
now can be rewritten as

where the Ỹij’s are independent Bernoulli(p̃ij) random variables, and the full-data log-
likelihood function can be rewritten as

if the true individual statuses were observed. In most screening applications, there will be
more than IJ individuals, so more than one array will be needed. In those cases, we could
add a third subscript to Ỹij to denote the array and include a third sum over the arrays in
log[L(β)]. We avoid doing this for brevity.

As before, because the individual statuses are not observed directly, the EM algorithm is
used to fit the regression model. Define R = (R1, …, RI)′ and C = (C1, …, CJ)′ as vectors of
row and column binary responses, respectively, for one array. If identification of positive
individuals is of interest, specimens lying at the intersections of positive rows and columns
are retested individually. Additionally, specimens in positive testing rows without any
positive testing columns in the array, which can occur when there is testing error, should be
retested as well. The same is true when columns test positive without any rows testing
positive. Without loss of generality, we denote the collection of all potentially positive
individual responses by YQ = (Yij)(i, j)∈Q where Q is the index set pertaining to the
individual tests, that is

If there are no individual tests performed, we simply let Q = Ø, the empty set.

Using all available test responses, we need to obtain the conditional expected value ωij ≡
E(Ỹij | ℐ); however, when array testing is used as described above, there is no longer a
closed form expression for it. Therefore, as suggested by Xie (2001), we implement a Gibbs
sampling approach to estimate ωij. This involves successive sampling from the univariate
conditional distribution of Ỹij given R = r, C = c, YQ = yQ, and all of the other true
individual binary statuses in the array, and this sampling is performed for each i and j. After
a large set of samples, the simulated ỹij values for each i and j can be averaged to find an
estimate of ωij. Implementation details are described next.

For a given row and column combination (i, j), define Ỹ−i,−j = {Ỹi′,j′:i′ = 1,…,I,j′ = 1,…,J,(i
′,j′) ≠(i,j)} i.e., all true individual statuses excluding Ỹij. The conditional distribution for Ỹij |
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ỹ−I,−j,r,c,yQ is Bernoulli(γij), where γij ≡ P(Ỹij = 1 | Ỹ−i,−j = ỹ−i,−j,R=r,C=c,YQ=yQ) which
we derive in Web Appendix C of the Supporting Information for this paper. With these

conditional distributions, we generate samples  for b = 1, …, B, using the most

updated ỹ−i,−j. The estimate for ωij is then taken to be , where a
is a sufficiently large number of burn-in samples. The EM algorithm proceeds as usual
where ω̂ij replaces ωij in each E-step. The negative information matrix can be estimated
using these B Gibbs samples (e.g., see Xie (2001, p. 1961)).

3 Simulation study
We use simulation to evaluate the regression estimators resulting from the group testing
protocols described in Section 2. To begin, we consider the model logit(p̃ik) = β0 + β1xik,
which is equivalently logit(p̃ij) = β0 + β1xij for the array testing protocols. We let β0 = −7
and β1 = 0.1 and simulate covariates from a gamma(17, 1.4) distribution. The regression
parameters and covariate distribution are chosen to produce a realistic group testing setting
where most individuals have low risks of being positive and a few individuals have higher
risks. Web Appendix D in the Supporting Information provides a histogram of the true
individual probabilities for one simulated data set under these settings. Note that the overall
mean prevalence is approximately 0.01.

Based on the logit model, we obtain the true probability of positivity p̃ik (p̃ij for array
testing), which in turn is used to simulate a true individual status Ỹik (Ỹij for array testing).
Individuals are then randomly assigned to groups of size I(I×I arrays are used for array
testing). Group, subgroup, and individual test responses for each protocol are simulated next
by using η and δ as Bernoulli success probabilities. Group testing regression models are fit
to these resulting responses. For comparison purposes, we also fit a model to individual
testing data when testing error is present using the methodology outlined in Neuhaus (1999).
We repeat the same simulation process for each simulated data set of size 5000 individuals.
Large sample sizes such as this are common in high volume clinical specimen settings,
including the example in Section 4, where group testing is commonly used.

3.1 Estimator accuracy and variance estimation
Table 2 presents results on the accuracy of the parameter estimators and their standard errors
for group sizes I= 4, 12, 20 and η = δ = 0.99. The mean rows give each regression parameter
estimate averaged over 1000 simulated data sets. The SE/SD rows examine the accuracy of
the standard error estimates, where SD denotes the sample standard deviation of estimates
across all simulated data sets, and SE denotes the corresponding averaged standard errors.
Thus, a SE/SD ratio close to 1 suggests that the true standard errors are being estimated
correctly on average. Note that because Gibbs sampling is used for array testing, the EM
algorithm is much slower, so our array testing results are based on 300 simulated data sets.

We see from Table 2 that using non-overlapping initial groups (IG; Section 2.1) results in
comparatively poor estimates of the parameters and their standard errors. These estimates
and standard errors become increasingly worse as the group size grows. In contrast, all of
the other protocols perform similarly to individual testing, where averaged parameter
estimates are close to corresponding true values and SE/SD ratios are close to 1. As these
results show, there are important benefits by including retesting information from the
Dorfman and halving protocols.
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3.2 Improvements in variance estimation from including retests
As the results in Section 3.1 demonstrate, parameters and corresponding standard errors can
be estimated well when retests are included. In this subsection, we investigate directly the
benefits of including retest information and how this extra information affects the slope
estimator precision. Define the relative efficiency for β̂1 as

(4)

where B denotes the number of simulations, β̂1,b,Retest denotes the estimator for β1 when
retests are included in the bth simulated data set, and β̂1,b,No retest is defined similarly when
retests are not included. Note that we use the true variances in Equation (4), rather than
estimated variances, due to the length of time it takes to fit a model for array testing. For
Dorfman and halving, we compare their variances to IG. For array testing, we compare
variances with and without retests.

Figure 1 displays the relative efficiencies from B = 500 new simulated data sets for group
sizes I = 4, 6, …, 20 when η = δ = 0.99 and η = δ = 0.95. Overall, we see very large
efficiency gains from including retesting information. Array testing has the smallest gain,
but this is not surprising because each individual is tested initially in two groups already;
this is unlike IG where each individual is tested initially in one group. Halving results in
larger gains than Dorfman, where the differences between them are more pronounced for
smaller η and δ. This occurs because halving will usually result in a lower classification
error rate than Dorfman (e.g., see Black et al. 2012), which then leads to less uncertainty in
the parameter estimates under halving. Overall, the efficiencies for all protocols grow as the
group size does. This is explained by the fact that protocols without retests observe less
information as the group size increases. In contrast, retesting will moderate the amount of
information lost for larger group sizes.

Figure 2 provides plots of the averaged Var(β̂1) for all simulated data sets. One will note that
the averaged Var(β̂1) for the two testing protocols without retests increases as the group size
increases. This is similar to Figure 1 where RE(β̂1,Retest to β̂1,No retest) increases as a function
of the group size. Conversely, when retests are included in a protocol, the averaged Var(β̂1)
changes very little across the group sizes because positive individuals are still identified
(subject to testing error).

Ordered by their averaged Var(β̂1), we can informally write Dorfman > halving > array
testing with retests. Interestingly, each of these protocols (and also array testing without
retests for smaller sensitivity, specificity, and group size levels) has a smaller variance than
that found through individual testing, while also resulting in a smaller number of tests (see
Web Appendix E in the Supporting Information). In other words, not only do these protocols
have the potential to drastically reduce the costs needed for classification, but these
protocols provide better regression estimates! Note that Liu et al. (2012, Theorem 2) has
recently observed this same phenomenon in the absence of covariates. Through additional
simulations (not shown), we have seen that the gains from group testing in estimation
efficiency (over individual testing) do diminish as the assay sensitivity and specificity both
approach 1. This is an expected result because both individual and group testing are likely to
find all positive and negative individuals when assays are perfect or nearly perfect.
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3.3 Average number of tests per unit of information
Each protocol uses a different number of tests to estimate the regression parameters. To take
this aspect into account, we define the average number of tests per unit of information for β1
to be

(5)

where nb is the total number of tests performed for a protocol and β̂1,b is the estimated β1 for
the bth simulated data set. The smaller that ψ is, the fewer the number of tests are needed
comparatively to obtain the same amount of information about β1. A similar measure was
used by Chen and Swallow (1990, p. 1037) when evaluating the benefits of retesting for
overall prevalence estimation.

Figure 3 plots values of ψ for all group testing protocols for the same simulations as in
Section 3.2. Individual testing results in ψ = 3.53 for η = δ = 0.99 and ψ = 8.80 for η = δ =
0.95; these values were excluded from the figure to avoid distorting the plots. Comparing
between the plots, we see that ψ is larger for η = δ = 0.95 than for η = δ = 0.99, which is a
byproduct of increased uncertainty when η and δ are smaller. Within each plot, we again see
the benefits of including retests in the estimation process. Dorfman, halving, and array
testing with retests have smaller ψ values than their corresponding protocols that do not
include retests. Among those that include retests, halving always provides a smaller ψ than
Dorfman’s protocol. Also, array testing with retests provides values of ψ close to that of
halving for larger group sizes.

Of course, the cost of implementation is also a very important consideration when
comparing protocols. Group testing is typically performed in situations where the cost of
testing is the most dominant consideration. Provided that initial tests and retests cost the
same, which would be expected if the same assay is used for both, ψ provides a constant
multiple of the cost, so it can be used in the same way as above to judge which protocol is
preferred.

3.4 Additional simulations
We have performed a number of additional simulations at a different overall prevalence
level and with a smaller number of individuals screened. In summary, we have found that
the same conclusions hold in these other situations. Some of these additional simulation
results are included in Web Appendix F of the Supporting Information.

4 Infertility Prevention Project in Nebraska
We focus retrospectively on the 6,139 males who had their urine individually tested for
chlamydia in 2009 at the NPHL. At this time, the NPHL used the BD ProbeTec ET CT/GC
Amplified DNA Assay, where the sensitivity and specificity values were η = 0.93 and δ =
0.95, respectively. The laboratory estimates that each urine test costs approximately $16, so
that total expenditures for these individuals were about $98,000. The high volume of clinical
specimens combined with their high testing costs is why the NPHL is interested in exploring
the use of group testing. In addition to positive or negative chlamydia diagnoses,
information available on each individual includes age, race (four levels), symptoms,
urethritis, multiple partners in the last 90 days, new partner within the last 90 days, and prior
contact with someone who had a sexually transmitted disease (STD). Except for age and
race, we use a binary coding (1 = yes, 0 = no) with this information.
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Because this is a retrospective analysis involving individual disease responses, it is essential
to emulate how group testing would be performed in practice. To begin, we need to choose
an appropriate initial group size. This is typically done by using a prior estimate of the
overall prevalence p and minimizing the expected number of tests based on this estimate
(Kim et al. (2007) provides these expected value formulas). We do this here by using the
2008 observed prevalence of 0.077 to obtain group sizes of 5 for IG and Dorfman and 8 for
halving and array testing. Individuals who were tested in 2009 are placed into groups of
these sizes in chronological order based on when their specimen arrived at the NPHL. We
form groups in this manner because it is convenient for high volume situations when
specimens arrive in succession over time.

Once individuals are placed into initial groups, the corresponding group responses are
needed. These are not available because the NPHL used individual testing, so we instead
simulate group responses by the following methodology. The actual, observed individual
responses are treated as the true statuses Ỹik (Ỹij for array testing). Using a Bernoulli
distribution with the appropriate probability of η or δ, a response is then simulated for a
group containing a set of individuals. For example, if a group of size 5 has negative true
statuses for all its members, the group response is simulated from a Bernoulli(1-δ)
distribution. If instead at least one member is positive, a Bernoulli(η) distribution is used to
simulate the group response. This same process is repeated for each group testing protocol to
acknowledge the possibility of testing error.

First-order logit regression models are fit to the responses from each protocol. For
comparison purposes, we fit the same model to the individual responses (simulated as well
to enable fair comparisons with group testing) while incorporating testing errors by using the
methodology of Neuhaus (1999). Table 3 gives the parameter estimates from all fitted
models and the number of tests required for each protocol. Overall, all estimates are similar
to each other for the same corresponding covariates. Each group testing protocol that
includes retests has similar or smaller standard errors than those for the individual testing
model, consistent with our findings in Section 3. Using a level of significance of 0.05 with
Wald hypothesis tests, individual testing and group testing protocols with retests agree on
the same set of important covariates.

The model fitting time for IG, Dorfman, and halving is no more than a few seconds.
However, the model fitting time for the array testing protocols can be exceptionally long due
to the Gibbs sampling. In particular, there are 6,139 conditional expectations–one for each
individual–that need to be estimated through simulation. Also, simulation variability
compounds among these estimates which can lead to a non-uniform descent to the
convergence criterion. For example, we used 20,000 Gibbs samples when fitting the model
to array testing data with retests. The convergence criterion used was the maximum absolute
relative difference between successive regression parameter estimates, say d, needing to be
less than 0.005. Convergence was obtained in approximately 15.8 hours with eight complete
iterations (3.2GHZ processor was used). However, there was no longer a completely
uniform descent to 0.005 by d. By using 40,000 Gibbs samples, there was a uniform descent
in five iterations, but the process took approximately 21.5 hours. We have found that this
same behavior occurs with other high volume clinical specimen data sets as well.

Overall, the results clearly illustrate the potential advantages of using group testing at the
NPHL–not only in terms of estimation and the resulting large-sample inference, but also
because of the opportunity to drastically reduce the number of tests needed. For example,
halving requires 2898 tests overall, which is a 52.7% reduction from individual testing. Even
the simpler Dorfman protocol requires only 3458 tests overall, a 43.7% reduction in tests
when compared to individual testing. To put this into a total expenditure perspective, the
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estimated costs are: $55,328 for Dorfman, $46,368 for halving, and $49,552 for array testing
with retests. Given there are over three million screenings for the IPP annually across the
United States, one can see that significant savings could occur if group testing was adopted
throughout the country. A few states, such as Iowa and Idaho, have already at least partially
implemented group testing using Dorfman’s protocol, but even more cost savings could be
obtained using halving or array testing with retests.

5 Discussion
In this paper, we have outlined how to estimate a group testing regression model when case
identification is a goal. Our work shows that including retests leads to large reductions in
estimator variability while also improving accuracy. Overall, halving and array testing with
retests are the best protocols when considering the number of tests and estimator variability.
We also showed that group testing can lead to more efficient estimates of regression
parameters than individual testing. This is an extremely important finding, because it shows
that more information can be gained while doing less in terms of testing. To disseminate our
research, we have made available new functions in R’s binGroup package (Bilder et al.
2010) which implement the model fitting methods outlined in this paper. Examples of model
fitting with these functions are included in the Supporting Information for this paper.

Group size selection is an important consideration in most applications where group testing
is used (e.g., see Swallow (1985)). Aside from assay considerations, the optimal group size
is the one that leads to the smallest number of tests while still providing as much
information as possible. Our research shows the average number of tests per unit of
information stays relatively stable over a large range of group sizes when retests are
included. Thus, protocols with retests are somewhat robust to the group size used, which
makes its choice not as critical as when retesting is omitted.

The EM algorithm proposed by Xie (2001) can be used to fit models for data arising from
any group testing protocol. While our paper focused on three commonly used protocols for
case identification, other protocols are available. In particular, array testing can be
implemented with a master group for each array and/or in more than two dimensions (Kim
et al. 2007; Kim and Hudgens 2009). Future research could examine these other protocols to
determine if more estimation benefits result from their implementation. In the case of array
testing, all protocols will likely need to use the Gibbs sampling approach outlined in Section
2.4 to estimate a conditional expectation for every cell within an array. As shown in Section
4, this can be time consuming depending on the size of the arrays and how many arrays
there are. Potentially, parallel processing could be used with one core processor per array to
reduce the model fitting time.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Relative efficiencies calculated by Equation (4) based on 500 simulated data sets. Dorfman
and halving protocols are compared to IG. Array testing is compared with and without
retests.
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Figure 2.
Averaged Var(β̂1) for 500 simulated data sets. The dashed horizontal line corresponds to
Var(β̂1) from individual testing. The right-side plots are the same as those on the left-side
except we omit IG in order to reduce the y-axis scale.
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Figure 3.
Average number of tests per unit of information calculated by Equation (5) based on 500
simulated data sets.

Zhang et al. Page 17

Biom J. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 18

Ta
bl

e 
1

T
he

 n
um

er
at

or
 a

nd
 d

en
om

in
at

or
 o

f 
ω

ik
 f

or
 th

e 
ha

lv
in

g 
pr

ot
oc

ol
 d

es
cr

ib
ed

 in
 S

ec
tio

n 
2.

3.
 T

o 
si

m
pl

if
y 

th
e 

ex
pr

es
si

on
s,

 q
̃ ik

 =
1−

p̃ i
k 

an
d 

 a
re

 u
se

d,
 a

nd
 w

e 
as

su
m

e 
in

di
vi

du
al

 i 
is

 w
ith

in
su

bg
ro

up
 k

1.

Sc
en

ar
io

N
um

er
at

or
D

en
om

in
at

or

1
(1

−
η

)p
̃ ik

1−
θ i

k

2 3 4 5

Biom J. Author manuscript; available in PMC 2014 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 19

Table 2

Parameter estimates and standard errors based on 1000 (300 for array testing) simulated data sets with β0 = −7,
β1 = 0.1, and η = δ = 0.99. The mean row includes the averaged estimate across all simulated data sets. The
SE/SD row gives the averaged standard error over all simulated data sets (SE) divided by the sample standard
deviation of the estimates across all data sets (SD).

I = 4 I = 12 I = 20

Protocol β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

Individual Mean −7.003 0.099 −7.013 0.099 −7.016 0.099

SE/SD 0.983 0.977 0.970 0.966 1.002 0.987

IG Mean −6.918 0.096 −6.840 0.091 −6.628 0.081

SE/SD 0.961 0.948 0.886 0.854 0.861 0.840

Dorfman Mean −6.995 0.099 −7.013 0.100 −6.983 0.099

SE/SD 1.002 1.008 0.982 0.982 0.978 0.980

Halving Mean −7.000 0.099 −7.015 0.099 −7.021 0.098

SE/SD 1.016 1.020 0.982 0.982 0.978 0.973

Array w/o retesting Mean −7.024 0.099 −6.984 0.099 −7.023 0.099

SE/SD 1.007 1.044 0.981 0.997 0.989 0.991

Array w/ retesting Mean −7.022 0.100 −7.010 0.100 −7.018 0.099

SE/SD 0.982 1.017 1.001 1.011 0.979 0.979
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Table 3

Parameter estimates and estimated standard errors for the chlamydia screening data. The “p-value” column
gives Wald test p-values for testing whether or not a regression parameter is equal to 0. Note that an overall
test is performed for all levels of the variable Race. The number of tests performed by each protocol is in
parentheses after the protocol name.

Individual (6139) IG (1228) Dorfman (3458)

Term Estimate SE p-value Estimate SE p-value Estimate SE p-value

Intercept −2.46 0.24 <0.001 −2.52 0.36 <0.001 −2.16 0.20 <0.001

Age −0.03 0.01 <0.001 −0.03 0.01 0.061 −0.04 0.01 <0.001

Race level #1 0.79 0.15 <0.001 0.79 0.26 0.017 0.67 0.12 <0.001

Race level #2 0.80 0.32 0.88 0.50 1.08 0.25

Race level #3 0.44 0.26 0.43 0.50 0.37 0.22

Symptoms 0.45 0.16 0.004 0.32 0.30 0.285 0.69 0.14 <0.001

Urethritis 1.29 0.33 <0.001 1.40 0.51 0.006 0.95 0.33 0.004

Multiple partners 0.44 0.19 0.019 0.56 0.33 0.090 0.53 0.16 0.001

New partner 0.17 0.20 0.407 0.11 0.40 0.782 0.10 0.18 0.567

Contact to a STD 1.04 0.15 <0.001 1.12 0.27 <0.001 1.10 0.14 <0.001

Halving (2898)
Array w/o retesting

(1541) Array w/ retesting (3097)

Term Estimate SE p-value Estimate SE p-value Estimate SE p-value

Intercept −2.39 0.22 <0.001 −2.56 0.34 <0.001 −2.27 0.21 <0.001

Age −0.04 0.01 <0.001 −0.03 0.01 0.013 −0.04 0.01 <0.001

Race level #1 0.64 0.14 <0.001 0.94 0.23 <0.001 0.87 0.13 <0.001

Race level #2 0.47 0.34 0.28 0.59 0.77 0.30

Race level #3 0.68 0.22 0.24 0.44 0.50 0.22

Symptoms 0.63 0.15 <0.001 0.64 0.23 0.005 0.84 0.14 <0.001

Urethritis 1.07 0.34 0.002 0.61 0.53 0.254 1.09 0.33 <0.001

Multiple partners 0.35 0.16 0.029 0.56 0.30 0.062 0.44 0.17 0.010

New partner 0.11 0.20 0.600 0.22 0.36 0.549 0.06 0.19 0.745

Contact to a STD 1.16 0.15 <0.001 1.26 0.21 <0.001 1.03 0.15 <0.001
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