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Abstract
We demonstrate two ways in which the Fourier transforms of images that consist solely of
randomly distributed electrons (shot noise) can be used to compare the relative performance of
different electronic cameras. The principle is to determine how closely the Fourier transform of a
given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for
which single-electron events are modeled as Kronecker delta functions located at the same pixels
where the electrons were incident on the camera. Experimentally, the average width of the single-
electron response is characterized by fitting a single Lorentzian function to the azimuthally
averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the
Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which
the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to
stochastic variations in the magnitude of the response of the camera (for single-electron events) is
characterized by the amount to which the appropriately normalized power spectrum does, or does
not, exceed the total number of electrons in the image. These simple measurements provide an
easy way to evaluate the relative performance of different cameras. To illustrate this point we
present data for three different types of scintillator-coupled camera plus a silicon-pixel (direct
detection) camera.
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1. INTRODUCTION
A variety of electronic-readout cameras are currently available for use in electron
microscopy. In addition to cameras that use a scintillator to first convert electrons into pulses
of light, new types of direct-electron-impact, silicon-pixel cameras are also available from at
least three manufacturers. Although the quality of images produced by these different types
of camera is not expected to be equivalent, most users do not independently characterize this
performance.

The preferred way to characterize electronic cameras is to estimate what is called the
spectral detective quantum efficiency, DQE(s). The first step is to record an image of an
opaque straight-edge, in order to measure the edge-spread function. Since the derivative of
the edge-spread function is equal to the line-spread function of the camera, the Fourier
transform of the estimated derivative gives an experimental estimate of the (one-
dimensional) Modulation Transfer Function (MTF(s)) of the camera. The second step is to
measure an “empty image”, i.e. the response of the camera when exposed to a uniform field
of electron intensity (without any specimen). The azimuthally averaged modulus of the
Fourier transform of the empty image, scaled so as to extrapolate to 1.0 at zero spatial
frequency, is referred to as the (one-dimensional) “noise transfer function, NTF(s)”. The
square of MTF(s), divided by the square of NTF(s), provides a specimen-independent
measure of the degree to which the spectral signal-to-noise ratio in the camera output is
degraded relative to that of the incident image. Multiplication of this ratio by the
independently-determined detective quantum efficiency, DQE(0), produces the desired
DQE(s) [1–4]. More recently, a similar approach has been developed that uses images of
two-dimensional, opaque objects rather than a straight edge [5].

DQE(s) represents an excellent basis for comparing the performance of different types of
camera – for a broader review, see section III. C. of [6]. Nevertheless, there are issues about
what to use as an opaque edge (the shaft of the beam stop; a gold wire), where to place the
opaque edge (as close as possible to the camera), and how to mathematically extrapolate
both MTF (s) and NTF(s) to 1.0 at zero spatial frequency.

In the current work, we reconsider the simple approach, explored in the past but then
abandoned, of using only uniformly illuminated “empty images” to evaluate the
performance of any given camera. Rather than using a camera’s response to shot noise as a
surrogate of how well it responds to signal, however, we ask, instead, how well the
responses to shot noise do, or do not, approach the performance of an ideal camera. Two
insights, already appreciated in earlier work, inform our approach.

First (as we show here) the one-dimensional spectral fall-off of the camera output is fitted
reasonably well by a single Lorentzian function, as it is for digitized photographic film [7,
8]. As a result, the reciprocal of the spatial frequency at which the amplitude spectrum falls
to 0.5 provides an estimate of the distance (number of pixels in the image) at which the line-
spread-function for single-electron events falls to e−1. By comparison, the ideal response for
a single electron would be confined to a single pixel, in which case the Fourier amplitude
spectrum would be flat rather than having a Lorentzian shape. We thus propose that the
spatial frequency (expressed as a fraction of Nyquist frequency) at which the Fourier
amplitude spectrum falls to 0.5 of its initial value can be used as one criterion to compare
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the extent to which different types of camera do, or do not, approach the performance of an
ideal detector.

Second, we show that the value of the power spectrum at very low spatial frequencies can be
used to estimate the excess noise that occurs in the camera output due to the finite width of
the distribution of detector responses (e.g. pulse heights) for individual electron events. We
formally show, in the limit of large N and when the distribution of electrons is uniform over

the detector, that the value of the power spectrum is equal to , where N is the
number of electrons in the entire image and σresponse is the standard deviation of single-
electron responses. We further show that the variance in the Fourier amplitude spectrum is

equal to  times the power spectrum. It thus follows that the degree to which the
power spectrum, normalized by N, approaches 1.0 can be used as a second criterion to
compare the extent to which different types of camera do (or do not) approach the
performance of an ideal detector.

As a demonstration of using these two criteria, we evaluate the performance of three
different scintillator-based cameras as well as that of a silicon-pixel camera. In addition, we
report examples of the extent to which the performance of two of these cameras is sensitive
to the value of the electron energy.

2. METHODS
Data were recorded for four different camera systems, as follows. Images were recorded at
120 keV with a 4Kx4K TVIPS TemCam F416 camera (with 15.6 μm pixels) on an FEI
Tecnai T12 microscope. Images were recorded at 120 keV and at 200 keV with a 4Kx4K
Gatan UltraScan 4000 camera (with 15 μm pixels) on an FEI Tecnai F20 microscope.
Images were recorded at 80 keV and at 300 keV with a 2Kx2K FEI Eagle camera (with 30
μm pixels) on an FEI Titan microscope. Images were recorded at 300 keV with a 4Kx4K
Gatan K2 camera (with 5 μm pixels) on an FEI Titan microscope. The K2 camera was
operated in the “linear” mode, in which electron responses were integrated on the sensor
prior to readout.

Images consisting of uniformly distributed electron events, i.e. “empty images”, were
recorded without any specimen in the electron beam. In order to minimize low-frequency
variations in the intensity across the field of view of the camera, a large condenser aperture
and a small illumination spot number were used, the illumination was spread to a diameter
much larger than the field of view, and a flat-field correction (gain normalization) was
performed, using the average of 20 images. Empty images were recorded with a total
exposure of approximately 200 to 300 electrons per pixel for all scintillator-based cameras,
whereas the electron exposure was about ten times less for images recorded with the K2
camera.

The analog-to-digital (ADC) counts in raw camera images were converted to the equivalent
number of electrons per pixel by dividing the ADC counts per pixel by the calibrated
number of counts per electron. Calibration of the number of electrons per pixel was based on
two quantities: (1) the electron-microscope vendor’s calibration of the beam current
measured on the viewing screen, which in turn was converted to the electron exposure rate
at the specimen, and (2) the image magnification at the camera.

3. DATA REDUCTION AND NOMENCLATURE
The two-dimensional Fourier transform of the converted image intensities (i.e. the number
of electrons per pixel) was calculated with SPIDER [9] command FT, which does not apply
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a scale factor to normalize the Fourier transform by the number of pixels in the image. Since
SPIDER command PW – which computes the square of the Fourier transform produced by
command FT – does apply a normalization factor, equal to half the number of pixels in an
image, a customized script (available at http://cryoem.berkeley.edu/camera-ranking) was
written to compute the “unnormalized” power spectrum. As is explained below, the
corresponding power spectrum of randomly distributed Kronecker delta functions is equal to
N, the total number of events in the image. In addition, our customized script also calculates
the square root of the (un-normalized) power spectrum, i.e. the Fourier-amplitude spectrum.
All plots were prepared in Matlab.

The one-dimensional power spectra and amplitude spectra shown here represent azimuthal
averages of the two-dimensional spectra referred to above. It should be noted that such one-
dimensional spectra represent averaged versions of central lines through the respective two-
dimensional spectra, for which the noise decreases with increasing radius due to the
increasing number of pixels contributing to the average. These averaged one-dimensional
spectra represent, in turn, estimates of the power and the amplitude, respectively, of the
Fourier transform of a one-dimensional projection of the two-dimensional point-spread
function for (uncorrelated) single-electron events.

Lorentzian functions of the form  were fitted to experimental Fourier amplitude
spectra by varying three parameters, using the nonlinear regression function “nlinfit” in
Matlab. One parameter, s0, corresponds to the spatial frequency at which the Lorentzian
function falls to a value of 0.5; the second parameter is used to scale the experimental
Fourier amplitudes to this Lorentzian function; and the third parameter is a constant y-axis
offset that is added to the Lorentzian function in order to improve the fitting to the
experimental Fourier amplitudes.

4. RESULTS
4.1 The Fourier amplitude spectrum for registering single-electron events is closely
approximated as a single Lorentzian function for currently available camera systems

The azimuthally averaged Fourier amplitude spectrum of an empty image recorded with the
TVIPS TemCam F416 camera, using 120 keV electrons, is shown in Figure 1A. Also shown
in this figure is the fact that the sum of a single Lorentzian function plus a constant y-axis
offset provides a three-parameter fit that closely matches the experimental data over nearly
the entire domain, with a deviation of up to several per cent occurring only for frequencies
close to the origin. Corresponding amplitude spectra, and the goodness of fit by single
Lorentzian functions, are shown in Figure S1 for other cameras and other electron energies.
Figure 1B compares three such Lorentzian curves, corresponding to measurements obtained
for the TVIPS TemCam F416 camera (using 120 keV electrons), the Gatan UltraScan 4000
camera (using 200 keV electrons), and the Gatan K2 camera (using 300 keV electrons). The
amplitude spectra are all normalized to 1.0 at the origin in order to facilitate the comparison
of the relative falloff for each curve.

The spatial frequencies at which each such Lorentzian function falls to 0.5 are listed in
Table 1. Since the Lorentzian function and the exponential function represent a Fourier-
transform pair (see example 207 in http://en.wikipedia.org/wiki/Fourier_transform), the
reciprocal of the spatial frequency at which the Lorentzian function falls to 0.5 is an estimate
of the real-space distance at which the line-spread function for detection of single electrons
falls to e−1. The widths of the line-spread functions, estimated as the reciprocal of the spatial
frequency at which the Lorentzian function falls to 0.5, are given in parentheses in Table 1.
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4.2 The value of the power spectrum at the origin, normalized by the number of electrons
in an image, can be used to estimate the variance in the camera response to single-
electron events

Three examples of power spectra of empty images are shown in Figure 2. The type of
camera and the electron energy for these examples were chosen to be the same as for the
Lorentzian functions, fitted to Fourier amplitude spectra, which were displayed in Figure
1B. Corresponding power spectra for all other cameras and electron energies are shown in
Figure S2. All power spectra are normalized by the appropriate values of N, the total number
of electrons in an image (please refer to section 3 for details on data reduction and
nomenclature). Note that the normalized power spectra can rise to values that are much
greater than 1.0 at the origin.

The rationale for normalizing by N is based on the fact that the power spectrum of an empty
image (i.e. shot noise as input) is equal to N for a perfect camera, i.e. one in which each
electron is registered as a Kronecker delta function. To explain briefly, the Fourier transform
of a single Kronecker delta function is the complex exponential function, whose magnitude
is 1.0 and whose phase depends both on the spatial frequency and on the position of the
delta function relative to the origin used to compute the Fourier transform. At any given
spatial frequency the complex exponential function can thus be represented (in an Argand
diagram) as a unit vector whose direction depends on the location of the delta function in
real space. When N such delta functions are located randomly in real space, the Fourier
transform thus becomes the sum of N unit vectors, each pointing in a random direction. As a
result, the Fourier transform effectively takes a random walk (with unit step size) as one
electron after another is added to the image. As is well known, the expected distance (from
the origin) that is achieved in a random walk increases as the square root of the number of
steps. The square of the amplitude of the Fourier transform, i.e. the power of the Fourier
transform, thus increases linearly with N.

The derivation sketched out in the paragraph above indicates that the expectation value of
the appropriately normalized power spectrum of an ideal, empty image should be 1.0 at all
frequencies. Furthermore, if the camera is only semi-ideal in the sense that the response to
single-electron events is a Kronecker delta function convoluted by a point-spread function
with finite width, then the power spectrum will fall off with increasing resolution, but the
value extrapolated to zero will still be 1.0. For the three examples shown in Figure 2, the
power spectra of empty images all rise well above 1.0 as the curves are extrapolated to zero.
The fact that a given (experimental) normalized power spectrum rises above 1.0 at low
spatial frequency implies that the camera output contains some form of noise in excess of
shot noise.

As was indicated in the Introduction, random variation in the magnitude of the camera
response to single electrons represents one source of additional noise in the camera output.
The degree to which this source of additional noise reduces the DQE was addressed
quantitatively by Herrmann and Krahl [10]. However, a derivation showing how this excess
noise is manifested in the Fourier spectra has not been described previously in the EM-
camera literature to our knowledge. To do so, we again treat the Fourier transform as the
result of a random walk in the complex plane. In this case, however, the step sizes – as well
as the directions taken – vary randomly for each step. As is shown in the Supplementary
material, the expected value of the power spectrum of an empty image then becomes

, where N is again the number of electrons in the entire image, and σresponse
is the standard deviation of the distribution of single-electron responses. The corresponding
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value of DQE(0) given by this derivation is , in agreement with the result given
by Herrmann and Krahl.

The variance of the values of single-electron responses (i.e. individual pulse heights) can
thus be calculated from the amount by which the value of the power spectrum (extrapolated
to the origin) exceeds 1.0. In the curve for the TemCam F416 camera, for example, using
120 keV electrons (shown in Figure 2), the power spectrum at low frequencies is about 2.1
times what it would be for an ideal camera, thus implying that the variance of the pulse-
height distribution is about 1.1. For comparison, the power spectra for the UltraScan 4000
camera, using 200 keV electrons, is about 2.7 times what it would be for an ideal camera,
thus implying that the variance of the pulse-height distribution is about 1.7. The values of
the variance that we have measured for each camera in this study are listed in Table 2. For
two of these cameras we were also able to make these measurements for two values of the
incident electron energy.

4.3 The variance of the Fourier amplitude spectrum of empty images provides an
alternative measure of the excess noise

Although the average value (expected value) of the Fourier amplitude of an empty image
merely represents a systematic background that can be subtracted (in quadrature) from the
Fourier transform of a low-dose image, stochastic fluctuations in the Fourier-amplitude
spectra represent irreducible noise in the data. The relative magnitude of these stochastic
fluctuations, rather than the average value of the Fourier amplitude, determines the
exposure-dependent signal-to-noise ratio for data recorded with one or another camera,
assuming that the same number of electrons is used in all cases.

If a suitably large number of empty images is recorded (20, for example), the magnitude of
the irreducible noise that is present in the Fourier amplitude spectra is easily estimated by
simply computing the variance observed at each spatial frequency. As is derived in the
Supplementary material, the expected value of the variance in the Fourier amplitude

spectrum is equal to  for empty images recorded with a semi-ideal
camera (i.e. one for which single-electron events are registered as Kronecker delta functions
with variable heights). Although the variance in the amplitude spectra for real cameras will
fall off with resolution due to the non-zero width of the point-spread function, it is expected
that the variance spectrum divided by the power spectrum should be constant. Furthermore,

the ratio should be , if excess noise in the power spectra (and thus in the
Fourier amplitude spectra) is due primarily to the variance in the response for single-electron
events.

We have found that the ratio is indeed equal to 0.21 within experimental error. Graphs
showing the value of this ratio as a function of spatial frequency are shown in Figure S3 for
each of the cameras evaluated in this work.

5. DISCUSSION
As was stated above, an ideal camera for electron microscopes would record each electron
as a Kronecker delta function that is located at the pixel where the electron first hits the
camera. The relative performances of real camera systems necessarily fall short of this ideal
in three ways. (1) Single-electron responses typically are not confined to single pixels, but
instead they usually extend over a cluster of nearby pixels. The average width of these
clusters determines the rate at which the Fourier transform falls off when the incident image
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consists of nothing but electron shot-noise. (2) In addition, these broadened responses often
are not centered on the same pixel where the electron first hits the camera. The average
displacement of the center of the cluster determines how rapidly the Fourier transform of the
signal falls off relative to the Fourier transform of the noise [1, 3]. (3) Finally, instead of
being the same for every electron, the magnitudes of single-electron events span a
distribution of values. The variance in the magnitude of these output pulses determines the
factor by which the noise in the output exceeds the irreducible noise in the input.

5.1 The relative cluster-size of single-electron responses can be measured by fitting a
single Lorentzian function to the Fourier amplitude spectrum

In our current experiments, we confirm that the one-dimensional Fourier amplitude spectra
of empty images are fitted quite well by a single Lorentzian function [5]. While the fitting is
never perfect, and the accuracy varies between cameras, a single Lorentzian function is in all
cases within a few percent of the experimental data. This fitting was improved slightly by
including the added constant as a third parameter. The values of this parameter, which are
given in the figure legend for Figure S1, varied from 0.06 to 0.13, depending upon the
camera and the electron energy. We have not investigated whether a physical basis can be
identified for this constant (spectrally “white”) term, but it may be that it is due, at least in
part, to stochastic variance in the readout noise of the various cameras.

The fact that the amplitude spectra are well fitted by a single Lorentzian implies that the
line-spread function for single-electron events is well approximated by a single exponential.
In speaking of the line-spread function for single-electron responses (and the associated
transfer function for shot noise), it is important to emphasize that single-electron responses
are expected to vary randomly in terms of how many pixels participate in the response and
the way in which the multi-pixel response is distributed relative to the point where the
electron first hits the camera. In other words, no one instance of the response is likely to be
the same as any other. The expression “line-spread function for single electrons” must thus
be understood to refer to the average behavior of a large number of single-electron events. In
this spirit, the reciprocal of the spatial frequency at which the one-dimensional Fourier
amplitude spectrum of an empty image falls to 0.5 can be interpreted as the distance, in
number of pixels, at which the line-spread function falls to 1/e of the initial value. The
spatial frequency at which the amplitude spectrum of shot noise falls to 0.5 thus gives a
useful comparison of how closely the performance of a given camera does, or does not,
approach the ideal performance, in which the response to single electrons is confined to a
single pixel.

5.2 The center of a cluster must converge to the initial point of electron impact as the size
of the cluster converges to a single pixel

It may not be immediately obvious why the second shortcoming (identified above) causes
the amplitude spectrum for (noise-free) signal to fall off more rapidly – with increasing
resolution – than the amplitude spectrum for shot noise. To explain briefly, noise-free signal,
at a given point in an image, is obtained in the limit that a large number of electrons is
incident at exactly the same point in the image. When each such electron is registered over a
cluster of several pixels, the center of which varies randomly in distance and direction from
the initial point of impact, the resulting average of all such events is broader than is the
average of the clusters themselves (i.e. when their centers are superimposed). The first type
of average produces the noise-free pointspread function for signal, while the second average
produces the point-spread function for noise. It is well known that NTF(s) thus is not, in
most cases, a good estimate of MTF(s) for signal [3].
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To the extent that the average cluster size becomes more and more narrow, however, the
center of the cluster must also become more and more closely localized to the same pixel
where the electron first hits the camera. It thus follows that MTF(s) must asymptotically
approach NTF(s) as the rate at which NTF(s) falls off becomes less and less. In the limit that
the MTF(s) and the NTF(s) fall off at the same rate, the signal-to-noise ratio in the camera
output is no longer degraded by the fall off. In other words, one can boost the signal at high
resolution, to compensate for the fall off, and the signal-to-noise ratio will remain
unchanged. As a result, if two cameras have similar excess noise at low resolution (as do the
TVIPS F416 camera and the Gatan US4000 camera at 120 KeV) the better camera is the one
for which the Fourier amplitude spectrum of an empty image shows the slower decay as a
function of increasing resolution.

5.3 The extent to which variations in the pulse height (magnitudes of single-electron
responses) add to the noise in the camera output can be measured in terms of the value of
the power spectrum at low spatial frequencies

It is important that the pulse height, i.e. the magnitude of the camera output, should be as
constant as possible for each electron event. This is because random variations in the size of
the response cause the noise in the camera output to be greater than the irreducible noise
(shot noise) that is due to randomness in the spatial distribution of these events. The desired
criterion of constant pulse height is not well met by currently available, scintillator-coupled
CCD cameras, however. Instead, as we have shown here, the noise in the output is generally
a factor of two or more greater than that expected for shot noise.

The extent to which the power spectra of images recorded with different cameras do – or do
not – approach N, the total number of electrons in the image, is thus an important factor in
ranking their relative performance (all else being equal). In this context, the development of
camera systems that operate in an electron-counting mode provides one way to ensure a
constant output for each electron event. It thus is expected that the noise level for such
cameras will be significantly lower than it is for scintillator-coupled cameras, and – for the
first time – the noise will actually approach the irreducible level set by shot noise.

In a related point, we emphasize that the noise in the computed Fourier amplitudes of an
image is represented by random fluctuations in the Fourier amplitudes of a corresponding,
empty image, rather than by the average value. As a result, the noise is characterized by the
variance of the Fourier amplitudes, rather than by the power spectra of empty images. As we
have stated above, the variance of the Fourier amplitude is smaller than the value of the

power spectrum by a factor of .

Excess noise due to variation in the pulse-height distribution has been referred to as “Fano
noise”, and the increment by which the power spectrum of an empty image exceeds N , the
total number of electrons in the image, has been referred to as the “Fano factor” [6], in
reference to the variance in number of ionization events (per increment of energy deposited)
that was studied by Fano [11]. It is likely, however, that the pulse-height spectrum produced
in currently used scintillators has a more complex origin than the effect studied by Fano. If
the sensitive layer (scintillator) is relatively thick, multiple scattering can lead to wide
variations in path length – and thus the amount of energy deposited – as an incident electron
passes through. In addition, after electrons are transmitted through the sensitive layer, some
– but not all – are back scattered and thus deposit even more energy. Thus we recommend to
use the more general descriptors “excess noise” and “excess noise factor” when discussing
electron microscope cameras. The methodology described for measuring the “Fano factor”
(F in equation 17 of [6]) is, in fact, the same as what we have used to derive the values of the
variance of the pulse-height distribution that are presented in Table 2. The magnitude of the
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excess noise factor that we observe for scintillators currently used on CCD cameras is
almost 10 times greater, however, than that estimated by de Ruijter for a YAG scintillator
[6]. The thickness of the sensitive layer (e.g. scintillator) relative to the range of the incident
electron and the extent to which back scattering occurs in the material (if any) that supports
the sensitive layer are likely to be major factors that influence the variance of the pulse-
height distribution, i.e. the excess noise factor.

The accuracy with which one can measure the value of the power spectrum at low spatial
frequency is limited by potential errors in the vendor-supplied calibration of the current
density on the viewing screen. If very accurate values of the normalized power spectrum are
required, it may thus be necessary to independently perform the beam-current calibration
with a Faraday cup. There is also some uncertainty in estimating the mean value of the
power spectrum at low spatial frequency, due in part to the fact that the low-frequency
values are noisier (fewer pixels are included in the azimuthal average) and due in part to
systematic errors (such as an imperfect flat-field correction). Nevertheless, this uncertainty
is small relative to the amount by which the normalized power spectrum exceeds 1.0.

5.4. Some general remarks about ranking the performance of different cameras
Camera performance is determined by many factors. It is well-known, for example, that the
performance of scintillator-based cameras is more ideal at low electron energy than at high,
as is confirmed by the data in Table 1 and Table 2. This is understandable, since simulations
of electron trajectories show that low energy electrons deposit their energy in a spatially
more confined volume. The new silicon-pixel detectors, however, are expected to perform
much better at high electron energy than at low [12], especially when the sensor is thinned in
order to minimize backscattering of the primary electrons. When comparing camera
performance, therefore, one must always do so for the electron energy at which the camera
is intended to be used.

The data in Tables 1 and 2 also show (as is already well known) that the performance of
scintillator-based cameras is better for a large pixel size. This improvement comes, of
course, at the expense of a reduced field of view for a given resolution. The way in which
the performance of silicon-pixel cameras depends upon pixel size is perhaps more complex.
In any case, there is not yet a consensus about how to optimize the pixel size and the
epilayer thickness as a function of the electron energy.

The methods presented here provide an easy way to measure and compare two of the factors
that affect performance. While any improvement in performance is desirable, whether the
measured differences are significant enough to be worth replacing one camera with another
will ultimately have to be decided by the end user. One must be aware that there can be
trade-offs in performance. As an example, the line-spread function could be better for one
camera but at the same time the excess noise could be worse. Thus, while making the
measurements (at the same electron energy) may be easy, ranking camera performance will
only be easy if one camera performs better than another both with respect to line-spread
function and with respect to excess noise.

5.5. These methods cannot be applied to a camera that is operated in an “electron
counting” mode

The analysis of the power spectrum and Fourier amplitude spectrum of the camera output
does not provide useful information about the camera performance when one uses a “cluster-
imaging”, or “centroiding” algorithm [12], to convert the broadened camera output for
single-electron events to Kronecker delta functions located at the centers of their respective,
multi-pixel responses. This is because the camera output will appear to be perfect when one
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counts electrons – assuming, however, that the count rate is low enough to avoid pulse
pileup (coincidences). A camera operated in the counting mode is, indeed, perfect in the
sense that there is no additional noise due to finite variance in the magnitude of the camera
response. The camera performance may not be perfect, however, because the location of the
electron event in the output may still not coincide with the pixel location (or the subpixel
location, in the case of centroiding) where the electron was incident on the camera. The
performance of a camera that is operated in the counting mode must therefore be
characterized by measuring DQE(s), as was done by McMullan et al. [13], rather than by
measuring the power spectrum and the Fourier amplitude spectrum of the camera output.

6. CONCLUSIONS
We find that the one-dimensional, azimuthally averaged Fourier amplitude spectra of the
output of four different camera systems, for randomly distributed incident electrons, are all
well fitted by single Lorentzian functions. The widths of the corresponding (exponential)
line spread functions are different, however, thus providing an easily measured criterion of
how well a given camera system does, or does not approach the desired performance in
which incident electrons are registered in, and only in, the pixel where the incident electron
first hits the camera. We also find that the square of the Fourier transform at low frequency
exceeds the number of electrons in the image, which is the value expected if every electron
were registered with the same magnitude of response. We derive the result that the noise in

the Fourier transform, i.e. the variance of the Fourier amplitude, is  times the power
spectrum. The amount by which the power spectrum exceeds N (the number of electrons in
the image) is thus an easily measured way to compare the relative noise level of different
camera systems, for images recorded with identical electron exposures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank Dr. David Agard and Dr. Yifan Cheng for providing access to a prototype Gatan K2 camera at an early
stage of development, and we thank Paul Mooney at Gatan, Inc. for help in recording the empty images used here,
during commissioning of a K2 camera installed at Berkeley.

FUNDING

This work has been supported in part by NIH grant GM 63072 (EN), by NSF grant DBI-0960271 (to David Agard
and Yifan Cheng), and by NIH grant GM083039 (RMG.). EN and David Agard are Howard Hughes Medical
Institute investigators. These sponsors had no role in the study design, collection, analysis and interpretation of
data, the writing of this report, and the decision to submit the article for publication.

REFERENCES
1. Meyer RR, Kirkland AI. Characterisation of the signal and noise transfer of CCD cameras for

electron detection. Microscopy Research and Technique. 2000; 49:269–280. [PubMed: 10816267]

2. Meyer RR, Kirkland AI, Dunin-Borkowski RE, Hutchison JL. Experimental characterisation of
CCD cameras for HREM at 300 kV. Ultramicroscopy. 2000; 85:9–13. [PubMed: 10981735]

3. Meyer RR, Kirkland A. The effects of electron and photon scattering on signal and noise transfer
properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy. 1998;
75:23–33.

4. McMullan G, Chen S, Henderson R, Faruqi AR. Detective quantum efficiency of electron area
detectors in electron microscopy. Ultramicroscopy. 2009; 109:1126–1143. [PubMed: 19497671]

Grob et al. Page 10

Ultramicroscopy. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. Van den Broek W, Van Aert S, Van Dyck D. Fully Automated Measurement of the Modulation
Transfer Function of Charge-Coupled Devices above the Nyquist Frequency. Microscopy and
Microanalysis. 2012; 18:336–342. [PubMed: 22333048]

6. de Ruijter WJ. Imaging properties and applications of slow-scan charge-coupled-device cameras
suitable for electron microscopy. Micron. 1995; 26:247–275.

7. Downing KH, Grano DA. Analysis of photographic emulsions for electron microscopy of two-
dimensional crystalline specimens. Ultramicroscopy. 1982; 7:381–403.

8. Zeitler E. The photographic emulsion as analog recorder for electrons. Ultramicroscopy. 1992;
46:405–416.

9. Frank J, Radermacher M, Penczek P, Zhu J, Li YH, Ladjadj M, Leith A. SPIDER and WEB:
Processing and visualization of images in 3D electron microscopy and related fields. Journal of
Structural Biology. 1996; 116:190–199. [PubMed: 8742743]

10. Herrmann, KH.; Krahl, D. Electronic image recording in conventional electron microscopy. In:
Barer, R.; Cosslett, VE., editors. Advances in Optical and Electron Microscopy. London:
Academic Press; 1984. p. 1-64.

11. Fano U. Ionization yield of radiations. 2. The fluctuations of the number of ions. Physical Review.
1947; 72:26–29.

12. Battaglia M, Contarato D, Denes P, Giubilato P. Cluster imaging with a direct detection CMOS
pixel sensor in Transmission Electron Microscopy. Nuclear Instruments & Methods in Physics
Research Section a-Accelerators Spectrometers Detectors and Associated Equipment. 2009;
608:363–365.

13. McMullan G, Clark AT, Turchetta R, Faruqi AR. Enhanced imaging in low dose electron
microscopy using electron counting. Ultramicroscopy. 2009; 109:1411–1416. [PubMed:
19647366]

Grob et al. Page 11

Ultramicroscopy. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

▪ Fourier amplitude spectra of noise are well fitted by a single Lorentzian.

▪ This measures how closely, or not, the response approaches the single-pixel
ideal.

▪ Noise in the Fourier amplitudes is (1 – π/4) times the shot-noise power
spectrum.

▪ Finite variance in the single-electron responses adds to the output noise.

▪ This excess noise may be equal to or greater than shot noise itself.
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Figure 1.
Use of azimuthally averaged Fourier amplitude spectra of empty images to rank the
performance of different electronic cameras. Individual Lorentzian functions, which are of

the form , are fitted to each Fourier amplitude spectrum. Three parameters – an
overall scale factor for each experimental amplitude spectrum, an additive constant, and s0,
the spatial frequency at which the function is equal 0.5 – are varied to produce a least-
squares best fit between the data and the analytical function. (A) The Fourier amplitude
spectrum for the TVIPS TemCam F416 camera, obtained when using 120 keV electrons, is
used to illustrate the fitting of a single Lorentzian function to the experimental amplitude
spectrum. Corresponding figures for other cameras are shown in the Supplemental material.
(B) Comparison of Lorentzian curves fitted to amplitude spectra for two types of scintillator-
coupled camera and for a silicon-pixel camera. Solid line: TVIPS TemCam F416 camera,
120 keV electrons; dashed line: Gatan UltraScan 4000 camera, 200 keV electrons; dotted
line, Gatan K2 camera, 300 keV electrons.
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Figure 2.
Examples of azimuthally averaged power spectra of empty images that have been
normalized by N, the total number of electrons in a given image. Only three examples are
shown here for simplicity. Corresponding figures for other cameras are shown in the
Supplemental material. Red curve: TVIPS F416 camera, 120 keV electrons; green curve:
Gatan US4000 camera, 200 keV electrons; blue curve: Gatan K2 camera, 300 keV electrons.
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Table 1

Values of the spatial frequency, expressed as a fraction of Nyquist frequency, at which Lorentzian functions –
fitted to the Fourier amplitude spectra of “empty” images – fall to 0.5, depending upon the type of detector
and the electron energy. The sum of a single Lorentzian function plus a constant y-axis offset was fitted to the
Fourier amplitude spectra (see Figure 1A for an example). Please refer to Figure S1 for fitted amplitude
spectra for all other examples listed in this table. Values given in parentheses are the reciprocal of the
respective values of the spatial frequency, i.e. the distance in number of pixels at which the nearly exponential
linespread function falls to e−1. Recall that Nyquist frequency is 1/(2 pixel).

TVIPS F416
4kx4k

15.6 μm pixel

Gatan US4000
4kx4k

15.0 μm pixel

FEI Eagle
2kx2k

30 μm pixel

Gatan K2
4kx4k

5 μm pixel

80 keV - - 0.43
(4.7 pixels)

-

120 keV 0.44 Nyquist
(4.5 pixels)

0.32
(6.3 pixels)

- -

200 keV - 0.27 Nyquist
(7.4 pixels)

- -

300 keV - - 0.35
(5.7 pixels)

0.43
(4.6 pixels)
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Table 2

Estimated variance of the detector response to single-electron events, derived from the excess noise (at low
frequency) in the power spectra of empty images, depending upon the type of detector and the electron energy.

TVIPS F416
4kx4k

15.6 μm pixel

Gatan US4000
4kx4k

15.0 μm pixel

FEI Eagle
2kx2k

30 μm pixel

Gatan K2
4kx4k

5 μm pixel

80 keV - - 0.1 -

120 keV 1.1 1.2 - -

200 keV - 1.7 - -

300 keV - - 1.0 1.1
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