
©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

 Paper type

www.landesbioscience.com	 Cell Cycle	 2371

Cell Cycle 12:15, 2371–2375; August 1, 2013; © 2013 Landes Bioscience

Review

*Correspondence to: Giovanni Blandino; Email: blandino@ifo.it;  

Eytan Domany; Email: eytan.domany@weizmann.ac.il

Submitted: 05/10/13; Accepted: 06/12/13

http://dx.doi.org/10.4161/25380

Contemporary microRNA research has led to significant 
advances in our understanding of the process of tumorigen-
esis. MicroRNAs participate in different events of a cancer cell’s 
life, through their ability to target hundreds of putative tran-
scripts involved in almost every cellular function, including cell 
cycle, apoptosis, and differentiation. The relevance of these 
small molecules is even more evident in light of the emerging 
linkage between their expression and both prognosis and clin-
ical outcome of many types of human cancers. This identifies 
microRNAs as potential therapeutic modifiers of cancer phe-
notypes. From this perspective, we overview here the miR-10b 
locus and its involvement in cancer, focusing on its role in the 
establishment (miR-10b*) and spreading (miR-10b) of breast 
cancer. We conclude that targeting the locus of microRNA 10b 

holds great potential for cancer treatment.
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Introduction

microRNAs are evolutionarily conserved small non coding 
RNAs, 19–25 nucleotides in length, that regulate gene expression 
at the posttranscriptional level.1-3 This occurs through imperfect 
complementarity to the 3′ untranslated region (3′UTR) of target 
mRNAs; this partial homology recognition results in mRNAs 
translational inhibition and/or degradation,4,5 finally leading to 
a reduction in protein expression level.1 To date more than 1000 
human microRNAs have been discovered (http://www.mirbase.
org6). Since microRNAs are predicted to target over 50% of all 
human protein-coding genes,7 and each gene could be controlled 
by different microRNAs,8 almost every cellular function (from 
differentiation to cell growth, and from stress response to cell 
death) is putatively subjected to microRNA control.9-11 In the past 

decade, a great number of reports demonstrated that aberrant 
expression of microRNAs is linked to the insurgence of several 
pathologies, including cancer.12,13 From the first demonstration of 
the involvement of microRNAs in chronic lymphocitic leukemia 
(CLL),14 a very large series of studies reported that microRNAs 
might behave as oncogenes or tumor suppressor genes.15-17

In one of the first reports about microRNA expression profil-
ing in breast cancer, Iorio and colleagues18 identified 29 microR-
NAs differentially expressed between tumoral and normal 
tissues. Among the 5 most deregulated microRNAs there was 
microRNA-10b (miR-10b), which was subsequently character-
ized as a pro-metastatic miR in advanced breast cancers.19,20 miR-
10b is the guide strand of microRNA-10b locus, which is located 
on chromosome 2 within the cluster of the HOXD genes, in an 
intergenic region between HOXD4 and HOXD8 genes (Fig. 1A 
and B). During the biogenesis of microRNAs, Drosha-mediated 
cleavage of a long primary transcript (pri-miRNA) leads to the 
formation of a hairpin molecule, the pre-microRNA that is shut-
tled to the cytoplasm after recognition by the complex expor-
tin-5/RAN-GTP.21,22 In the cytoplasm, the pre-miRNA terminal 
loop is cleaved by Dicer, to produce a ~22-nt RNA duplex, con-
sisting of 2 distinct 5′ phosphorylated strands with 3′ overhangs.

The functional strand of the duplex, referred to as the guide 
strand, is loaded in the AGO-containing protein complex that 
enables target recognition.23 In the literature, the major character-
ization of microRNAs activities covered mostly the guide strand, 
which was believed to be the only one capable of controlling target 
mRNAs expression. The so-called passenger strand, indicated as 
microRNA*, has long been considered functionally irrelevant and 
destined to degradation. However, different groups very recently 
demonstrated that the biological relevance of microRNAs* may 
be comparable to that of the guide strand, and that deregulation 
of their expression could be strictly linked to cancer insurgence 
and development.24-26 The star strand of the miR-10b locus, 
miR-10b*, was first functionally characterized by our group in a 
recent report,27 in which we also showed that it is downregulated 
in primary breast tumors when compared with peritumoral non-
cancerous surrounding tissues. This feature is common to all the 
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analyzed breast cancer subtypes, suggesting that miR-10b* down-
regulation represents an early event in breast tumorigenesis.

In this article, we describe the role of the miR-10b locus in 
breast cancer establishment (miR-10b*) as well as spreading 
(miR-10b) and also discuss the possibility of harnessing the new 
information for microRNA-based therapy.

microRNA-10b

Iorio et al. (2005) first identified miR-10b as one of the most sig-
nificantly downregulated microRNAs in primary breast tumors 
compared with normal breast samples.18 In a later study, Kim 
et al. reinforced the tumor suppressor role of miR-10b by dem-
onstrating that it is also downregulated in human gastric can-
cer cells, where its transcriptional regulation is strictly linked 
to promoter hypermethylation.28 Subsequently, the Weinberg’s 
group reported the opposite concept that miR-10b could act as a 

metastasis-associated miRNA (metastamiR) in advanced breast 
tumors.19,20 This reveals the functional duality of miR-10b when 
metastatic or non-metastatic tumors are considered.

In their first paper in 2007, Ma et al. demonstrated that miR-
10b is highly expressed in breast cancer metastatic cell lines, where 
it positively regulates cell migration and invasion processes in vitro 
and in vivo. This is mediated by the ability of miR-10b to target 
HOXD10, a repressor of several modulators of cell migration, 
such as RhoC19 (Fig. 2A). In glioma cells, HOXD10 targeting by 
miR-10b leads to the induction of extracellular matrix remodel-
ing factors (matrix metalloproteinase-14 and urokinase-type plas-
minogen activator receptor), leading to cell invasion29-31 (Fig. 2A).

The close relationship between miR-10b and the metastatatic 
process in breast cancer cells is also based on the fact that miR-
10b levels are tightly controlled by the transcription factor Twist, 
a well-known regulator of epithelial-to-mesenchymal transition 
(EMT). Twist directly binds to the E-box sequences present 

Figure 1. miR-10b locus localization (A) Chromosome 2 representation, where the blue bar indicates miR-10b position in the long arm of Chr2 (figure 
modified from UCSC genome browser: http://genome.ucsc.edu). (B) Overview of HOXD cluster contains miR-10b precursor.

Figure 2. miR-10b locus is involved in breast tumorigenesis. (A) In metastatic tumors, miR-10b is overexpressed by Twist transcription. This feature is 
closely related to the activation of invasive program through downregulation of HOXD10 and consequently overexpression of several cell migration 
repressor such as RhoC, uPAR, and MMP14.19 (B) In primary breast tumors miR-10b* is downregulated by CpG island hypermethylation. This feature leads 
to upregulation of its target genes, such as BUB1, PLK1, and CCNA2 and, in turn, to tumor proliferation.27
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on the miR-10b promoter region.19 Of note, miR-10b expres-
sion level is higher in clinically advanced breast cancers and in 
other high-grade types of cancers, compared with metastasis-free 
tumors, and it correlates with clinical progression.19

Interestingly, miR-10b is expressed at higher level in the 
tumor vasculature compared with the vasculature of normal tis-
sues.32 This suggests the involvement of miR-10b in the angio-
genic switch that is associated with the transition to malignancy. 
Indeed, miR-10b is highly expressed in the vasculature of breast 
IDC (invasive ductal carcinoma) grade III tumors, with little or 
no expression in DCIS (ductal carcinoma in situ). miR-10b is 
upregulated in tumoral endothelial cells in response to tumor-
produced growth factors, including VEGF, and administration 
of anti-miR-10b results in endothelial progenitor cells (EPC)-
mediated impaired tumor growth in vivo.32

miR-10b overexpression, besides breast cancer, associates with 
progression of oral and colorectal cancer,33,34 pancreatic adenocar-
cinoma,35,36 and glioblastoma.31,37 In an orthotopic human glioma 
mouse model, inhibition of miRNA-10b diminishes the invasive-
ness, angiogenesis, and growth of the mesenchymal subtype-like 
glioma cells in the brain and significantly prolongs survival of 
glioma-bearing mice.38 The pleiotropic nature of miRNA-10b 
was due to its suppression of multiple tumor suppressors, includ-
ing TP53, FOXO3, CYLD, PAX6, PTCH1, HOXD10, and 
NOTCH1.39 This might also suggest that miR-10b could play a 
critical role in many types of human cancers.

microRNA-10b*

Our group was the first to characterize miR-10b* as a tumor sup-
pressor microRNA in primary breast cancers.27 In order to iden-
tify new molecular players in breast tumorigenesis, we performed 
a microRNA microarray analysis on primary breast cancers, 
comparing tumor and matched peritumor tissues. On the basis 
of multiple statistical analyses, we were able to find microRNAs 
that were differentially expressed (vs. peritumor) in all the 3 stud-
ied breast cancer subtypes (luminal, HER2-amplified, and triple 
negative) as well as microRNAs deregulated specifically in each 
subtype. miR-10b* emerged as a downregulated microRNA in 
tumor vs peritumor samples, commonly deregulated in all sub-
types. We decided to further characterize miR-10b* for two main 
reasons: first, because many reports in the literature pointed out 
the importance of tumor suppressor microRNAs in the establish-
ment and maintenance of the transformed phenotype of tumor 
cells,40,41 and, second, because miR-10b* is encoded by the pas-
senger strand of the miR-10b locus, and there was no evidence in 
the literature about its possible role in initiation and progression 
of breast cancer.

Initially, we aimed at understanding how miR-10b* is down-
regulated in the tumor tissue. We found that there are 2 CpG 
islands in miR-10b/10b* regulatory regions that undergo hyper-
methylation, both in a breast cancer cell line and in human 
tumor samples, where the level of methylation in tumor tissues 
is significantly higher compared with matched peritumor ones.

What is the biological significance of miR-10b* downregula-
tion? To answer this, we analyzed potential association between 

Figure 3. Association between disease-specific survival and the expres-
sion levels of miR-10b* and 3 of its target genes (BUB1, PLK1, and CCNA2). 
(A) Kaplan–Meier analysis based on the METABRIC miR expression 
data.43 Survival of the 370 patients with the highest (top third) expres-
sion levels of miR-10b* (red line) was compared with the 370 patients 
with the lowest expression levels (blue line). The plot was truncated at 
15 y, P value is indicated in the title. (B–D) Kaplan–Meier analysis based 
on the METABRIC mRNA expression data.42 The 2 compared groups are 
565 patients with the highest (top third) expression levels of each target 
gene (red line) vs. 565 patients with the lowest (bottom third) expression 
levels (blue line). The plot was truncated at 15 y, P values are indicated in 
the titles. Only patients with available clinical follow-up were included 
in this analysis.
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miR-10b* expression levels and clinical features of the analyzed 
lesions. Interestingly, we found that lower expression levels of 
miR-10b* were significantly associated with larger tumor sizes. 
Next, we demonstrated that ectopic miR-10b* overexpression 
inhibits proliferation of breast cancer cell lines, and that this 
regulation is exerted through the direct targeting of 3 well-
known cell cycle and proliferation controllers: BUB1, PLK1, and 
CCNA2 (Fig.  2B). The correlation of expression of miR-10b* 
with its targets was also validated on human breast cancer tissues, 
where downregulation of miR-10b* is accompanied by BUB1, 
PLK1, and CCNA2 upregulation, compared with their matched 
peritumoral counterparts.

Dysregulated Expression of miR-10b* and of its 
Targets BUB1, PLK1, and CCNA2 is Associated 
with Poor Survival of Breast Cancer Patients

Recently a wealth of breast cancer data has become available, in 
the form of mRNA42 and miR expression data43 measured for 
more than 1000 primary tumors of patients with available clini-
cal follow-up. The METABRIC data set contains 1286 primary 
breast cancer tumors, for which both mRNA42 and miR43 expres-
sion data were measured. The patients are from the 5 subtypes of 
breast cancer: Her2+ (127 patients), Basal-like (209), Luminal 
A (479), Luminal B (312), and normal-like (151). We applied 
the CoSMic algorithm44 , that improves miR target prediction 
by combining joint mRNA and miR expression profiling with 
sequence-based analysis, to the METABRIC data set. Using 
miRanda predictions (http://www.ebi.ac.uk/enright-srv/micro-
cosm/targets/v5/) (the only one of the available sequence-based 
predictors that predicts targets for miR-10b*), we found 15 target 
genes for miR-10b* (data not shown). BUB1, PLK1, CCNA2 
appear among these, together with other genes connected to cell 
cycle. This might suggest that miR-10b* downregulation releases 
aberrant expression of diverse cell cycle-related proteins through 
which miR-10b* plays a major role in the insurgence of breast 
tumors. In accordance with its proposed role as tumor suppres-
sor, Kaplan–Meier analysis found significant association between 
low expression levels of miR-10b* and poor disease-specific sur-
vival (Fig. 3A). Correspondingly, high expression levels of the 15 
target genes were also significantly associated with poor survival 
(Fig. 3B–D and data not shown). These findings strongly rein-
force our previous observations27 and highlight miR-10b* as a 
potential predictor of breast cancer patient survival.

Conclusions

The emerging role of microRNAs as oncogenes or tumor sup-
pressors opens new scenarios for cancer treatment. It has in fact 
been proposed that microRNA-based therapy might become a 
realistic option, by demonstrating that specific microRNAs can 
act as anticancer drugs in a model system.45,46 The manipula-
tion of microRNA expression includes either silencing the over-
expression of an oncogenic miRNA or restoring the presence of 
a tumor suppressor miRNA. Why should such approaches be 
effective? The answer relates to one of the most appealing prop-
erties of microRNAs, namely their capability to target multiple 
genes. The complexity of the cellular context is represented by 
networks of genes and proteins that, during carcinogenesis, are 
modified and rewired. microRNAs could be seen as the hubs 
of such rewiring. Perturbing the hubs properly could restore the 
normal connectivity map. An example of how this could work 
is presented by the miR-10b locus, for which in vivo approaches 
have been exemplified, either miR-10b silencing or miR-10b* 
restoration.

Based on the correlation between miR-10b expression and 
metastasis control, Weinberg’s group in 2010 tested the capabil-
ity of miR-10b antagomiR treatment in vivo to target metastatic 
breast cancers.20 Using a mouse metastasis mammary model, 
their study elegantly demonstrated that silencing miR-10b might 
be an effective therapeutic strategy.

In the case of miR-10b*, we attempted restoring expression 
in an established breast tumor model in vivo.27 Injection of 
miR-10b* mimic into breast cancer xenografts induced a strong 
inhibitory effect on tumor growth, which decreased prolifera-
tive markers and miR-10b* targets in the treated tumors rela-
tive to control tumors. Thus, although more studies are needed 
to firmly elucidate the efficacy and safety of such therapeutic 
approaches and their translation to clinical practice, microR-
NAs application could represent a turning point in the battle 
against cancer.
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