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SUMMARY

A major challenge in cancer epidemiologic studies, especially those of rare cancers, is observing enough
cases. To address this, researchers often join forces by bringing multiple studies together to achieve large
sample sizes, allowing for increased power in hypothesis testing, and improved efficiency in effect estima-
tion. Combining studies, however, renders the analysis difficult owing to the presence of heterogeneity in
the pooled data. In this article, motivated by a collaborative nested case–control (NCC) study of ovarian
cancer in three cohorts from United States, Sweden, and Italy, we investigate the use of penalty regularized
partial likelihood estimation in the context of pooled NCC studies to achieve two goals. First, we propose
an adaptive group lasso (gLASSO) penalized approach to simultaneously identify important variables and
estimate their effects. Second, we propose a composite agLASSO penalized approach to identify variables
with heterogeneous effects. Both methods are readily implemented with the group coordinate gradient
decent algorithm and shown to enjoy the oracle property. We conduct simulation studies to evaluate the
performance of our proposed approaches in finite samples under various heterogeneity settings, and apply
them to the pooled ovarian cancer study.
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1. INTRODUCTION

Cancer is both a rare and a complex disease and thus a large number of subjects are often needed to
elucidate the relationship between the disease and risk factors. As a single study is unlikely to be sufficient
or definitive, researchers have devoted increasing efforts to build large pooled datasets by bringing multi-
ple studies together, such as the projects in the NIH/NCI Cohort Consortium (http://epi.grants.cancer.gov/
Consortia/cohort.html). The pooling strategy has allowed researchers to examine rare cancers, rare expo-
sures, risk factors with small effects, and the interplay among multiple risk factors.

The motivating study for this paper is a collaboration between the New York University Women’s Health
Study (NYUWHS), the Northern Sweden Health and Disease Study (NSHDS), and the Italian Hormones
and Diet in the Etiology of Cancer Study (ORDET) to assess the effects of circulating levels of inflam-
mation markers on the risk of invasive epithelial ovarian cancer (Clendenen and others, 2011). This joint
effort identified 230 cases from the three cohorts and, for each case, 2 controls were selected from the same
cohort using the nested case–control (NCC) sampling design (Thomas, 1979). The inflammatory markers
were measured from stored blood samples collected at enrollment, and other risk factors were assembled
from the questionnaires. We know that heterogeneity is often present in pooled observational epidemiolog-
ical studies (Friedenreich, 1993; Ioannidis and others, 2002). The potential source of heterogeneity for our
study included recruitment, disease ascertainment methods, and sample types (serum/plasma). Implement-
ing the NCC design that selected cases and controls nested within the same cohort facilitated the pooling
and reduced the heterogeneity in our study. But we still found that some markers exhibited heterogeneous
effects across cohorts when examining the heterogeneity using a likelihood ratio test comparing models
with and without biomarker × cohort-membership interaction terms (Clendenen and others, 2011).

Statistical methods for pooled studies need to recognize heterogeneity. A commonly used method for
pooled analysis is the two-stage method to combine study-specific results using either a fixed-effects
model (Hedges and Olkin, 1985) or a random-effects model (DerSimonian and Laird, 1986). The method
originates from the meta-analysis of randomized clinical trials and has been extended to meta-regression
to adjust heterogeneous study characteristics (Greenland, 1994; Thompson and Higgins, 2002). Bayesian
approaches to random-effects meta-analysis (Smith and others, 1995) and a Bayesian hierarchical model
(Liu and others, 2011) have also been proposed to integrate multiple studies and accommodate hetero-
geneity. In recent papers focusing on variable selection in pooled genetic studies, group penalty regular-
ized regressions that consider the effects of a genetic variant over multiple studies in a group manner have
been adopted, e.g. the group lasso (gLASSO) penalized regression for genome-wide mapping in ances-
try admixed population (Puniyani and others, 2010); gene selection in pooled microarray studies using the
group minimax concave penalty (Ma and others, 2011) or the group bridge penalty (Ma and others, 2011).

In this article, we propose two approaches based on penalized partial likelihood with group selection
feature to integrate multiple NCC studies with potential heterogeneity. In the first approach, we adopt
the adaptive gLASSO (agLASSO) penalty technique proposed by Wang and Leng (2008) to incorporate
heterogeneity to the analysis of pooled NCC studies and show that the agLASSO penalty regularized maxi-
mum partial likelihood estimators have the oracle property (Fan and Li, 2001) for selection and estimation.
Furthermore, identifying covariates with heterogeneous effects has great implications for building accurate
cancer risk prediction models. Statistical tests for heterogeneity, such as Cochran Q-test (Cochran, 1954)
and I 2-test (Higgins and Thompson, 2002), often have low power. In our second approach, we introduce a
hierarchical structure over a variable’s effects by modeling heterogeneous effects through interactions of the
variable with cohort-membership indicators, and propose a composite agLASSO (cagLASSO) method to
identify this hierarchical structure for variables with heterogeneous effects. Our cagLASSO method gener-
alizes Zhao and others (2009) by applying data-adaptive weights to different components in the cagLASSO
penalty and can achieve a consistent selection for heterogeneous effects.

The rest of the article is organized as follows. In Section 2, we propose the agLASSO and cagLASSO
approaches for pooled NCC studies with heterogeneity, and establish asymptotic properties for our
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proposed estimators. Numerical simulations and the analysis of the ovarian cancer study are presented
in Section 3. A discussion with concluding remarks is presented in Section 4.

2. PENALIZED PARTIAL LIKELIHOOD APPROACHES FOR POOLED NCC STUDIES

Consider a pooled NCC study from K parent cohorts with each size of Nk, k = 1, . . . , K . Let T ∗
ki be the

failure time and Cki be the censoring time for the i th subject in cohort k. Denote the observed time-to-
event by Tki = min(T ∗

ki , Cki ), failure status by δki = I (T ∗
ki � Cki ), and the counting process by Nki (t) =

δki I (T ∗
ki � t), where I (·) denotes the indicator function throughout. Within cohort k, cases are identified

as subjects with δki = 1, and for a given case i , the NCC design randomly samples m controls without
replacement from the risk set at Tki excluding the case itself. Let Rki denote the indices of the case and
its m selected controls. Covariates of interest Z(·) are ascertained for each case–control set at the case
failure time.

2.1 Variable selection and effect estimation

In each cohort k, the failure time follows a Cox proportional hazards (PHs) model (Cox, 1972):

λk{t |Z(t)} = λ0k(t) exp{β ′�k Z(t)}, k = 1, . . . , K , (2.1)

where λ0k(t) is the cohort-specific baseline hazard function, and β �k is a p × 1 vector of coefficients
characterizing the effects of covariates in cohort k. Parameters of interest are

Bp×K =

⎛
⎜⎜⎝

β11 β12 . . . β1K

β21 β22 . . . β2K

. . .

βp1 βp2 . . . βpK

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

β ′
1 �

β ′
2 �

. . .

β ′
p �

⎞
⎟⎟⎠ = (β �1,β �2, . . . ,β �K ),

where each row β ′
j � is a K × 1 vector denoting the effects of the j th covariate across K studies. The Cox

PH model assumes that covariates have multiplicative effects on the hazard function of failure time and
yields interpretation of the coefficients as hazard ratios. Furthermore, the Cox PH model is commonly used
to analyze NCC data because of its easy implementation using the partial likelihood technique (Thomas,
1979; Oakes, 1981). Under the Cox PH model and time-invariant covariates, the expression of Thomas’
partial likelihood function is equivalent to the conditional logistic likelihood. The study-specific log partial
likelihood takes the form of

lk(β �k) =
Nk∑

i=1

∫ τ

0

⎡
⎣β ′�k Zki (t) − log

⎧⎨
⎩

∑
j∈Rki

eβ ′�k Zk j (t)

⎫⎬
⎭

⎤
⎦ dNki (t), k = 1, . . . , K . (2.2)

Researchers often think that covariates have similar effects across pooled studies while acknowledging
the existence of heterogeneity. This is essentially the idea behind the meta-analysis random-effects method
in which study-specific effects are assumed to distribute around a central effect. Thus, it is natural to
impose a group structure to each covariate’s effects over K studies and select the covariate in the group
manner. Denote the L2-norm of β j �by ‖β j �‖2 = (

∑K
k=1 β2

k j )
1/2. The proposed agLASSO penalized partial

likelihood estimator is defined as

B̂ = arg min
B

⎧⎨
⎩−ln(B) + nλ

p∑
j=1

ω j‖β j �‖2

⎫⎬
⎭ , (2.3)
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where ln(B) = ∑K
k=1 lk(β �k), n is the sample size of the pooled NCC studies, λ is a tuning parameter

controlling the sparseness of the model, and (ω1, . . . , ωp) are data-dependent weights reflecting the relative
importance of covariates. We choose ω j = 1/‖β̃ j �‖2 where β̃ j �= (β̃ j1, . . . , β̃ j K ) and β̃ jk is the j th element
of the maximum partial likelihood estimator for (2.2) within cohort k.

The convexity of the negative of log partial likelihood functions (2.2) (Goldstein and Langholz, 1992)
and of the agLASSO penalty facilitates the optimization in (2.3). Meier and others (2008) propose a group
coordinate gradient descent algorithm for the logistic regression with gLASSO penalty, and have imple-
mented it in R-package grplasso. Using a quadratic approximation for the log-likelihood function, the
algorithm iterates through each covariate group by first examining the penalized approximation function
via the Karush–Kuhn–Tucker (KKT) condition to either set the coefficients to be exact zeros or estimate
them to be non-zero, and then supplements the non-zero estimates with an inexact line search until conver-
gence. We adapt the algorithm to our context with the partial likelihood function for NCC data and with
adaptive weights.

To select the tuning parameter, we use a BIC-type criterion because of its consistence property for the
adaptive LASSO estimation with least square approximation (Wang and Leng, 2007). Our numerical expe-
riences also suggest the superior performance of the BIC-type criterion. Specifically, BICλ = −2ln(B̂) +
dfλ log(n), where the degree of freedom dfλ = ∑p

j=1 I (‖β̂ j �‖2 > 0) + (K − 1)
∑p

j=1 ‖β̂ j �‖2/‖β̃ j �‖2 fol-
lowing Yuan and Lin (2006) for the gLASSO estimators.

The proposed agLASSO method selects important variables that have large group norms of their effects
over K studies and accommodates heterogeneity by allowing the variable to have different magnitudes or
directions for its effects across studies. Sometimes it is also important to know which covariates have het-
erogeneous effects for model building using the pooling strategy, because heterogeneous effects need to
be modeled by distinct parameters to avoid misrepresenting effects; the homogenous effect can be repre-
sented by a common coefficient across studies to reduce the model’s complexity and improve efficiency.
Therefore, we next develop a method to identify variables with heterogeneous effects.

2.2 Identification of heterogeneous effects

We reparameterize the cohort-specific Cox model (2.1) into

λk{t |Z(t)} = λ0k(t) exp{ᾱ′ Z(t) + (β �k − ᾱ)′ Z(t)} = λ0k(t) exp{ᾱ′ Z(t) + α∗
k Z(t)′}, (2.4)

where the p × 1 vector ᾱ denotes the average covariate effects and α∗
k denotes the deviation of covariate

effects in cohort k from ᾱ. To incorporate the constraint of
∑K

k=1 α∗
k = 0, we use the “sum to zero contrast”

matrix CK×(K−1) (e.g. contr.sum in R) and transform the original parameter matrix B into

Ap×K = Bp×K × (1K , C)−1 =

⎛
⎜⎜⎝

ᾱ1 α12 . . . α1K

ᾱ2 α22 . . . α2K

. . .

ᾱp αp2 . . . αpK

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ᾱ1 α′
1 �

ᾱ2 α′
2 �

. . .

ᾱp α′
p �

⎞
⎟⎟⎠ = (ᾱ,α �2, . . . ,α �K ),

where 1K is a vector of 1’s. Now heterogeneous effects of each variable are represented by the coeffi-
cients of interaction terms of the variable with the contrast created from cohort membership, motivating
us to consider the hierarchical selection method with composite absolute penalty (CAP) for identifying
interactions (Zhao and others, 2009). We propose to estimate A by minimizing the following cagLASSO
penalized partial likelihood function, i.e.

Â = arg min
A

⎡
⎣−ln(A) + nλ

p∑
j=1

{ω1 j‖(ᾱ j ,α
′
j �)‖2 + ω2 j‖α j �‖2}

⎤
⎦ , (2.5)
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where ln(A) = ∑K
k=1 lk(ᾱ,αk �), ‖(ᾱ j ,α

′
j �)‖2 = (ᾱ2

j + ∑K
k=2 α2

jk)
1/2, ‖α j �‖2 = (

∑K
k=2 α2

jk)
1/2, and weights

ω1 j = 1/‖( ˜̄α j , α̃
′
j �)‖2 and ω2 j = 1/‖α̃ j �‖2 with ( ˜̄α, α̃1 �, . . . , α̃ p �) being the maximizer of ln(A). The two

penalty terms in (2.5) have overlap on α j � and thus can yield a hierarchical selection that once het-
erogeneous effects α j � deviate from zero, both ᾱ j and α j � will be estimated to be non-zero together
(Zhao and others, 2009). The extra penalty on α j � leads to the identification of only a non-zero average
effect without heterogeneous effects.

The calculation of (2.5) can be carried out by slightly modifying the algorithm described in Section 2.1.
Specifically, in each iteration over the group of coefficients of the j th covariate, we examine the penal-
ized approximation function via two KKT conditions to either set both ᾱ j and α j � to be zero, or only
set α j �= 0 and obtain a non-zero estimate for ᾱ j , or estimate both to be non-zero. We apply the inexact
line search to the non-zero estimates and iterate the algorithm until convergence. The tuning parameter is
selected using BICλ = −2ln(Â) + dfλ log(n) with the dfλ = ∑p

j=1{I (| ˆ̄α j | > 0) + I (‖α̂ j �‖2 > 0)} + (K −
2)

∑p
j=1 ‖α̂ j �‖2/‖α̃ j �‖2.

2.3 Theoretical properties

We study the asymptotic properties of the proposed agLASSO and cagLASSO estimators, with respect to
estimation consistency, selection consistency, and oracle property. For the discussion of the agLASSO
estimator, we assume that the first p1 rows of the true parameter matrix B0 are the effects of impor-
tant variables, i.e. ‖β0 j �‖2 > 0 for j � p1 and ‖β0 j �‖2 = 0 for j > p1. We reorganize the parame-
ters into a vector form as β = (β ′

1 �, . . . ,β ′
p �)′ and decompose it into βa = (β ′

1 �, . . . ,β ′
p1

�)′ and βb =
(β ′

(p1+1) �, . . . ,β ′
p �)′. Accordingly, we have β0 = (β ′

0a,β
′
0b)

′ and β̂ = (β̂
′
a, β̂

′
b)

′. We denote the Fisher infor-
mation matrix of ln(β0) by I (β0), which is positive-definite under the regularity conditions (1)–(6)
given in Goldstein and Langholz (1992). Let Ia(β0) denote the upper left (K p1 × K p1) submatrix
of I (β0). Following the arguments in Wang and Leng (2008), we define an = max{λ j , j � p1} and
bn = min{λ j , j > p1} where λ j = λω j .

THEOREM 2.1 Under the regularity conditions, the agLASSO estimator in (2.3) satisfies:
(a. Estimation consistency) if

√
nan →p 0, then β̂ − β0 = Op(n−1/2);

(b. Selection consistency) if
√

nan →p 0 and
√

nbn →p ∞, then P(β̂b = 0) → 1;

(c. Oracle property) if
√

nan →p 0 and
√

nbn →p ∞, then
√

n(β̂a − β0a) →d N {0, I −1
a (β0)}.

For the ease of discussion of the cagLASSO estimator, we assume that the first p1 rows of
true parameter matrix A0 have ‖α′

0 j �‖2 > 0; the next p2 rows have |ᾱ0 j | > 0 and ‖α′
0 j �‖2 = 0; the

remaining rows have ‖(ᾱ0 j ,α
′
0 j �)‖2 = 0. Then we denote the vector form of A by α and decom-

pose it into two parts: αa = {(ᾱ1,α
′
1 �), . . . , (ᾱp1 ,α

′
p1

�), ᾱ(p1+1), . . . , ᾱ(p1+p2)}′ and αb = {α′
(p1+1) �, . . . ,

α′
(p1+p2) �, (ᾱ(p1+p2+1),α

′
(p1+p2+1) �), . . . , (ᾱp,α

′
p �)}′. Accordingly, let α0 = (α′

0a,α
′
0b)

′, α̂ = (α̂
′
a, α̂

′
b)

′, and
Ia(α0) be the upper left {(K p1 + p2) × (K p1 + p2)} submatrix of the Fisher information matrix
I (α0). We further define an = max[max{λ1 j , j � (p1 + p2)}, max{λ2 j , j � p1}] and bn = min[min{λ1 j ,

j > (p1 + p2)}, min{λ2 j , j > p2}].

THEOREM 2.2 Under the regularity conditions, the cagLASSO estimator in (2.5) satisfies:
(a. Estimation consistency) if

√
nan →p 0, then α̂ − α0 = Op(n−1/2);

(b. Selection consistency) if
√

nan →p 0 and
√

nbn →p ∞, then P(α̂b = 0) → 1;
(c. Oracle property) if

√
nan →p 0 and

√
nbn →p ∞, then

√
n(α̂a − αa) →d N {0, I −1

a (α0)}.
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Proofs for the theorems are given in Appendix of supplementary material available at Biostatistics
online. The theorems show that the agLASSO and cagLASSO estimators consistently select and estimate
variables, and, furthermore, the cagLASSO estimator consistently identifies covariates with heterogeneous
effects or with non-zero average effects. We estimate the covariance of the proposed estimators using the
local quadratic approximation method proposed by Fan and Li (2001) to incorporate the penalty effect
on finite sample estimation. We denote the non-zero components of the agLASSO estimator by β̂a∗ and
estimate its covariance matrix by the following sandwich formula:

ĉov(β̂a∗) = {−∇2ln(β̂a∗) + nλD(β̂a∗)}−1 ĉov{∇ln(β̂a∗)}{−∇2ln(β̂a∗) + nλD(β̂a∗)}−1, (2.6)

where ∇ln(β̂a∗), ∇2ln(β̂a∗), and D(β̂a∗) are the corresponding components of sample estimates
for the gradient vector ∇ln(β) = ∂ln(β)/∂β, hessian matrix ∇2ln(β) = ∂2ln(β)/∂β∂β ′, and D(β) =
diag(ω11K /‖β1 �‖2, . . . , ωp1K /‖β p �‖2). For the cagLASSO estimator α̂, denote its non-zero components
by α̂a∗ and estimate its covariance using (2.6) with D(β) replaced by D(α) = diag{D1(α), . . . , Dp(α)}
where D j (α) = (ω1 j 1K /‖(ᾱ j ,α

′
j �)‖2 + ω2 j (0, 1K−1)/‖α j �‖2)

′.

3. NUMERICAL STUDIES

3.1 Simulations to evaluate the agLASSO method

We simulated a pooled study consisting of NCC samples from three parent cohorts with sample sizes
of (N1, N2, N3). For subjects in cohort k, we generated failure times from the Cox PH model λk(t |Z) =
λ0k(t)eβ ′�k Z , where covariate vector Z was a 20D multivariate normal random vector with mean of 1, vari-
ance of 1, and pairwise correlation of corr(Zi , Z j ) = 0.5|i− j |. Four covariates (Z1, Z2, Z5, Z7) were asso-
ciated with disease risk and the rest were assumed to be null covariates. Specifically, β1 �= (0.4, 0.4, 0.4)

represented a homogeneous effect; β2 �= (0.4, 0.6, 0.3) was heterogeneous with small differences; β5 �=
(−0.4, 0,−0.3) was heterogeneous with moderate differences and had one zero effect; β7 �= (0,−0.7, 0)

was heterogeneous with big differences and had two zero effects. Four settings were used: (i) equal cohort
size of Nk = 1000 and an equal baseline rate λ0k = 0.03; (ii) Nk = 2000 and equal baseline rate λ0k = 0.03;
(iii) different a cohort sizes of (2000, 1000, 4000) and equal baseline disease rate of 0.03; and (iv) different
cohort sizes of (2000, 1000, 4000) and different baseline disease rates of (0.022, 0.022, 0.012). Censoring
times were generated from a uniform distribution Un(0, 5) and yielded censoring rates ranging from 85%
to 95% with different settings. We conducted 200 runs of simulations for each setting.

We compared the performance of our proposed agLASSO method with (i) cohort-specific method
analyzing each cohort separately; (ii) pooled method ignoring any heterogeneity; (iii) meta-analyses using
random- and fixed- effects models; and (iv) the gLASSO method. The cohort-specific method selects
variables based on the χ2-test combining cohort-specific estimates, and the pooled and meta-analysis
methods select variables based on the Wald test, all at the 0.05 significance level. Table 1 summarizes the
model selection results. The average mean squared error (MSE)

∑K
k=1(β̂ �k − β �k)

′(β̂ �k − β �k) is used to
measure the prediction accuracy, and the relative MSE (RMSE) with respect to the result of the cohort-
specific method is also reported. Overall, our proposed method outperforms all other competitors in terms
of being the closest to the true model size, the smallest number of false positives, the highest percentage
of correctly fitted models, and having the smallest MSE. The proposed agLASSO method improves its
performance as sample size increases, and handles different situations of heterogeneity reasonably well.
Although the cohort-specific method is unbiased for estimation, it shows the largest MSEs in all settings
due to large variances from only using the data of each sub-study. The meta-analysis methods generally
improves the model selection, but the random-effects method can be very conservative, partially because
when large heterogeneous effects are modeled by a random effect, the estimated variance for the random

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt015/-/DC1
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt015/-/DC1
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Table 1. Simulation results on model selection and MSE

No. of identified No. of false No. of false Under- Over- Correct-
Method variables positives negatives fitted% fitted% fitted% MSE RMSE%

N = 1000
Cohort specific 4.700 1.045 0.345 31.0 38.5 30.5 2.273 REF
Pooled analysis 4.190 0.835 0.645 55.0 25.0 20.0 1.024 45.1
Meta-random 2.915 0.645 1.730 98.0 1.5 0.5 1.203 52.9
Meta-fixed 4.050 0.860 0.810 64.5 18.0 17.5 1.170 51.5
gLASSO 4.350 0.550 0.200 18.5 37.0 44.5 0.532 23.4
agLASSO 3.635 0.140 0.505 38.0 9.5 52.5 0.489 21.5

N = 2000
Cohort specific 4.840 0.860 0.020 2.0 51.0 47.0 0.887 REF
Pooled analysis 4.625 0.700 0.075 7.5 46.5 46.0 0.717 80.8
Meta-random 3.065 0.600 1.535 99.5 0.5 0 0.758 85.5
Meta-fixed 4.700 0.805 0.105 10.5 49.5 40.0 0.751 84.7
gLASSO 4.850 0.855 0.005 0.5 61.5 38.0 0.295 33.3
agLASSO 3.945 0.045 0.100 10.0 4.5 85.5 0.218 24.6

Different cohort sizes
Cohort specific 4.865 0.930 0.065 6.5 58.0 35.5 1.212 REF
Pooled analysis 4.280 0.900 0.620 62.0 21.5 16.5 0.750 61.9
Meta-random 3.240 0.645 1.405 99.5 0 0.5 0.759 62.6
Meta-fixed 4.185 0.905 0.750 72.0 18.0 10.0 0.793 65.4
gLASSO 4.840 0.840 0.001 0 58.5 41.5 0.347 28.6
agLASSO 4.105 0.150 0.045 4.0 14.0 82.0 0.262 21.6

Different cohort sizes and disease rates
Cohort specific 4.600 0.860 0.260 24.5 41.5 34.0 1.926 REF
Pooled analysis 4.100 0.790 0.690 63.5 17.5 19.0 0.877 45.5
Meta-random 3.070 0.595 1.525 98.0 0.5 1.5 0.973 50.5
Meta-fixed 3.965 0.790 0.825 76.0 9.0 15.0 0.970 50.4
gLASSO 4.765 0.810 0.045 4.0 52.0 44.0 0.457 23.7
agLASSO 3.910 0.225 0.315 28.5 16.5 55.0 0.413 21.4

“Cohort specific” refers to the method treating each cohort separately and the significance test is based on the χ2-test combining
cohort-specific results; “Pooled analysis” refers to the pooled analysis ignoring any heterogeneity; “Meta-random” refers to the
meta-analysis with random-effects modeling; “Meta-fixed” refers to the meta-analysis with fixed-effects modeling; “gLASSO”
refers to the group LASSO method; “agLASSO” refers to the adaptive group LASSO method; “No. of identified variables” refers
to the average number of identified variables by each method in 200 runs of simulations; “No. of false positive” refers to the
average number of selected variables out of those true values being 0 by each method in 200 runs of simulations; “No. of false
negatives” refers to the average number of missed variables out of those true non-zero values by each method in 200 runs of
simulations; “Under-fitted%” refers to the percentage of simulation runs that miss at least one true variable; “Over-fitted%” refers
to the percentage of simulation runs that include all true variables and at least one null covariate; “Correct-fitted%” refers to the
percentage of simulation runs that correctly identify all variables.

effect would mask the central effect. The gLASSO method tends to over-select variables with large numbers
of false positives.

Table 2 presents the results on selecting individual variables. For covariates Z1 and Z2 where effect
signals are strong with no or minor heterogeneity, all methods can pick up the signal with good power. For
null covariates Z3 and Z4, the proposed agLASSO method shows the best performance excluding these
variables. For covariates Z5 and Z7 with moderate or large heterogeneity, the cohort-specific method, and
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Table 2. Simulation results on individual variable selection frequency (%)

Method Z1 Z2 Z3 Z4 Z5 Z7 Z1 Z2 Z3 Z4 Z5 Z7

N = 1000 N = 2000

Cohort specific 98.0 98.5 5.0 8.5 75.5 93.5 100 100 8.0 5.0 98.0 100
Pooled analysis 99.5 99.0 4.0 3.0 67.5 69.5 100 100 4.0 4.0 96.0 96.5
Meta-random 97.5 89.5 2.0 3.5 35.5 4.5 100 97.5 4.0 5.0 47.5 1.5
Meta-fixed 99.0 98.5 2.5 4.0 67.0 54.5 100 100 6.0 6.0 96.5 93.0
gLASSO 100 99.5 4.0 3.5 82.0 98.5 100 100 5.0 3.5 99.5 100
agLASSO 91.5 96.5 1.0 1.5 68.0 93.5 100 100 0.0 0.0 90.0 100

Different cohort sizes Different cohort sizes and disease rates

Cohort specific 100 100 4.5 4.0 99.0 94.5 100 100 6.5 5.5 89.0 85.0
Pooled analysis 100 100 5.5 4.0 99.5 38.5 100 100 6.0 4.0 91.5 39.5
Meta-random 100 98.5 3.5 3.5 60.0 1.0 97.5 94.0 4.0 4.0 53.5 2.5
Meta-fixed 100 100 4.0 4.0 99.5 28.5 100 100 4.5 5.5 91.0 26.5
gLASSO 100 100 3.5 3.0 100 100 100 100 5.0 5.0 97.0 98.5
agLASSO 100 99.5 1.0 1.0 96.5 99.5 98.0 99.5 0.5 0.5 79.5 91.5

“Cohort specific” refers to the method treating each cohort separately and the significance test is based on the χ2-test combining
cohort-specific results; “Pooled analysis” refers to the pooled analysis ignoring any heterogeneity; “Meta-random” refers to the meta-
analysis with random-effects modeling; “Meta-fixed” refers to the meta-analysis with fixed-effects modeling; “gLASSO” refers to
the group LASSO method; “agLASSO” refers to the adaptive group LASSO method.

the penalized methods of gLASSO and agLASSO perform well. The pooled analysis method deteriorates
dramatically for Z7 under the settings of different cohort sizes and/or different disease rates that aggravate
the heterogeneity across cohorts. Meta-analysis methods yield unsatisfactory results as well.

To examine the accuracy of the proposed variance calculation in Section 2.3, we compare the sample
standard deviation of estimates over simulations and the average formula-based estimates of standard errors
in Table 3. First, the proposed agLASSO method shows smaller standard errors than the cohort-specific
method across the board, indicating that our proposed method can improve efficiency by integrating infor-
mation across multiple studies. Second, when heterogeneity is small in β1 �and β2 �, the agLASSO asymp-
totic variance estimates are close to their sample counterparts, especially when the sample size is large.
Third, for β5 � and β7 � with moderate or large heterogeneity, the agLASSO asymptotic variance estimates
display some discrepancy with the sample standard deviations. One explanation could be that applying the
same group penalty to a heterogeneous vector tends to penalize the small coefficients more than the large
ones, and thus the estimates for small coefficients demonstrate smaller variability.

Additional simulations with a cohort size of N = 500 were also conducted and showed that all methods
had low power to select important variables when the sample size is small. The penalized methods of
gLASSO and agLASSO generally exhibited better performances than others, but the superiority of the
agLASSO over gLASSO was not obvious under situations with low sample size.

3.2 Simulations to evaluate the cagLASSO method

We compared the proposed cagLASSO method, the interaction method including marker×cohort-
membership terms, and the CAP method with group L2-penalties (Zhao and others, 2009), regarding their
performance for identifying important variables and variables with heterogeneous effects. Data generation
remained the same as in Section 3.1. Tables 4 and 5 summarize the results on overall model selection and
individual variable selection, respectively. The proposed cagLASSO approach accurately selects the four
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Table 3. Simulation results on the standard errors for the estimates

β ·1 β ·2 β ·5 β ·7
Method β11 β21 β31 β12 β22 β32 β15 β25 β35 β17 β27 β37

N = 1000
Cohort specific 0.184 0.193 0.184 0.211 0.205 0.191 0.188 0.201 0.193 0.174 0.229 0.195

0.166 0.173 0.165 0.186 0.199 0.183 0.185 0.188 0.182 0.180 0.202 0.180
agLASSO 0.134 0.139 0.132 0.127 0.160 0.121 0.101 0.071 0.093 0.085 0.153 0.085

0.124 0.124 0.125 0.124 0.126 0.125 0.119 0.119 0.121 0.115 0.118 0.117

N = 2000
Cohort specific 0.108 0.101 0.124 0.119 0.119 0.124 0.121 0.116 0.119 0.116 0.125 0.118

0.109 0.113 0.110 0.121 0.129 0.120 0.121 0.123 0.121 0.119 0.131 0.119
agLASSO 0.094 0.090 0.103 0.098 0.111 0.090 0.095 0.047 0.082 0.068 0.104 0.067

0.092 0.093 0.093 0.092 0.094 0.092 0.086 0.086 0.086 0.084 0.087 0.085

Different cohort sizes
Cohort specific 0.108 0.189 0.078 0.119 0.209 0.086 0.121 0.185 0.086 0.116 0.195 0.088

0.109 0.172 0.075 0.121 0.196 0.083 0.121 0.187 0.083 0.119 0.200 0.082
agLASSO 0.095 0.127 0.079 0.102 0.145 0.079 0.094 0.080 0.067 0.062 0.152 0.039

0.091 0.120 0.068 0.092 0.122 0.068 0.085 0.116 0.062 0.084 0.117 0.062

Different cohort sizes and disease rates
Cohort specific 0.135 0.229 0.126 0.139 0.238 0.139 0.157 0.255 0.147 0.136 0.289 0.121

0.128 0.203 0.120 0.141 0.233 0.131 0.142 0.222 0.131 0.139 0.238 0.130
agLASSO 0.115 0.142 0.110 0.114 0.162 0.106 0.105 0.079 0.080 0.067 0.179 0.060

0.104 0.134 0.099 0.104 0.135 0.099 0.098 0.132 0.093 0.096 0.131 0.092

“Cohort specific” refers to the method treating each cohort separately; “agLASSO” refers to the adaptive group LASSO method.
For each parameter’s estimate, sample standard deviation of estimates is on the top and the average of estimated standard errors
is at the bottom.

important variables and yields the smallest MSE under all settings (Table 4). Note that three out of the
four important variables have heterogeneous effects and demonstrate different magnitudes of heterogene-
ity. Although the cagLASSO method seems to be inferior to the other two methods in selecting variables
with heterogeneous effects, it has comparable performance for selecting the correct heterogeneous vari-
ables. From Table 5, we note that the cagLASSO method has the lowest false-positive rate to correctly
recognize the absence of heterogeneity in Z1. For Z2 with small heterogeneous effects, none of the meth-
ods detects the heterogeneity signal with good power. For variables of Z5 and Z7 with moderate or large
heterogeneity, the cohort-specific method works generally well, but performances by the CAP estimator
and the cagLASSO estimator fluctuate. In general, we find that the cagLASSO estimator shows better per-
formance than the CAP method for Z7 with large heterogeneity but lower selection frequency for Z5 with
moderate heterogeneity. This observation can be due to the fact that, in finite samples, the data-adaptive
weight ω2 j in (2.5) may over-penalize the heterogeneous effects when the group norm of heterogeneous
effect is small.

3.3 The pooled ovarian cancer study

We applied the proposed agLASSO method to the pooled NCC study on ovarian cancer to identify impor-
tant risk factors and compared its results with those from the cohort-specific analysis, pooled analy-
sis, meta-analysis with random-effects and fixed-effects models, and gLASSO method. Specifically, we
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Table 4. Simulation results on model selection and identification of heterogeneous effects

No. of identified No. of correct No. of identified No. of correct
Method variable (4) variable hetero. eff. (3) hetero. eff. MSE

N = 1000
Cohort interaction 4.350 3.295 2.500 1.425 1.242
CAP 4.255 3.690 1.565 1.480 0.333
cagLASSO 3.910 3.670 1.325 1.280 0.280

N = 2000
Cohort interaction 4.720 3.910 2.840 1.930 0.497
CAP 4.575 3.985 2.220 2.080 0.234
cagLASSO 4.105 3.960 1.740 1.730 0.164

Different cohort sizes
Cohort interaction 4.715 3.805 2.640 1.650 0.708
CAP 4.265 3.690 1.580 1.400 0.327
cagLASSO 3.950 3.760 1.240 1.180 0.259

Different cohort sizes and disease rates
Cohort interaction 4.312 3.497 2.382 1.372 1.147
CAP 4.106 3.613 1.327 1.201 0.362
cagLASSO 3.900 3.678 1.186 1.106 0.293

“Cohort interaction” refers to the pooled analysis using the interaction terms of covariates with cohort-specific member-
ship indicators; “CAP” refers to the composite absolute penalty method; “cagLASSO” refers to the composite adaptive
group lasso penalty method; “No. of identified variable” refers to the average number of identified important variables
with non-zero effect by each method in 200 runs of simulations; “No. of correct variable” refers to the average number of
identified variables with non-zero effect out of those with true non-zero effects; “No. of identified hetero. eff.” refers to
the average number of identified variables with non-zero heterogeneous effect by each method in 200 runs of simulations;
“No. of correct hetero. eff.” refers to the average number of identified variables with non-zero heterogeneous effect out
of those with true non-zero heterogeneous effects.

considered all 17 inflammation markers and 6 potential confounders including pregnancy history, use of
oral contraceptive, use of hormone replacement therapy, age at menarche, body mass index, and current
smoking status. The analysis was based on 229 ovarian cancer cases and 429 matched controls (NYUWHS:
81 cases and 160 controls; ORDET: 41 cases and 82 controls; NSHDS: 107 cases and 187 controls). Four
subjects were removed due to missing data. All biomarker data were log-transformed and standardized
within each cohort.

Both the gLASSO and agLASSO methods select interleukin-4 (IL4) as an important risk factor for ovar-
ian cancer and thus we present the results from different methods focused on IL4 in Table 6. The cohort-
specific method indicates that IL4 may have heterogeneous effects across three cohorts: it shows positive
association with disease risk in NYUWHS (p < 0.05) and NSHDS but negative association in ORDET
although the results from NSHDS and ORDET are not statistically significant. The results are consistent
with the findings in Clendenen and others (2011). The proposed agLASSO method reaches a similar con-
clusion as the cohort-specific analysis but with more regularized estimates and tighter confidence intervals
by integrating three studies together. Under this pattern of heterogeneity, however, the pooled analysis or
meta-analysis does not show any significant result. Furthermore, our proposed cagLASSO method also
demonstrates the existence of heterogeneity in IL4 effects across three cohorts and estimates (in the log of
hazards ratio scale) the average effect as 0.107 and the heterogeneous effects as (0.196,−0.207, 0.011)

for NYUWHS, ORDET, and NSHDS, respectively.
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Table 5. Simulation results on the variable selection frequency (%)

Z1 Z2 Z5 Z7

Method Ave. Hetero. Ave. Hetero. Ave. Hetero. Ave. Hetero.
(0.4) (0, 0) (0.43) (0.17, −0.13) (−0.23) (0.23, −0.06) (−0.23) (−0.47, 0.23)

N = 1000
Cohort interaction 99.0 8.5 98.5 19.0 67.0 36.5 65.0 87.0
CAP 100 2.0 99.0 19.0 82.0 42.5 88.0 86.5
cagLASSO 99.0 1.5 98.5 10.5 77.5 33.0 92.0 84.5

N = 2000
Cohort interaction 100 5.0 100 35.0 95.5 58.0 95.5 100
CAP 100 5.5 100 32.5 98.5 75.5 100 100
cagLASSO 100 0.0 100 19.0 96.0 54.5 100 99.5

Different cohort sizes
Cohort interaction 100 6.5 100 29.0 88.0 40.0 92.5 96.0
CAP 100 4.0 100 26.5 100 44.5 69.0 69.0
cagLASSO 100 1.5 100 19.0 99.5 23.5 76.5 75.5

Different cohort sizes and different disease rates
Cohort interaction 100 6.5 100 23.0 71.5 31.5 78.5 82.5
CAP 100 4.0 100 18.0 97.5 38.0 64.0 64.0
cagLASSO 100 1.5 100 15.0 93.0 23.0 75.0 72.5

“Cohort interaction” refers to the pooled analysis using the interaction terms of covariates with cohort-specific membership
indicators; “CAP” refers to the composite absolute penalty method; “cagLASSO” refers to the composite adaptive group LASSO
penalty method; “Ave.” refers to the average effect of the covariate and its true value is listed below in the parenthesis; “Hetero.”
refers to the heterogeneous effects of the covariate and the true values are listed below in the parenthesis.

Table 6. Results on estimation of the effects of
IL4 in the ovarian cancer study

Method HR 95% CI

Cohort specific
NYU 2.596 (1.211, 5.565)*
ORDET 0.568 (0.278, 1.161)
NSHDS 1.833 (0.822, 4.086)

Pooled analysis 1.260 (0.905, 1.755)
Meta-random 1.377 (0.551, 3.439)
Meta-fixed 1.326 (0.856, 2.053)
agLASSO

NYU 1.343 (1.033, 1.747)*
ORDET 0.847 (0.614, 1.168)
NSHDS 1.088 (0.872, 1.357)

“HR” refers to the hazards ratio estimate corresponding to
1 standard deviation increase of the IL4 level (in the log-
scale); “95% CI” refers to the 95% confidence interval.
*The statistical significance at 0.05 level.

4. DISCUSSION

In this article, we develop the penalized partial likelihood methods for variable selection and estimation
of the Cox PH model in pooled NCC studies. The proposed methods can be easily extended to pooled
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analysis of other types of data, or even for combining studies with different designs, such as matched
case–control and unmatched case–control studies. Other choices of penalty function can also be used to
incorporate investigators’ prior knowledge on the magnitude or structure of heterogeneity. For example, we
can use the group Lq penalty with q > 2 to shrink coefficients toward the diagonal and thus can encourage
similarity of effects across multiple studies; the proposed cagLASSO method can adopt other penalties
with hierarchical structure induced from a directed graph. Also from our numerical experience, when the
sample size is sufficiently large, the simple definition for the degree of freedom that counts the number of
non-zero coefficient estimates (Wang and others, 2007) can be used for calculating the BIC to select the
final model. After significant heterogeneity is detected across studies, the sparse gLASSO penalty also
can be used to select cohort-specific important variables.

Using the adaptive weights in our penalized methods is important for achieving the oracle property and
good practical performance. When the number of covariates is large, the data-dependent weights from the
cohort-specific estimates may not always be estimable. We can use some initial estimates that are zero-
consistent as the weights (Huang and others, 2006). Some other non-convex penalty regularized methods
also have the oracle property, such as using the group bridge penalty (Ma and others, 2011), however, are
more complex in terms of both numerical implementation and theory. In addition, when small heteroge-
neous effects are present, a very large sample would be necessary for the proposed methods to achieve a
perfect fit on all variables.

Lastly, it is of great interest to study other survival models that can relax the PHs assumption for the
analysis of pooled NCC studies with heterogeneity. The inverse selection probability weighted technique
(Samuelsen, 1997) potentially can be used for this purpose, but the construction of an effective loss func-
tion that can simultaneously accommodate the selection weights and couple with penalties needs further
investigation.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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