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Abstract This reviewpresents the rolesof cardiac sodiumchannelNaV1.5 late current (late INa) in generation of arrhythmic activity.
The assumption of the authors is that proper Na+ channel function is necessary to the maintenance of the transmem-
brane electrochemical gradient of Na+ and regulation of cardiac electrical activity. Myocyte Na+ channels’ openings
during the brief action potential upstroke contribute to peak INa and initiate excitation–contraction coupling. Openings
of Na+ channels outside the upstroke contribute to late INa, a depolarizing current that persists throughout the action
potential plateau. The small, physiological late INa does not appear to be critical for normal electrical or contractile func-
tion in the heart. Late INa does, however, reduce the net repolarizing current, prolongs action potential duration, and
increases cellular Na+ loading. An increase of late INa, due to acquired conditions (e.g. heart failure) or inherited Na+

channelopathies, facilitates the formation of early and delayed afterpolarizations and triggered arrhythmias, spontaneous
diastolic depolarization, and cellular Ca2+ loading. These in turn increase the spatial and temporal dispersion of repolar-
ization time and may lead to reentrant arrhythmias.
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1. Origins of cardiomyocyte late INa

Although the presence and potential importance of so-called non-
inactivating Na+ current in myocytes was recognized as early as
1979,1,2 the roles of this seemingly minor current in arrhythmogenesis
were not identified until the demonstration that ‘gain of function’ muta-
tions in the gene SCN5A enhance NaV1.5 late INa and cause the congeni-
tal long-QT syndrome type 3 (LQT3).3,4 Pathological roles of late INa in
the heart have been reviewed previously.5– 18

After opening briefly (about 50 ms at 358C)19 during the upstroke of
the cardiac action potential (AP), individual Na+ channels usually
inactivate and remain inactivated until repolarization of the cell
membrane. Sodium channel openings after the upstroke create a small
‘late’ current that persists throughout the plateau of the AP. The ampli-
tude of late INa is reported to be ≤0.1% of peak INa in isolated left-
ventricular myocytes from the rat,20 guinea pig,21 and human heart.22

Many Na+ channel mutations, pathological conditions, pharmacological
agents and toxins delay or destabilize Na+ channel inactivation and in-
crease late INa. The magnitude of late INa in cardiac myocytes may be
increased by either acquired conditions such as heart failure,12,23– 26

hypoxia/ischaemia,8,27– 29 inflammation,30 oxidative stress,31 and
thyroid hormone,32 (Table 1) or congenital (inherited) mutations in
SCN5A and channel-interacting proteins that cause long-QT
syndrome.3,4,15,33,34 Several forms of cardiac Na+ channel dysfunction
are direct causes of late INa: (i) delayed or failed inactivation of open
channels (i.e. long openings); (ii) transient burstsof re-openings and scat-
tered single lateopeningsof channels thatwere in anunstable inactivated
state; and (iii) fast recovery of channels from inactivation during
non-equilibrium conditions, as during repolarization of the
AP.19,20,22,35–38 In addition, not all Na+ channels open during the AP up-
stroke, and those that do not open during peak INa are potentially avail-
able to open late. Lastly, within a ‘window’ of voltages that is sufficiently
depolarized to cause activation of some Na+ channels but not so depo-
larized as to cause inactivation of all channels from the closed state, a
small equilibrium Na+ current is theoretically present.1 This Na+

window current is not typically referred to as late INa, and its significance
is poorly understood. However, it is a potential cause of Na+ loading,
especially in depolarized ischaemic myocardium.39 Interestingly, the
range of voltages for steady-state window current was shifted by tens
of millivolts in a hyperpolarizing direction by membrane stretch.40
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Thismaybe partly responsible for abackground Na+current that occurs
close to the threshold voltage for Na+ channel activation in myocytes.41

2. Myocyte late INa, Na1 and Ca21

homeostasis, and contractile
function
The Na+/Ca2+ exchanger (NCX) and voltage-gated Na+ channels are
major routes of Na+ entry into cardiac myocytes.42 Late INa constitutes
perhaps one-half of Na+ channel-mediated Na+ entry in ventricular
myocytes.43,44 In normal ventricular myocardium at a heart rate of 60/
min, late INa-mediated Na+ influx during phase 2 of the AP plateau is esti-
mated to be about 30% of total Na+ influx through Na+ channels.44 Na+

influx during phase 2 can be increased several-fold when late INa is
enhanced by, for example, lysophosphatidylcholine and palmitoyl-
L-carnitine (lipid metabolites that accumulate during ischaemia), or by
H2O2, veratridine, or SCN5A mutations. Enhancement of late INa by five-
fold during the AP plateau may double the total Na+ influx into a
myocyte during a cardiac cycle.44 In this situation, Na+ influx in phase
2 exceeds that during all other phases of the AP combined.44

The effect of an increase of late INa to raise the intracellular Na+ con-
centration in cardiac myocytes is well documented. The late INa enhan-
cer veratridine (0.1 mM) increased the intracellular Na+ concentration
in a sheep Purkinje fibre by 2.2 mM, accompanied by a 140% increase
in twitch tension.45 ATX-II (3 nM) enhanced late INa by four-fold in rat
ventricular myocytes and increased the intracellular Na+ concentration
by 30%.46 In rabbit myocytes exposed to ATX-II, a two-fold increase of
late INa was associated with a four-fold increase of the intracellular Na+

concentration.47 The effect of an increaseof late INa to increase the intra-
cellular Na+ concentrationappears tobe greater in rabbit than rat, as the
resting Na+ concentration and Na+/K+ ATPase activity are lower in the
rabbit.48,49 Simulated-demand ischaemia (i.e. metabolic inhibition and
pacing) of rabbit cardiac myocytes in the absence and presence of the
late INa inhibitor ranolazine led to increases of the intracellular Na+ con-
centration by 13 and 5 mM, respectively.50 In myocytes from failing
hearts, the intracellular Na+ concentration is increased by 2–6 mM
above normal.51– 55 This increase has been attributed to greater Na+

influx due to an enhanced late INa.
12,23– 26,47,51,56 Increases of Na+

window and/or background current potentially contribute to Na+

influx more in the failing than in the normal heart, and are increased
by veratridine and ATX-II as well, apparently due to effects of the
latter toxins on the voltage dependence of Na+ channel gating. To
our knowledge, the effect of an LQT3 mutation in SCN5A on the intra-
cellular Na+ concentration has yet to be reported.

A late INa-induced increase of the intracellular Na+ concentration
alters contractile function. Studies of Purkinje fibres and papillary
muscles demonstrate that elevation of the intracellular Na+ concentra-
tion by 1–2 mM may cause twitch tension to increase acutely as much as
2.5-fold.43,45,55,57– 59 An increase of Na+ concentration (generated by
late INa) in the t-tubule subsarcolemmal fuzzy space has been proposed
to drive Ca2+ entry via reverse mode NCX.56,60,61 The direction of
NCX-mediated ion fluxes is regulated by the electrochemical gradients
of Na+ and Ca2+ and by the membrane potential. When intracellular
Na+ rises, forward mode (3 Na+ in and 1 Ca2+ out) NCX is reduced,
whereas reverse mode (3 Na+out and 1 Ca2+ in) NCX is increased.51,62

Cohen et al.57 calculated that an increase of the intracellular Na+ con-
centration from 8 to 10 mM reduces the electrochemical driving force
for NCX-mediated Ca2+ efflux by half. An increase of late INa is asso-
ciated with an increaseddiastolic Ca2+ concentration in myocytes46,47,63

and isolated hearts.64 An increase of the intracellular Na+ concentration
in the hypertrophied/failing heart supports systolic function at low heart
rates by increasing Ca2+ influx via NCX.51 However, it is associated with
increases of diastolic Ca2+, diastolic contractile tension, and arrhythmias
at higher heart rates.47,53– 56,65 Increases of late INa and intracellular Na+

have been shown to raise tonic contractile force and myocardial wall
stress in the intact heart.66– 68 The effects of an increase of late INa on
AP duration and ion homeostasis in the guinea-pig ventricular
myocyte have been modelled.69 An increase of late INa from 0 to 0.2%
of peak INa at a pacing rate of 1 Hz increased AP duration by nearly
2.2-fold and Na+ and Ca2+ concentrations in diastole by 34 and 52%, re-
spectively, and was associated with spontaneous erratic releases of Ca2+

from the sarcoplasmic reticulum.69 An increase of late INa in myocytes
isolated from failing human and dog hearts is also associated with spon-
taneous releases of sarcoplasmic reticular Ca2+ during diastole.56

Drug-induced inhibition of late INa has been shown to reduce Na+-
dependent Ca2+ loading and contractile dysfunction of cardiac myo-
cytes from both normal and failing hearts,39,47,56,63–65 and contractile
dysfunction in the ischaemic heart.70,71 One may conclude that an
enhanced late INa can cause changes of Na+ entry and the transmem-
brane Na+ gradient that alter cardiac function.

The effects of inhibiting the normal, small, endogenous late INa have
not been unequivocally demonstrated due to the lack of a selective
blocker of the current. Lidocaine (20 mM) acutely reduced AP duration,
twitch tension, and intracellular Na+ concentration in sheep Purkinje
fibres.43 The reduction of twitch tension by lidocaine was due in
roughly equal parts to the decrease in AP duration and the reduction
of intracellular Na+.43 Lidocaine reduces both peak and late INa,
and reductions by the drug of contractile force and intracellular Na+

concentration may be due to both actions. Because Na+ channels
become more inactivated as heart rate increases, a decrease in late INa

at higher rates contributes to rate-dependent shortening of AP dur-
ation.72,73 Results of a recent study of the selective late INa inhibitor
GS967 indicate that reduction of endogenous late INa in rabbit hearts
and isolated ventricular myocytes is associated with a decrease of AP
duration, a small but non-significant decrease in intracellular Na+, and
no change in Ca2+.74
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Table 1 Conditions and agents that have been
demonstrated to increase cardiac late INa

Conditions/endogenous agents Drugs and toxins

Activation of CaMKII Aconitine

Activation of Fyn tyrosine kinase ATX-II

Activation of PKC Batrachotoxin

Angiotensin II DPI 201–106 and analogues

Carbon monoxide KB130015

2,3-Diphosphoglycerate Ouabain (indirectly)

Hydrogen peroxide (H2O2) Pyrethroids (e.g. tefluthrin)

Hypoxia, ischaemia Veratridine

Lysophosphatidylcholine

Nitric oxide (NO) Diseases

Palmitoyl-L-carnitine Heart failure

Thyroid hormone T3 Hypertrophic cardiomyopathy
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3. Types and mechanisms of late
INa-induced arrhythmic activity
The detrimental electrical effects of an enhanced, pathological late INa

are depicted in Figure 1, and include the following: (i) diastolic depolar-
ization during phase 4 of the AP that may lead to spontaneous AP
firing and abnormal automaticity, especially of myocytes that are rela-
tively depolarized and have low resting K+ conductance (e.g. low IK1);
(ii) an increase of AP duration, due to the depolarizing effect of an
increased inward Na+ current during the AP plateau, and which may
lead to early after-depolarizations (EADs) and triggered activity, as
well as increased spatiotemporal differences of repolarization time,
which promote reentrant electrical activity; and (iii) the indirect
effects of a late INa-induced increase of Na+ entry to alter Ca2+ homeo-
stasis in myocytes, which may lead to Ca2+ alternans and DADs.
Acquired conditions and drugs that enhance late INa (Table 1) are asso-
ciated with atrial tachyarrhythmias,75–78 ventricular tachyarrhythmias
including torsades de pointes (TdP),3,4,79,80 afterpotentials (EADs,
DADs), and triggered activity.23,26,76,81 Patients with LQT3 are at a
high risk for both ventricular arrhythmias and atrial fibrillation.3,4,15,82,83

All three of the common mechanisms for tachyarrhythmias—abnormal
automaticity, afterpotentials, and reentry—can occur as the result of an
enhanced late INa.

4. Diastolic depolarization
and abnormal automaticity
Spontaneous diastolic depolarization of a myocyte during phase 4 of the
AP occurs normally in pacemaking cells of the central sinoatrial and
compact atrioventricular nodes, but is rare in normal intact atrial and
ventricular tissues. However, spontaneous diastolic depolarizations
are often observed in isolated Purkinje fibres84 and atrial tissue
excised from diseased human85 –87 and animal88– 90 hearts, and are a
cause of lethal arrhythmias in the infarcted heart.91 The cause of diastolic
depolarization in these cells—which are not normally involved in pace-
making—is unclear. Non-inactivating Na+ current (window or back-
ground Na+ current) is observed in the threshold region for Na+

channel activation in Purkinje fibres.92 This finding is consistent with
reports that a slowly inactivating, lidocaine and tetrodotoxin
(TTX)-sensitive Na+ current contributes to diastolic depolarization of
cardiac Purkinje fibres.92– 94 In ventricular myocytes, late INa was
shown to be present at voltages as negative as 270 mV,95,96 but spon-
taneous activity of ventricular myocytes in the intact heart appears to
be rare in the absence of K+ channelopathies that decrease the resting
potential. Spontaneous diastolic depolarization and the rate of AP
firing of atrial myocytes can be increased and decreased by late INa

enhancers and inhibitors, respectively.77 Late INa was found to be
present in atrial myocytes that undergo spontaneous diastolic depolar-
ization, and ATX-II accelerated diastolic depolarization and induced
rapid firing of APs in these cells.77 The reactive oxygen species H2O2

increases late INa and causes diastolic depolarization and rapid AP
firing of isolated atrial myocytes (Figure 2).77 Atrial myocyte diastolic de-
polarization and AP firing in the absence and presence of H2O2 were
reduced when late INa was inhibited using ranolazine or TTX.77 Voltage-
clamp studies of atrial myocytes demonstrated that an inward current is
activated by a depolarizing ramp pulse and that the ramp-induced
current is blocked by TTX and enhanced by ATX-II, consistent with
its identification as late INa.

77 These findings suggest that late INa is a

cause of spontaneous diastolic depolarization and abnormal automati-
city that may contribute to arrhythmogenesis in atrial myocytes and Pur-
kinje fibres.

5. AP prolongation and EADs
During the AP plateau, membrane resistance is high (i.e. ionic conduct-
ance is low). A modest increase of an inward current such as late INa, or
reduction of an outward current such as IKr, can cause marked AP pro-
longation.81 Late INa is documented to prolong the duration of the
AP.21,81,97–99 Tetrodotoxin and lidocaine inhibit late INa and reduce
the duration of the AP in Purkinje fibres and ventricular myocy-
tes.2,23,43,92,97,99These findings are consistent with the interpretation
that late INa during the AP plateau reduces net repolarizing current
(i.e. repolarization reserve100).

EAD are a primary mechanism of arrhythmic activity and there is con-
siderable evidence that their occurrence is facilitated when late INa is
enhanced and the AP is prolonged. AP prolongation provides time
for L-type Ca2+ channels to recover from inactivation and re-
activate.101– 104 The resulting Ca2+ ‘window’ current may increase pro-
gressively over a range of voltages from 230 to 0 mV to form the
upstroke of an EAD.104,105 Calcium influx leads to increases of subsarco-
lemmal Ca2+, Ca2+-induced Ca2+ release, and Ca2+/calmodulin-
dependent protein kinase II (CaMKII) activity.104 An increase of the
subsarcolemmal Ca2+ concentration drives forward mode NCX.
Forward mode NCX generates inward, depolarizing current that
further contributes to AP prolongation.106– 108 Both forward mode
NCX and late INa (which is increased by CaMKII-mediated Na+

channel phosphorylation) contribute inward current that may be suffi-
cient to overcome outward repolarizing K+ currents and enable an
EAD. Single and burst openings of Na+ channels are reported to
occur at take-off voltages for EADs.24 Indeed, modelling of Purkinje
fibre electrophysiology indicates that late INa is the major inward
current responsible for generation of the EAD in that cell.109 Consistent
with this hypothesis, the late INa enhancer anthopleurin-A increases the
dispersion of repolarization and induces spontaneous tachyarrhythmias
that are triggered by subendocardial Purkinje tissue in the dog heart.110

The increase of late INa that is observed in myocytes isolated from failing
human and dog hearts is associated with a prolonged AP duration,
increased beat-to-beat variability of AP duration, and EADs.23,26 Enhan-
cers of late INa such as ATX-II (Figure 3) and H2O2 cause EADs and
TdP.31,65,79,81,111 EADs are common in mice expressing the LQT3
mutant ‘gain-of-function’ Na+ channel DKPQ.112 In contrast, inhibitors
of late INa reduce occurrences of EADs and TdP in the presence of
H2O2

31,63,113 and IKr blockers.80,114,115 Reentrant and multifocal ven-
tricular fibrillation in aged rat isolated hearts can be induced by rapid
pacing or treatment with H2O2; the late INa inhibitor ranolazine sup-
pressed EADs and the number of foci, and terminated ventricular fibril-
lation in these hearts.113 Inhibition of late INa was recently reported to
markedly shorten AP duration and halve the occurrence of EADs in
myocytes isolated from patients with hypertrophic cardiomyopathy.116

The amplitude of late INa and its contribution to EAD formation
depend on heart rate. Late INa is greater at slow than at fast heart
rates56,72,117 because an increased rate of Na+ channel opening
increases channel inactivation and reduces late INa.

56,72 Reduction of
late INa with increased rate contributes to the normal reverse-rate de-
pendence of AP duration in Purkinje fibres,109 rabbit hearts,72 and myo-
cytes isolated from failing human hearts.56 Slow pacing rates facilitate
long APs and increase late INa and occurrences of EADs and
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TdP.37,72,103 The role of late INa to increase EAD formation and disper-
sion of repolarization is increased by heart rate slowing, and the
pro-arrhythmic risk associated with an increased late INa is high when
heart rate is low.37,118,119

A small increase of late INa that does not cause arrhythmic activity in
the normal heart may do so in the heart with reduced repolarization
reserve. Low concentrations of the late INa enhancer ATX-II increased
the duration of the monophasic AP, but did not cause arrhythmias in
rabbit isolated hearts.79,120 However, late INa facilitated the induction
of EADs by blockers of the rapid (IKr) or slowly (IKs) activating compo-
nents of the delayed rectifier K+ current (Figure 4). When low concen-
trations of E-4031, amiodarone, cisapride, quinidine, moxifloxacin, or
ziprasidone alone caused little or no arrhythmic activity in the isolated
rabbit heart, combinations of these IKr blockers with ATX-II greatly
increased AP duration and caused ventricular tachyarrhythmias.79,120–122

Similarly, in guinea pig isolated ventricular myocytes, low concentrations
of ATX-II, the IKr blocker E-4031, and the IKs blocker chromanol 293B
individually caused small increases of AP duration.81 However, combina-
tions of ATX-II with either E-4031 or chromanol 293B markedly pro-
longed AP duration and induced EADs (Figure 4).81 In patients, drugs
that block IK prolong the QT interval and may induce EADs.123

However, not all patients exposed to these drugs develop arrhythmias.
Genetic analysis revealed that susceptibility to drug-induced long QT
syndromes is linked to SCN5A mutations (e.g. L1825P or Y1102) that
enhance late INa.

124,125 Patients with ‘silent’ Na+ channel gene mutations
had normal QT intervals, but developed long QT syndrome and TdP
when given an IKr blocker such as cisapride or amiodarone.124,125 An
enhanced late INa is therefore a risk factor predisposing to EADs
under both acquired (disease and drug-induced) and inherited (LQT1
and LQT2) pathological conditions. An ideal substrate for generation
of EADs and TdP in the failing and/or hypertrophic heart is present
when late INa is enhanced,26,56 the inward-rectifier K+ current, IK1 is
reduced,126,127 NCX, diastolic Ca2+, and sarcoplasmic reticular Ca2+

sparks are increased,128– 131 repolarizing K+ currents are reduced,123

and spatial and temporal lability of repolarization is prominent.128,132

Inhibition of late INa reduces EADs in ventricular myocytes isolated

from failing and hypertrophic hearts22,26,116 and in left atrial myocytes
from hearts of rabbits with left-ventricular hypertrophy.78 Interestingly,
stem cell-derived cardiomyocytes generated from an LQT3 mouse
model carrying the human DKPQ Nav1.5 mutation recapitulate the
typical pathophysiological DKPQ phenotype, including APD prolonga-
tion and EAD development.133

The contribution of late INa to EAD formation in phase 3 of the ven-
tricular AP is unclear. In phase 3, L-type Ca2+ channel activation and
Ca2+ window current are negligible.62 The more negative membrane
potential during phase 3 relative to phase 2 favours Na+ influx. There-
fore, increases of both late INa and inward Na+/Ca2+ exchange
current134 – 136 may contribute to the upstroke of EADs during phase
3. Rapid recovery from inactivation and reactivation of Na+ channels
is a potential cause of phase 3 EADs and triggered activity.38,137

However, because repolarizing K+ currents during phase 3 are normally
robust unless the extracellular [K+]o is reduced and IK1 is inhibited, it
would appear that depolarizing currents must be large to elicit an
EAD at this time. Depolarizing current flowing electrotonically from
myocytes with long APs to thosewith shorter APs may contribute to ini-
tiation of phase 3 EADs in the intact heart.138 Exacerbation of the large
repolarization gradients that favour current flow between Purkinje
fibres and M cells, on the one hand, and adjacent cells with shorter AP
durations, on the other hand, would favour EAD formation110,139 – 141

and reentrant arrhythmias141 by this ‘extrinsic’ electrotonic mechan-
ism.105 Late INa is inherently greater in Purkinje fibres and M
cells139,142 than in other cells in the heart and contributes to AP pro-
longation and EAD formation in these cells. Enhancement of late INa

enables reentrant AP propagation from these endocardial cells with
long APs to repolarized myocardium.137

6. Intracellular Na1 and Ca21

loading and DADs
Transient depolarizations of the cell membrane that follow repolariza-
tion of a previous AP are referred to as delayed after-depolarizations.

Figure 1 Mechanisms of late INa-induced arrhythmia: EADs, DADs, and spontaneous diastolic depolarization. Not shown, late INa increases spatio-
temporal dispersion of repolarization and facilitates reentrant arrhythmic activity. NCX, Na+/Ca2+ exchange; CaMKII, Ca2+/calmodulin-dependent
protein kinase II.
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DADs of Purkinje fibres have been recognized for .40 years as a
mechanism of digitalis glycoside-induced arrhythmogenesis and non-
reentrant triggered activity.143,144 A transient inward current, ITi, was
found to be responsible for the DAD,144 –146 and inward, forward
mode NCX (i.e. entry of 3Na+ with exit of 1 Ca2+) was identified
as the source of this current.145– 148 ITi and/or DADs have been
observed in Purkinje,144 ventricular,145– 147 atrial,76,149 pulmonary vein
sleeve,150,151 superior vena cava,152 and sinoatrial node153 tissues.
DADs are observed under conditions in which myocytes are relatively
overloaded with Ca2+, causing Ca2+ to be released from multiple
sarcoplasmic reticulum sites into the cytoplasm during diastole;154 this
increase of cytoplasmic Ca2+ leads to aftercontractions and forward
mode NCX that generates transient inward current and a
DAD.101,144,147,148,155 – 157 Events that promote a combination of an
increase of the intracellular Na+ concentration, increased Ca2+ influx

(e.g. rapid pacing, catecholamines, block of IKs), decreased Ca2+ efflux,
opening of sarcoplasmic reticulum Ca2+ channels (i.e. ryanodine recep-
tors), and reduced outward K+ current (e.g. IK1) during diastole act to
facilitate DADs.

The role of late INa in DAD generation is not as a source of inward
current, as that is provided by forward mode NCX, but rather to ‘set
the stage’ by increasing cellular Ca2+ loading via reverse mode NCX
(Figure 1). An increase of late INa can increase the intracellular, subsarco-
lemmal Na+ concentration, thereby increasing Ca2+ entry via reverse-
mode NCX (3 Na+ out, 1 Ca2+ in) during the AP plateau.45,47,48,56,158

The contribution of late INa to Na+ and Ca2+ loading has been referred
to as an intrinsic digitalis-like effect.12,26,159 Like digitalis, late INa-
mediated Na+ loading (i) may increase Ca2+ entry into the cell, and
Ca2+ uptake by sarcoplasmic reticulum, (ii)increase diastolic Ca2+ and
reduce the rate and extent of diastolic relaxation, and (iii) give rise to

Figure 2 Hydrogen peroxide (H2O2, 50 mM) and anemone toxin-II (ATX, 5 nM) increase late INa and induce diastolic depolarization in guinea pig atrial
myocytes. (A) Four proposed mechanisms for diastolic depolarization: decay of the delayed rectifier current, IK; an increase of T-type Ca2+ current, ICa(T);
an increase of forward mode Na+/Ca2+ exchange current, INCX; and an increase of late INa. (B) Induction by H2O2 of diastolic depolarization and rapid
spontaneous firing in a quiescent atrial myocyte. (C ) H2O2-induced spontaneous firing was terminated by tetrodotoxin (TTX, 1 mM). (D) Spontaneous
action potential firing of an atrial myocyte was accelerated by ATX. The effect of ATX was attenuated by ranolazine (Ran, 10 mM). (E) Inward late INa

in an atrial myocyte was activated by simulating diastolic depolarization using a ramp voltage clamp. H2O2 increased whereas TTX decreased the amplitude
of late INa. (F ) ATX enhanced whereas Ran inhibited inward late INa activated by ramp voltage clamp pulses. pA, picoamperes; mV, millivolts.
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Ca2+ release from the sarcoplasmic reticulum during diastole, and DAD
formation (Figure 1).12,47,56,63,65 An increase of late INa prolonged the
Ca2+ transient and induced spontaneous Ca2+ waves during rapid
pacing of rat isolated hearts.160 Exposure of myocytes to late INa enhan-
cers provokes DADs.27,63,76,161,162 The transient inward current ITI and
both DADs and DAD-dependent triggered activity can be induced by
ATX-II in guinea pig atrial myocytes.76 DADs induced by cardiac glyco-
sides or other interventions are suppressed by inhibitors of Na+ chan-
nels and late INa, including TTX, lidocaine, mexiletine, R56865, and
ranolazine.63,65,76,162– 164 Inhibition of late INa has also been shown to
decrease the incidence of DADs in studies of pulmonary vein and super-
ior vena cava sleeves,152 and in myocytes from hearts of patients with
hypertrophic cardiomyopathy.116 These findings implicate increased
Na+ entry into myocytes via Na+ channel late INa as a cause of DADs.
Inhibition of late INa is a means of reducing occurrences of DADs.

A positive feedback loop between the amplitude of late INa and the
activity of CaMKII appears to contribute to DAD formation and arrhyth-
mogenesis. An increase of late INa can lead to myocyte Ca2+ loading and

activation of CaMKII.46 CaMKII phosphorylates sodium channel sites in
the intracellular linker between domains 1 and 2, and this increases
late INa.

165 –169 CaMKII also phosphorylates cardiomyocyte ryanodine
receptor II (RyR2), which increases RyR2 sensitivity to SR Ca2+-induced
opening.170 This facilitates more frequent and larger releases of Ca2+

from the SR (i.e. sparks) during diastole,170 and leads to Ca2+ waves
and DAD generation.171 Thus increases of late INa and activity of
CaMKII increase SR Ca2+ loading and SR Ca2+ release, respectively;
together they create a substrate for DAD-induced arrhythmias.

7. Late INa, dispersion of
repolarization, and reentry
The mechanism of reentrant arrhythmia involves unidirectional block
and conduction around a circuit long enough to enable recovery of ex-
citability at each point in the circuit before the wave of excitation
returns.172 Acquired or congenital conditions that exacerbate normal

Figure 3 Anemone toxin-II (ATX, 10 nM) induced EADs and enhanced late INa in guinea pig atrial myocytes; these effects were attenuated by either
ranolazine (Ran) or tetrodotoxin (TTX). (A) ATX induced EADs and sustained triggered activity. (B and C ) ATX-induced EADs were suppressed by
either 10 mM Ran or 2 mM TTX. (D and E) ATX increased the late INa activated by square voltage clamps from 290 to 220 mV in a ventricular
myocyte. The effect of ATX was attenuated by either 10 mM Ran or 10 mM TTX. nA, nanoamperes; mV, millivolts.
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regional differences in duration of the APand the time sequence of repo-
larization in the heart create a substrate for reentry.137,173,174 Electrical
and/or structural heterogeneity of repolarization, excitability, and con-
duction among adjacent regions of myocardium are associated with
EADs, TdP, and reentrant arrhythmic events.174 –178 Results of compu-
tational modelling studies indicate that increased spatial and temporal
dispersionof AP duration and repolarization time act to increase suscep-
tibility to reentrant arrhythmic activity.179,180

Late INa contributes to the regional differences of AP duration and
repolarization in myocardium. Differences in the density of late INa in
various cell types (i.e. Purkinje fibre, M cell . endo . epicardium)2,7,142

contribute to transmural differences in AP duration (Figure 5). An in-
crease of late INa can prolong APD more in some cells than others,
thereby increasing dispersion of repolarization and providing a potential
substrate for reentry.AnATX-II induced increase of late INa increasesAP
duration more in M and Purkinje cells than in epicardium, and increases
transmural dispersion of repolarization time; these effects are attenu-
ated by inhibition of late INa with mexiletine or tetrodotoxin.7,80,181,182

Augmentation of late INa with ATX-II in canine left-ventricular wedge
preparations leads to reentrant arrhythmias.80,182 The late INa enhancers
anthopleurin-A and veratridine also cause EADs and reentrant arrhyth-
mias in intact isolated guinea pig and rabbit hearts, respectively.183,184

Reduction of late INa decreased transmural dispersion of repolarization

and suppressed TdP in canine and rabbit experimental models of LQT1,
LQT2, and LQT3 syndromes.16,79,80,115,185

An increase of late INa also increases the beat-to-beat (temporal)
variability of AP duration and repolarization (Figure 5) in isolated myo-
cytes23,81 and intact hearts.115 Late INa and repolarization variability are
especially enhanced in myocytes isolated from failing hearts, and re-
duction of late INa reduces the beat-to-beat variability of AP duration
in these cells.26,65 Reduction of late INa by ranolazine decreased the
beat-to-beat variability of repolarization caused by treatment of
rabbit isolated hearts with the IKr blocker E-4031,115 and the rate de-
pendence of pacing-induced alternans of the beat-to-beat Ca2+ transi-
ent amplitude in rat isolated hearts treated with ATX-II.160 The
magnitude of T-wave alternans, which is believed to reflect the spatio-
temporal heterogeneity of ventricular repolarization, was suppressed
by ranolazine in intact pigs subjected to acute coronary stenosis.186

During ventricular fibrillation, dynamic beat-to-beat heterogeneity of
AP duration (i.e. alternans) is a major contributor to wave break, a
process in which new waves of reentrant excitation are continually
formed, thus sustaining fibrillation.187 The effect of ranolazine to
reduce beat-to-beat variability of AP duration may reduce wave
break and reentrant activity,113 and explain the many clinical and ex-
perimental findings that the drug reduces the incidence and duration
of arrhythmias.7,9,13,14,16

Figure4 Synergistic effects of the late INa enhancerATX-II (3 nM)witheither the IKr blockerE4031 (1 mM)or the IKs blockerchromanol293B (30 mM)to
prolong the action potential duration (APD) and induce early afterdepolarizations. The combined effects of ATX-II and E4031 or 293B were attenuated by
ranolazine (10 mM) (C and G). Data summarized in (D) and (H). Each bar represents the value (mean+ SEM) of a percentage increase of APD50. *P , 0.05
vs. ATX-II, E4031, or 293B alone; †P , 0.05 vs. ATX-II plus E4031 or ATX-II plus 293B. The duration of drug treatment was 3 min. C, control (absence of
drug); A, ATX-II; E4, E-4031; C293B or CB, chromanol 293B; Ran, ranolazine.
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8. Models of late INa-induced
arrhythmogenesis
Experimental animal models for study of the arrhythmogenic effects of
enhancing late INa include rabbit,120 –122,184 guinea pig,79,81 and rodent
isolated hearts,64,71,160 intact pigs,186 and dog isolated left-ventricular
wedge preparations.80 Late INa is enhanced in myocytes of dogs and
humanswithheart failure,23–26by toxins suchasATX-II,81,111veratridine,71

and aconitine,159,161 by ischaemia8,27–29,70 and oxidative stress,31,50,63 and
by activation of various kinases including CaMKII165 – 169 (Table 1).
Among the inherited gain-of-function NaV1.5 channelopathies that are
causes of LQT3, the best-studied is DKPQ, a deletion of 3 amino acids
in the putative inactivation gate of the Na+ channel.3,4,118 Mice expres-
sing heterozygous knock-in DKPQ Na+ channels experience cardiac
arrhythmias including TdP and have been used to investigate underlying
mechanisms of late INa-associated arrhythmogenesis, including EADs,
pause-induced DADs, AP prolongation with increased dispersion, and
APD alternans.112,119,188 – 190 Major limitations of rodent models of
LQT3 as guides to an understanding of the consequences of increas-
ing/decreasing late INa in human myocardium include the higher intracel-
lular Na+ concentration in the rodent cardiomyocyte and therefore a
reduced role of Na+ entry in the regulation of Ca2+ handling,48,49 and
the difficulty of assessing drug effects and channel function in hearts
whose APs are so different in shape and duration as those in mouse
and man. Both Na+ channel function and drugs actions are heart rate-
and voltage-dependent, and Na+ channel drugs have non-specific

actions on other ion currents whose amplitude and roles differ in
human and rodent hearts.

9. Conclusion and perspectives
Late INa is a small inward current that reduces repolarization reserve and
prolongs the duration of the AP in cardiac myocytes. Physiological roles
for late INa-mediated Na+ loading to contribute to the normal inotropic
state and for late INa-induced AP prolongation to increase the effective
refractory period and decrease reentry are theoretically possible but
have not been adequately investigated. The amplitude of late INa is
increased in many pathological conditions, where it contributes to
atrial and ventricular arrhythmogenesis. An increase of late INa due to
acquired or inherited Na+ channelopathies abnormally prolongs repo-
larization and increases the influx of Na+, and via NCX, Ca2+ into the
cell. Late INa and NCX-mediated Ca2+ loading increase diastolic force
production. AP prolongation and Na+/Ca2+ loading cause CaMKII acti-
vation andelectrical instability. Enhancement of late INa may lead toauto-
maticity, early and delayed afterdepolarizations, and Ca2+ and AP
alternans that facilitate arrhythmias by triggered and reentrant mechan-
isms. Drugs that reduce late INa have been shown to reduce EADs,
DADs, Ca2+ handling defects, and arrhythmias. Interactions between
late INa, CaMKII, RyR2, and oxidative stress have been demonstrated,
and their potential pathological roles in ischaemic heart disease, heart
failure, and arrhythmias are subjects of current and future investigation.

Figure 5 Spatial (A) and temporal (B) differences in the duration of the action potential (APD) create a substrate for reentrant arrhythmias. Reprinted
from Belardinelli et al.140 and Undrovinas et al.65
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