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ABSTRACT

Motivation: Tissue samples of tumor cells mixed with stromal cells

cause underdetection of gene expression signatures associated with

cancer prognosis or response to treatment. In silico dissection of

mixed cell samples is essential for analyzing expression data gener-

ated in cancer studies. Currently, a systematic approach is lacking to

address three challenges in computational deconvolution: (i) violation

of linear addition of expression levels from multiple tissues when log-

transformed microarray data are used; (ii) estimation of both tumor

proportion and tumor-specific expression, when neither is known a

priori; and (iii) estimation of expression profiles for individual patients.

Results: We have developed a statistical method for deconvolving

mixed cancer transcriptomes, DeMix, which addresses the aforemen-

tioned issues in array-based expression data. We demonstrate the

performance of our model in synthetic and real, publicly available,

datasets. DeMix can be applied to ongoing biomarker-based clinical

studies and to the vast expression datasets previously generated from

mixed tumor and stromal cell samples.

Availability: All codes are written in C and integrated into an R func-

tion, which is available at http://odin.mdacc.tmc.edu/�wwang7/

DeMix.html.
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1 INTRODUCTION

Solid tissue samples frequently consist of two distinct compo-

nents, glandular epithelium and its surrounding stroma.

Traditional analytic approaches that ignore the presence of

tissue heterogeneity may suffer from inaccurate transcriptional

profiling and are likely to miss important genes that are related

to shaping cancers. To remove heterogeneity in tumor samples,

researchers can use laser capture microdissection (Emmert-Buck

et al., 1996) to physically isolate the different tissue components.

However, this technique is time-consuming, costly and requires

special equipment that is not available at all institutes. Thus, it is

of substantial interest to isolate expression data from mixed sam-

ples in silico.
In biomarker-based clinical trials, microarray gene expression

data are actively studied to profile transcriptions of hundreds of

cancer patients (Tsao et al., 2012). Current methods for dissect-

ing array-based expression data (Abbas et al., 2009; Clarke et al.,

2010; Erkkilä et al., 2010; Ghosh, 2004; Gosink et al., 2007; Lu

et al., 2003; Qiao et al., 2012; Stuart et al., 2004; Tothill et al.,

2005; Venet et al., 2001; Wang et al., 2006) are limited in their

application to actual data for the three following reasons.
First, existing methods assume a linear mixture of expression

levels, as presented by log-transformed data. This assumption,

recently shown to be invalid, can distort the estimation of tissue-

specific expressions (Zhong and Liu, 2011). We describe this

linear assumption by AX¼B, where A is a matrix of individual

tissue-specific expression, X is a vector of mixture proportions

and B is a vector of observed expressions. Zhong and Liu (2011)

showed that raw measured data should be used for input B.

When log-transformed fluorescent intensity data are used in-

stead, the output A is underestimated. The convention of using

log-transformed expression data started because such data were

shown empirically to follow a normal distribution (Carvalho

et al., 2007), which is straightforward for model building and

parameter estimation. No available model-based methods are

designed to analyze data from heterogeneous tumor samples

before the data are log-transformed.

Second, the available methods do not provide a practical way

to jointly estimate both tissue proportions (X) and tissue-specific

expressions (A). Most methods require good knowledge of one of

these measures. The tissue-specific expressions (A) can be derived

from a set of genes with known expression profiles in all consti-

tuting tissue types (Lu et al., 2003; Qiao et al., 2012) or from a set

of genes that show significant enrichment in one of the tissue

types (Tothill et al., 2005; Wang et al., 2006). Other methods

focus on deconvolution of gene expressions based on known

tissue proportions (Erkkilä et al., 2010; Ghosh, 2004; Shen-Orr

et al., 2010; Stuart et al., 2004). Erkkilä et al. (2010) implemented

a Bayesian model to assess the tissue proportions as well as gene

expression levels, using strong previous information on the pro-

portions. Qiao et al. (2012) took reference profiles from all tissue

components and allowed for adjustments in tissue-specific ex-

pression levels from the reference profiles. Clarke et al. (2010)*To whom correspondence should be addressed.
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developed a geometry-based method to estimate mixture propor-

tions without knowledge of all tissue-specific expressions, which

directly improved the method of Gosink et al. (2007), but did not

deconvolve individual gene expressions.
Third, previous methods have focused on estimating the mean

tissue-specific expressions for each gene and thus are not applic-

able to estimating individual expression levels in each sample and

each gene. Methods for in silico dissection of individual gene

expression profiles are urgently needed. It is straightforward to

compute these individual profiles in a matched design, where the

mixed sample and one pure tissue sample are obtained from the

same individual. In a more commonly observed unmatched

design, where tissue samples are derived from mixed and pure

tissues from different individuals, no methods are available to

deconvolve these individual profiles, yet downstream biomarker

analyses depend on the accuracy of these profiles.
To bridge the gap from current methods to actual applica-

tions, we propose a statistical approach for deconvolving

mixed cancer transcriptomes, DeMix. Our method supports the

analysis of mixed tissue samples under four data scenarios, with

or without reference genes, and with a matched or unmatched

design. Here, reference genes are a set of genes for which expres-

sion profiles have been accurately estimated based on external

data in all constituting tissue types. We anticipate that DeMix

can broaden the investigation of mixed samples and increase the

accuracy of downstream transcriptome analysis. The rest of this

article is organized as follows. In Section 2, we briefly explain the

general framework of DeMix and describe four strategies in

detail. In Section 3, we conduct a simulation study and a valid-

ation study using publicly available data. We provide concluding

remarks and potential extensions of our method in Section 4.

2 METHODS

We let Nig and Tig denote the expression level for a gene g, g ¼ 1, . . . ,G

from the pure normal and tumor tissues, respectively, which are derived

from sample i for i ¼ 1, . . . ,S. We do not observe the pure tumor ex-

pression Tig. Instead, we observe Yig, which denotes the expression level

of a clinically derived tumor sample i for gene g. We let �i denote the

proportion of tumor tissue in sample i, which is also unknown. We write

a linear equation on the raw measured data as

Yig ¼ �iTig þ ð1� �iÞNig: ð1Þ

Here, the �i for sample i represents the proportion of cells in tumor

tissues, which remains the same across genes. We further assume that

Nig � LNð�Ng, �
2
NgÞ and Tig � LNð�Tg, �

2
TgÞ where LN represents

log2 Normal distribution because the log2 transformed data were

shown to empirically follow a normal distribution (Carvalho et al., 2007).

The fundamental challenge of deconvolution is how we predict T ’s,

given that we observe the Y’s and N’s without previous information on

the T’s and �’s. If only a single sample were available, this would be an

unsolvable problem, as both �’s and T’s are unknown. However, simul-

taneous analysis of several samples can teach us: to what extent a gene is

component specific, in which component a gene is likely to be expressed

more or less, and how variable a gene is across samples. These elements

allow us to make predictions on the �’s and T’s. Note that the roles of

tumor and normal tissues can be swapped, i.e. we can observe the pure

tumor expression T’s and make inference about the unobserved N’s from

the heterogeneous sample Y’s. Another challenge lies in the distribution

of Y, which does not follow a log2 Normal distribution when both Nig

and Tig follow a log2 Normal distribution. With this in mind, our method

mainly consists of two steps: (i) given the Y’s and the distribution of the

N’s, we search for a set of f�,�T, �
2
Tg that maximize the likelihood of

observing Y; (ii) given the �’s and the distributions of the T’s andN’s, we

estimate an individual pair of (T, N) for each sample and each gene.

Below, we describe these steps for specific data scenarios.

2.1 Data scenario 1: unmatched tumor and normal

samples, without reference genes

This is a general and common data scenario. We observe Yig, i ¼ 1, . . . ,S

and a set of unmatched observations of normal samples. We first obtain

the sample mean and variance (�̂Ng, �̂
2
Ng) under the log2 Normal distri-

bution for the normal tissue samples. This allows us to initialize nig, which

cannot be observed from the unmatched samples (see the Appendix for

details). Unlike a mixture of normal distributions generating a normal

distribution (for log-transformed data), the distribution of Y as a mixture

of two log2 Normal distributions does not have a closed form. We, there-

fore, estimate �i and tig as follows.

(1) Obtain an optimal set of f�̂ig
S
i¼1 along with f�̂Tg, �̂

2
Tgg using the

Nelder–Mead procedure (Nelder and Mead, 1965). This set should

maximize the likelihood for observing the expression levels Y ’s, i.e.QS
i

QG
g fYig
ðyigÞ (see the Appendix for details).

(2) Given yig, �̂i, �̂Ng, �̂Tg, �̂
2
Ng, �̂

2
Tg, we further deconvolve yig into nig

and tig. The values of tig and nig are reconstituted gene expression

levels of pure tumor and normal tissue corresponding to subject i

and gene g. Given �̂i, we can write nig as a function of yig and tig.

We search for a value of tig that is most likely to be presented given

the LN distributions of N and T (see geometric illustration in

Supplementary Fig. S1):

argmaxtig�ðtigj�̂Tg, �̂
2
TgÞ�

yig � �̂itig
1� �̂i

j�̂Ng, �̂
2
Ng

� �
ð2Þ

where �ð�j�, �2Þ is a log2 Normal density with corresponding mean � and

variance �2.

Our algorithm initializes nig and iterates (usually a couple of times)

between Steps 1 and 2 (nig is updated using t̂ig), until the change in t̂ig
between two consecutive iterations is51%.

2.2 Data scenario 2: matched tumor and normal samples,

without reference genes

We do not need to initialize a known nig, and can replace Step 2 with

t̂ig ¼ fyig � ð1� �̂iÞnigg=�̂i: ð3Þ

We estimate �̂i by following the same steps described in Section 2.1.

The t̂ig can have negative values for some genes, in which case we set tig at

0 and exclude these genes from the likelihood computation.

2.3 Data scenario 3: unmatched tumor and normal

samples, with reference genes

We derive the tumor expression level distribution (with �̂Tg and �̂
2
Tg) for a

reference gene set, as denoted by G0. Then under the linear relationship

(1), we follow procedures as described in Section 2.1, except for the

Nelder–Mead optimization procedure in Step 1. Instead, to estimate �i,

we do the following:

argmin�i

X
g2G0

fyig � ð1� �iÞnigg=�i � �̂Tg

�� ��= ffiffiffiffiffiffiffi
�̂2Tg

q
, ð4Þ

where k � k is a L1 norm.
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2.4 Data scenario 4: matched tumor and normal samples,

with reference genes

This is a most desirable but uncommonly observed data scenario. We first

estimate �̂i using Equation (4) given �̂Tg and �̂2Tg for a set of reference

genes, then estimate t̂ig using Equation (3).

2.5 Methods for comparison

For comparison purposes, we implemented a linear model (LM) for the

log-transformed data. This model estimates tumor proportions and gene

expressions by assuming a normal distribution on the normal, tumor and

mixed tissue samples. Following a similar procedure as in DeMix, we

estimated associated parameters, as they maximize the likelihood of

observing the log2-transformed expression values from the mixed tissue

samples (see the Appendix for details). In addition, we present results

based on a non-mixture model (NM), which ignores tumor heterogeneity

(� ¼ 1 for all tumor samples).

2.6 Uncertainty measure

We applied a standard bootstrap method (Efron, 1979) to estimate the

uncertainty on the tumor proportion estimates �̂i. Given the set of genes

used for deconvolution, e.g. all genes denoted by G or reference genes

denoted by G0, we sampled these genes with replacement for m times

(m¼ 50) and obtained a set of estimates for each experiment:

fb�ð1Þ, . . . ,b�ðmÞg. Then, we calculated the standard deviations of b� as

standard errors.

3 RESULTS

3.1 Simulation

We used simulation to assess the performance of our approach in

estimating unobserved tissue proportions and reconstituting un-

observed tissue-specific expressions. Deconvolutions in matched

designs with or without reference genes and in unmatched de-

signs with reference genes are reported in the Supplementary

Materials (Supplementary Figs S2–S4). Here, we present results

from the unmatched design without reference genes (Section 2.1).
We simulated datasets as follows: 20 samples, 10 of pure

A-type and 10 of mixed tissues. For the 10 mixed tissue samples,

we assigned B-type tissue fractions, �is, at evenly spaced values

from 0.1 to 0.9. In each sample, we simulated expression levels

for 2000 genes and randomly selected 25% (500 genes) to be

differentially expressed (DE) when comparing A-type with B-

type samples. We assumed the expression levels to follow

log2 Normal distributions with mean and variance as follows.

For A-type tissues, a vector consisting of means

�Ng, g ¼ 1, . . . , 2000 was generated independently from

Nð7, 22Þ. For DE genes in B-type cell samples, the means of

the A-type tissue samples were added by �g, g ¼ 1, . . . , 2000,

where we generated �g � Nð4, 1:52Þ. For non-DE genes, �gs
were sampled from Nð0, 0:22Þ. Across 10 pairs of A and B-type

tissue samples, the sample-wise standard deviation at a given

gene was set at 0.2. Then, we mixed the 10 A-type and B-type

tissue sample expressions linearly at assigned proportions based

on Equation (1). By doing so, we created 10 heterogeneous sam-

ples along with 10 observed A-type tissue samples. The 10 B-type

tissue samples were hidden and used for validation. We repeated

this procedure to generate 200 replicate datasets.

In Figure 1, we present results of the biases and mean-squared

errors (MSEs) with respect to our estimation of B-type tissue

proportion �is. Compared with LM, DeMix resulted in substan-

tially smaller biases and MSEs. LM performed worse at estimat-

ing proportions as the true proportion decreased. In contrast,

DeMix performed well across all values of �. This uniformity

in performance is desirable because the actual tumor proportions

will be unobserved in real data. As an example, at � ¼ 0:1, we

observed biases of 0.02 for DeMix and 0.28 (14-fold larger) for

LM; at � ¼ 0:9, the bias was 0.02 for both DeMix and LM.
To evaluate how well DeMix reconstituted the B-type tissue

expression level, we used an integrated relative mean-squared

error (IRMSE) to quantify the discrepancy between the true

Fig. 1. Simulation results for data scenario 1. Shown are estimates of

biases, MSEs and IRMSEs based on the DeMix and LM, for mixed

samples at assigned B-type tissue proportions (�0s) varying from 0.1 to

0.9. For IRMSE, we also present results from the NM model
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expression (tig) and the estimated pure tissue expression (t̂ig) for

sample i and gene g:
IRMSE ¼

P
i
1
G

PG
g
ðtig�t̂igÞ

2

t2
ig

: We estimated t̂ig using DeMix,

LM and NM, respectively. Figure 1 shows that our approach

outperformed the LM and NM in estimating pure gene expres-

sions. Again, as the actual B-type tissue proportion increased to

a value close to 1, the LM and even the NM (no deconvolution)

provided gene expression levels close to the truth. This suggests

that DeMix provides the best improvement when analyzing het-

erogeneous samples with low to medium tumor proportions.

Without knowledge of the true gene expression levels, however,

we cannot obtain information on tumor proportions a priori,

which vary across samples. When the true B-type tissue propor-

tion was low, the LM performed better than the NM, but at a

degree that was not comparable with the performance of DeMix.

The monotonic trend in the bias from the LM can be explained

by our simulation settings. Here, we assume all differentially ex-

pressed genes were overexpressed in the tumor tissue as com-

pared with the normal tissue. When all tumor tissue

expressions are underexpressed compared with the normal

tissue expressions, however, this trend can be reversed

(Supplementary Tables S2 and S3).

3.2 Data example

To validate our method using real data under data scenario 1

(Section 2.1), we analyzed four public gene expression datasets,

which are generated by artificially mixing tissues at varying

proportions.

� We downloaded dataset GSE19830 from the GEO website

(http://www.ncbi.nlm.nih.gov/geo/). This dataset was origin-

ally generated from rat microarray experiments (Shen-Orr

et al., 2010) with Affymetrix Rat Genome 230 2.0 Arrays

and consists of 12 mixed samples of liver and brain tissues in

four proportions (Supplementary Table S1) and 3 samples

each from pure liver and brain tissues.

� We obtained two datasets within GSE5350 from GEO:

Affymetrix Human Genome U133 Plus 2.0 arrays generated

by the MicroArray Quality Control (MAQC) project

(MAQC Consortium, 2006). The RNA samples consist of

isolated 100% Stratagene Universal Human Reference

RNA (A) and 100% Ambion Human Brain Reference

RNA (B) and their mixtures in varying proportions. Ten

samples were processed using Affymetrix platform

(Affymetric Inc., 2012), and 10 samples were processed

using Illumina platform (Illumina Inc., 2009) denoted as

MAQC sites 1 and 3, respectively.

� We downloaded Affymetrix array data from http://www.

affymetrix.com/support/technical/sample_data/gene_1_0_

array_data.affx. This dataset consists of samples with varying

proportions of human brain and heart tissues.We selected 18

samples with proportion ratios of 0/100% (three samples),

25%/75% (three samples), 50%/50% (six samples), 75%/

25% (three samples) and 100%/0 (three samples).

To summarize the probe intensities in all datasets, we used the

robust multi-array averaging (RMA) procedure (Irizarry et al.,

2003), as implemented in R (R Development Core Team, 2009)

and bioconductor (http://www.bioconductor.org). To maintain

computational efficiency and remove probes with high

background noise, we selected a subset of genes to be analyzed

by DeMix. We required the mean expression levels of these genes

in pure normal tissue samples to be in the upper quartile of the

expression levels of all genes. This provided us with 7000–14 000

probesets across all datasets.
With pre-processed raw measured data, we confirmed that

assuming a linear mixture on the data before they are log-trans-

formed is appropriate, as compared with assuming it on the

log-transformed data. This can be done when we know T, N

and Y, from which we derive � ¼ Y�N
T�N. Specifically, in dataset

GSE19830, we compared the differences in transcript abun-

dances between the pure liver and brain tissues (T–N), with dif-

ferences between the mixed and brain tissues (Y- N), both at the

original scale (Fig. 2a) and at the log 2 scale (Fig. 2b). The linear

relationship AX¼B fits well with the raw measured data, with a

few deviations in genes at extreme values, e.g. at jT�Nj45000.

In the log-scale data, however, the linearity assumption does not

hold when the abundance ratio between two tissues is42-fold.
First, we evaluated how well DeMix estimated tissue propor-

tions in these datasets (Fig. 3). Without using previous know-

ledge of tissue-specific expression from both components of the

mixture, as in other methods (Shen-Orr et al., 2010), DeMix

correctly estimated the unknown tissue proportions with a cor-

relation coefficient, r, of 0.98. In contrast, LM consistently over-

estimated the tissue proportions, likely because of the concavity

property of log functions, as explained by Zhong and Liu (2011).

Of 47 samples, all estimates from GSE19830 and MAQC site 1

presented 95% confidence intervals that included the truth, or

less often, with one boundary 1–2% away from the truth (see

also Supplementary Table S1). We observed three samples from

(a)

(b)

Fig. 2. Scatter plots of transcript abundance in mixed-sample expressions

minus brain expressions (Y–N) versus pure liver expressions minus pure

brain expressions (T–N) at two different mixing rates for (a) log-trans-

formed data; (b) raw measured data
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Affymetrix and two samples from MAQC site 3 that presented

overestimated proportions. The first overestimation was likely

caused by deviation from the linearity assumption, which we

diagnosed using scatter plots of (T–N) versus (Y–N)

(Supplementary Fig. S5). With the normalized raw measured

data, we still observed a curvature in the three samples, with

many data points at both extremes of the (Y–N) values unevenly

distributed on top of an expected line of 25% (the true propor-

tion). The second overestimation was likely caused by issues in

data quality. We compared the MA plots of all five samples

generated at the same proportion of 25% for the MAQC site 3

data (Supplementary Fig. S6). We observed larger variations in

probe intensities for samples 1 and 3 compared with those of the

other three samples (respective inter-quartile ranges of 0.19 and

0.18 versus 0.06, 0.08 and 0.05). We obtained similar results

when analyzing the four datasets with probesets presenting ex-

pression levels426 in the normal samples (35–49% of all probe-

sets, Supplementary Fig. S7). We observed overestimation in

tissue proportions in the same five samples.
Next, we examined how well DeMix reconstituted pure tissue-

type expressions at four different proportions using the

GSE19830 data as an example. As shown in a heatmap

(Fig. 4a), DeMix removed mixed-in gene expressions from

brain tissue samples at different mixture proportions. It provided

individual gene expression levels from pure liver tissue that are

more homogeneous across 12 samples than they were before

deconvolution, and more similar to the actual gene expressions

in pure liver tissue. Figure 4b shows the estimated expressions

from pure liver tissue are highly correlated with the true expres-

sions (correlation coefficient r40:88). Within each sample, we

achieved greater accuracy when the gene expression levels were

high for pure samples, as low expression levels may be

(a)

(b)

Fig. 4. Estimation of gene expression values of hidden tissues from

GSE19830. (a) Heat map of expression values from selected genes

across samples. The proportions of liver tissue are shown at the

bottom. A total of 1323 genes were randomly selected. The samples,

left to right, are 3 pure brain samples (observed), 12 liver-brain mixed

samples (observed), 12 deconvolved liver samples (unobserved; estimated)

and 3 pure liver samples (unobserved; used for comparison). (b) Scatter

plots comparing deconvolved mean liver tissue expression levels with

observed mean pure liver expression levels at four different mixture pro-

portions of brain tissues

(a)

(b)

Fig. 3. Estimation of proportions of hidden tissues from four available

data sources. MAQC1: MAQC site 1, MAQC3: MAQC site 3,

AFFY:Affymetrix, and GSE19830. (a) Estimated tissue proportions

versus true proportions; black represents the DeMix estimates; gray rep-

resents LM estimates. (b) Estimated 95% confidence intervals of �̂’s; solid

lines correspond to true �’s
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overrepresented by a high level of background noise. We ob-

tained similar results from the other three datasets, and lower

correlation coefficients in samples where the proportion esti-

mates were significantly different from the truth (Supplementary

Fig. S8).

Finally, we illustrated the use of DeMix in finding DE genes,

again using the GSE19830 dataset as an example. Figure 5 shows

the number of significant genes (found by a two-sample t-test)

between liver and brain tissue samples at varying cut-offs of the

P-values (Bonferroni corrected). At an initial cut-off of 0.05,

DeMix-based deconvolution found 4774 DE genes, which was

�1.3 times more than those found by LM (3598) and 9 times

more than those found by NM (523). We also directly compared

the observed pure brain and pure liver tissue samples. Given a

relatively small sample size (3 versus 3, as compared to 12 versus

3 from mixed samples), we found only 1900 genes, 2.5 times

fewer than the amount found with DeMix. Even though these

1900 genes largely overlapped with the 4774 genes found by

DeMix, the different sample size, and hence the different statis-

tical power, prohibited us from using these 1900 genes as truth.

The issue of small sample size is also supported by an observa-

tion that at a P-value cut-off of �0.001, the NM (not considering

heterogeneity) yielded a higher number of DE genes than the

‘pure’ samples. As we lowered the cut-off on P-value, we

found more DE genes with DeMix. We tested the homogeneity

among 12 deconvolved samples by performing two-sample t-tests

between six randomly selected deconvolved samples against the

remaining six samples. At a P-value cut-off of 0.05, we did not

find any significant DE genes. These results suggest that DeMix-

based deconvolution is able to make mean differences more dis-

tinct between two tissue samples and reduces variances across all

single tissue samples (Fig. 4a), both of which contributed to

increasing the power of detecting DE genes.

4 CONCLUSION

We have presented a novel statistical method, DeMix, for com-

putational dissection of gene expression levels from mixed tissue

samples, and in particular, for microarray data generated from

cancer patient samples. Our method addresses three existing

problems for in silico dissection: (i) model-based analysis of

raw measured data that follow a log2 Normal instead of a

normal distribution; (ii) estimation of both tissue proportions

and tissue-specific expression levels; and (iii) reconstitution of

patient-specific gene expressions. We also provide uncertainty

measures on estimated tissue proportions. DeMix provides prac-

tical solutions by requiring knowledge of gene expression of one

tissue type, which does not have to be matched, i.e. derived from

the same sample. Our solutions vary according to data scenarios,

to take advantage of all the available information. Both simula-

tion studies and analysis of actual data highlight the importance

of following a linear mixture of gene expression levels on data

before they are log-transformed, for which DeMix is the first

method to do so. Our validation study showed that DeMix per-

forms accurately on expression data generated from both

Affymetrix and Illumina platforms. Our method can be applied

to analyzing newly generated expression data from biomarker

studies, as well as to re-analyzing data generated from previous

studies.
Our method is useful when there is little information on gene

expression levels in one of the mixing components, and at the

same time the mixing proportions, which could be obtained from

other sources such as pathologist estimates or from DNA copy

number data (Yau et al., 2010), are not available. We do not

require knowledge of reference genes. However, when such

knowledge is available, we have provided an alternative solution

to take advantage of the information. Even though our algo-

rithm requires a minimum of one gene as a reference gene, we

recommend using at least 5–10 genes to alleviate the potential

influence from outliers and to identify an optimal set of �s.
DeMix uses expression levels from thousands of genes to esti-

mate each � and is, therefore, robust to perturbations in the

expression of a minority of genes, arising from interaction with

surrounding tumor cells. DeMix can also use a list of selected

genes that are not affected by the tumor, when available, for the

estimation of proportions. If cell proportions are estimated reli-

ably, they can also be used to estimate mean expression levels in

both normal and tumor tissues for potentially perturbed genes,

based on the linear relationship AX ¼ B on raw measured data.

When reference genes are considered, DeMix performed simi-

larly or better than PERT (Qiao et al., 2012) in estimating

tissue proportions with our validation data (Supplementary

Figs S9 and S10).
Our estimation procedure under matched or unmatched sam-

ples with reference genes is computationally efficient. On a PC

with a 2.2GHz Intel Core I7 processor, the computation of our

simulation data consisting of 20 matched samples and 2000 genes

in each sample takes �1 s. In contrast, it takes �10 min to com-

plete the computation of the same data without knowledge of

any reference genes. We used the Nelder–Mead optimization

procedure that includes a numerical integration of the joint dens-

ity, which may explain this substantial increase in computation

time. DeMix takes a two-stage approach by first estimating the

Fig. 5. Detection of DE genes. Total number of identified differen-

tially expressed genes at varying P-value cut-offs (Bonferroni-corrected),

using different models. The third curve from the top corresponds to com-

parison between the three pure brain and the three pure liver tissue

samples
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�i’s and then estimating the means and variances of gene expres-

sions based on the �̂i’s. A joint model that estimates all param-

eters simultaneously will be able to further incorporate the

uncertainty measure of the tissue proportions. However, the es-

timation step from such a model can be computationally inten-

sive and may not be suitable for the analysis of high-throughput

data.
We identified a few considerations for the deconvolution

of microarray data. First, the assumed linear mixture of data

before they are log-transformed may not perfectly hold for

some samples, e.g. samples 1 to 3 from the Affymetrix data,

and for some genes, e.g. those with extreme expression

values such as524 or4214. Second, our estimation method is

based specifically on log2 Normal distributions of the raw mea-

sured data for each mixture component. When this assumption

is violated, a deterioration of accuracy is to be expected.

Third, microarray technology has inherent limitations, such as

high background noise and inconsistent gene expressions

across experiments. Screening out genes with low expression

levels and accounting for batch effects must be tackled before

deconvolution. We found scale normalization using MAS5 can

obscure the actual linear mixture of expression levels, on which

the downstream deconvolution is based. Summarization using

RMA, together with quantile normalization, seemed to retain

our linearity assumption of the raw measured data most of the

time.
Our model assumes that a mixed sample consists of at most

two cellular compartments: normal and tumor, and that the dis-

tributional parameters of normal cells can be estimated from

other available data. These assumptions seem to us to be a lo-

gical place to begin, but there remain important situations where

more complex modeling may be needed. First, we assume pure

normal samples to be representative of the normal tissues in the

mixture samples, allowing for estimation of sample-specific ex-

pression values. This assumption can be violated as there are

sometimes perturbations of gene expression levels in tumor–stro-

mal interactions, as previously discussed. Second, both normal

and tumor tissues may in turn consist of different cell types, with

different transcriptional activity, and represented in proportions

that can be variable across samples. This has been studied in

Qiao et al. (2012), which used reference profiles from all cell

types. Extensions of our model to deconvolution of more than

two mixture components can address this issue without requiring

reference profiles from all mixing components and can be done

with a more computationally efficient density integration and

optimization procedure. Currently, to identify �i’s, we assume

a roughly stable composition of one or multiple cell types within

each tissue component. With data from real tissue samples, it is

necessary to evaluate the extent to which this assumption is valid.

The variation in the composition of multiple cell types from

sample to sample will be captured by the variance of the distri-

bution of expression levels within each tissue, which is estimated

based on the data. When there exist multiple tumor subtypes, our

method should be applied separately to samples that belong to

the same subtype.
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