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ABSTRACT Spatial structure of genetic variation within
populations, an important interacting influence on evolution-
ary and ecological processes, can be analyzed in detail by
using spatial autocorrelation statistics. This paper charac-
terizes the statistical properties of spatial autocorrelation
statistics in this context and develops estimators of gene
dispersal based on data on standing patterns of genetic
variation. Large numbers of Monte Carlo simulations and a
wide variety of sampling strategies are utilized. The results
show that spatial autocorrelation statistics are highly pre-
dictable and informative. Thus, strong hypothesis tests for
neutral theory can be formulated. Most strikingly, robust
estimators of gene dispersal can be obtained with practical
sample sizes. Details about optimal sampling strategies are
also described.

Malecot (1) and Wright (2) originally demonstrated how limits
to dispersal result in genetic isolation by distance within a
continuous population. These results were expressed in terms
of the coefficients of consanguinity and inbreeding, respec-
tively, and they established many of the main features of how
spatial structure depends on dispersal parameters. However,
models that are directly applicable to spatial distributions of
genotypes at a locus per se must also include the stochasticity
inherent as individual genotypes successfully disperse, pair and
mate, and reproduce. Inclusive modeling of these events in a
(two-dimensional) continuous population is mathematically
intractable (3-6); thus we must rely on Monte Carlo-type
simulations that include this stochasticity, and which are
expressed explicitly in terms of spatial and space-time distri-
butions of genotypes. The dominant spatial features are large
patches, areas containing mostly one homozygous genotype
(7-10), and these features can be well characterized using
spatial autocorrelation statistics. However, the statistical prop-
erties of spatial autocorrelation statistics in this context have
not been characterized.

Genetic isolation by distance is a dynamic spatial-i.e.,
space-time-process that produces shifting patchworks of
genotypes. To a large extent, population genetic processes
should be treated in spatial or geographic contexts. Spatial
structuring can strongly influence, and be strongly influenced
by, most other important aspects of population genetics,
including mating system, individual fitness, inbreeding, and the
action of various forms of natural selection (see refs. 11 and
12). Spatial and geographic patterns of genetic variation have
been a subject traditionally of great interest to genetics: recent
major reviews include those by Endler (13), Bradshaw (14),
and Nagylaki (6).
The resurgence of theoretical work on spatial structure has

been coupled with experimental studies of spatial structure
using spatial autocorrelation statistics (introduced primarily
through the work of R. R. Sokal and colleagues; see refs. 11

and 15-17). Indeed, the numbers of experimental studies using
spatial autocorrelation statistics to study the distributions of
genetic variation within populations continue to increase (see
refs. 18-25). Analyses based on spatial statistics have been
highly powerful, even in cases where there is little structure
(26, 27).

It has been recently suggested (28, 29) that the statistical
power and utility of spatial autocorrelation statistics for infer-
ring processes are minimal, and that the statistic Fst should be
used instead. However, there are fundamental differences
between spatial autocorrelations and Fst. Values of Fst measure
the spatial variance in gene frequencies. Spatial autocorrela-
tion statistics measure aspects of spatial patterns. F,t statistics
require averaging or lumping together subpopulations at one
or more hierarchical levels, but they do not utilize the genetic
information from all pairs of locations, unlike spatial statistics.
Moreover, population processes such as migration do not
generally act through hierarchical pathways; rather they act
through spatial proximity. In the few field studies where both
statistics were calculated, Fst values for the data failed to
indicate significant structure whereas spatial autocorrelation
statistics did (25, 30). Slatkin and Arter (28) showed that when
the spatial scale of sampling is near the scale of spatial patterns,
the ability to make inferences based on Moran's I-statistics was
limited in a system of discrete populations. However, Moran's
I-statistics are especially useful in cases where the spatial scale
of sampling is within the context of a larger spatial pattern
(12)-indeed this is implicit in the definition of "spatial
autocorrelation" (31). As noted by Sokal and Oden (32),
Slatkin and Arter omitted first and second spatial order
neighbor populations from their analysis, which means the
scale they sampled on was too large (12). When smaller
distances are considered, the I-statistics in systems of discrete
populations are highly statistically powerful and have small
standard deviations (33).

In this paper, we characterize for a broad range of conditions
the statistical properties of spatial autocorrelation statistics as
measures of spatial structure within populations. We focus on
the "quasi-stationary" phase. Naturally, it is unwieldy to
consider all contingencies in a single study. For example, one
potentially important (here unstudied) factor may be hetero-
geneities in the distributions of individuals, although mild
degrees of such heterogeneity are probably partially absorbed
in the various sampling schemes in this study. Another possibly
important factor is anisotropy in dispersal rates, which are not
studied here (but see, for example, ref. 13). Previous studies (9)
showed that patch structure develops within 50 generations
and persists for very long periods, at least several thousand
generations (10, 34, 35). Statistical power may depend on (i)
the actual population structure, (ii) the size of the sample
taken from such populations, and (iii) aspects of the spatial
scale and orientation, or spatial distribution, of the sample
points over the populational surface. In this paper we use a
wide range of sampling methods that cover the range of
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virtually all cases that would be appropriate under field
conditions-i.e., the minimum and maximum likely sample
sizes with careful consideration of appropriate spatial scales of
sampling (12).

METHODS

Simulations ofPopulations. The FORTRAN program detailed
by Epperson (10) was used to conduct the simulations. The
program uses standard Monte Carlo methods for stochastic
models. A sequence of random numbers is used to actualize
dispersal, mating, and Mendelian segregation. Each simulated
population consists of 10,000 individuals, with diploid geno-
types, located on a 100 x 100 square matrix or lattice.
Simulation runs that share the same values of parameters were
replicated in sets of 100. Each population was initially gener-

ated by randomly choosing genotypes with probabilities that
were binomial square proportions of the input allele frequen-
cies, which were set at 0.5. The life cycle was repeated 200
generations for each simulation. It has been demonstrated that
for many cases the primary and long-persisting spatial features
of population genetic spatial structures are repeated several
times within the area covered by simulated populations with
size 10,000 (8-10, 34, 35).

Sets with a wide range of dispersal levels were simulated.
Either or both the female and male parents of an offspring
were chosen at random [using two Uniform (0, 1) pseudoran-
dom numbers to choose its two coordinates] generally from
one of the nearest Nf and Nm (respectively) neighbors including
self. Thus, here each individual within the group of size Nf and
Nm had equal chances of being the female or male parent,
respectively. We ran a total of 1300 simulations; 100 for each
of 12 different dispersal models with different values ofNf and
Nm (Table 1), plus the random case.

Sampling Simulated Populations. Characterizations of a

single generation from about generation 50, to several thou-
sand, are adequate, because of the quasi-stationarity phenom-
ena (9); it is more meaningful to replicate over entire simu-
lations rather than over generations. We arbitrarily chose
generation 200. At generation 200, each simulated population
was sampled in 23 different ways. The sampling schemes varied
according to 14 different combinations of the total number of
individuals in the population area sampled and the "porosity"
of sampling (Table 2). Porosity is the proportion of the total
number that are actually sampled from the population of
individuals covered by a sample area (this is also the popula-
tion density per unit area-in simulations this is 1.0-divided
by the square of the physical distance between nearest sample
lattice points). Thus a sample lattice was superimposed onto a
simulated population surface of genotypes. Note that porosity
affects the spatial scale of sampling as well as the total size of
the sample (Table 2). This range of sampling schemes covers

and extends beyond those delineated as rough guidelines for
sampling for a realistic range of sample sizes and appropriate
spatial scales (12). For porosity equal to 1, all individuals in the
sample area are sampled. For the nine combinations of area

and porosity where porosity was not equal to 1, the sampled
individuals were chosen in two distinct manners: of these the
first set of nine sampling schemes involved sampling in the

form of a fixed regular sample lattice; for the second, exact
sample sites were chosen stochastically from the neighbors of
the fixed original "sample" lattice points (thus adding 9
sampling designs to the 14, for a total of 23).
Next for each of the sampling schemes the chosen individ-

uals were grouped into quadrats. Three different quadrat sizes
were used: 25 individuals (5 by 5); 9 individuals (3 by 3); and
4 individuals (2 by 2). Note that the size of the quadrat also
affects the spatial scale as well as the number of sample
quadrats. In total, then, 69 different quadrat sampling config-
urations were conducted (Table 2). However, results for the 27
with stochastic sampling are not listed because they were
virtually identical to those with fixed lattice sampling.

For each set of samples of quadrats, the allele frequencies,
qi, in each quadrat i were calculated and recorded along with
quadrat location in a matrix or lattice of quadrats, also referred
to as a gene frequency surface. To calculate Moran's I-statis-
tics, all pairs of quadrats were grouped by the Euclidean
distances between the quadrat centers. Thus distance class k
contained all pairs of quadrats that were separated by k - 0.5
to k + 0.5 quadrat lengths. Moran's I-statistics, Ik, were

calculated for each distance class k. We calculated the test
statistic (I - u1)/\/u2 (where ul and U2 are the expected value
and variance under the randomization null hypothesis, Ho, that
there is no spatial autocorrelation), which statistic has an

approximate standard normal distribution under Ho (31).
Results are not shown for tests of entire I-correlograms,
because the appropriate maximum distance classes vary widely
among sampling schemes, which makes comparisons among
sampling schemes unwieldy. Moreover, the distribution of
entire correlograms is complex and unknown when structure
is present (36).
We also characterized observed values of the statistic, F,

calculated in the traditional way, as well as the less-biased
estimator 0 (37), of the theoretical Fst, and the jackknife
variances for 0, for the quadrat size 25 sampling schemes for
the abovementioned I-statistic analysis. The statistical signif-
icance of values of 0 was assessed by whether or not a 95%
confidence interval, calculated directly from the distribution of
the jackknife estimates (37) overlapped with zero.

RESULTS

Fig. 1 shows the means for Moran's I-statistics for the complete
sampling scheme (porosity 1, fixed sampling, total population
area) for quadrat sizes of four individuals. These values are

very representative of the results. Decreases in the size of the
populational area sampled-i.e., the numbers of quadrats-
scarcely changed the mean values of I (Table 3). The only
exceptions occurred where the total number of quadrats, and
thus the population area sampled, was small relative to the
spatial patch size; however, as noted, such samples are not
expected to be useful. For example, for porosity 1 and quadrat
size four, for set 1 the mean values are 0.56, 0.55, 0.54, 0.53, and
0.49 for sizes of sample areas 10,000, 5000, 2500, 1250, and 625,
respectively. Moreover, the effect of porosity was to shift the
value of I to the value for the analogous distance class on an

absolute (i.e., equal to the square root of the product of
quadrat size and porosity) scale (Table 3), as may be expected

Table 1. Dispersal parameters in the various sets of simulations

Simulation dispersal model*

1 2 3 4 5 6 7 8 9 10 11 12

Nf 1 9 1 25 1 49 81 121 1 225 1 625
Nm 9 9 25 25 49 49 81 121 225 225 625 625
Ne 4.2 8.4 12.6 25.1 25.1 50.2 83.7 125.7 115.2 230.4 316.2 632.4

*Nf and Nm are the numbers of nearest female and male individuals from which parents of an offspring are randomly chosen, and
Ne is Wright's neighborhood size.
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Table 2. The sample sizes in terms of sampled individuals for
various sampling schemes from the simulated populations

Area*

Porosityt 10,000 5000 2500

1 10,000 5000 2500
1/4 2,500 1250 625
1/9 1,089 544 272
1/25 400 200 100

Samples of total populational numbers 1250 and 625 were taken for
porosity equal to one. In addition, sampled individuals were grouped
into quadrats of sizes 4, 9, or 25, depending on sampling schemes.
*The total number of individuals in the population that the entire
sample lattice covered.

tPorosity is the proportion of total population individuals that were
sampled (before forming quadrats).

x -- t t-f

I I 1

2 3 4 5 6

Disblcs

FIG. 1. Graphs of average Moran's autoc
genetic correlations as a function of spatia
replicate simulations. Each set had different
Table 1). Unique symbols are assigned for
other sets are such that they have succee
distance class one, except that sets 4 and 5
size) have switched ranks. Statistics were
sampling ("porosity" equal 1.0; see text), wit
four individual genotypes at a locus. Ern
standard errors, as calculated for 10 simula
for the average I-statistic for 10 loci).

because of the corresponding increa
sampling. For example, for quadrat siz
I for the first distance class for set 3 foi
(0.36, 0.27, and 0.18) correspond to th
absolute distance classes 4, 6, and 1C
Table 3 and Fig. 1), respectively. These
sample area were generally true for all 4
not shown), for all dispersal models.

Moran's I-statistic for distances of c

ally had small standard deviations
simulations for each set, for each
example, for full sampling at the first dis
size nine, the SDs were 0.037, 0.043, 0.4

0.082, 0.092, 0.076, 0.062, 0.044, and

dispersal models 1-12, and for quadrat size 25 they were 0.049,
0.054, 0.072, 0.070, 0.074, 0.092, 0.093, 0.114, 0.101, 0.093,
0.086, and 0.060. Moreover, the SDs follow a simple relation-
ship. For low-to-moderate amounts of dispersal, generally SDs
for sampling schemes with smaller numbers of quadrats (but
same porosity), n, fit very closely with the function: SDf.11
fVnlfui/fn, where SDfull and nfull are the SD and number of
quadrats for the full sampling scheme. As an example, consider
set 1: for porosity 1, the SD for one-fourth of the total
population was 0.064 or approximately twice that for full
sampling, 0.030; the SD for one-sixteenth of the population was
0.0116, almost exactly four times that of the full sampling case.
For higher amounts of dispersal, the SDs increased even more
slowly with decreasing numbers of quadrats. These simple
relationships also simplify expectations for application to field
studies. In addition, Fig. 1 shows that the standard errors
expected for an average I-statistic for 10 simulations (analo-
gous to averaging over 10 loci in a real population) are small.

Moran's I-statistic for distances of one quadrat unit gener-
------ jrally had very high statistical power (usually 100% of sample

statistics were significant at the 5% level) for population areas
as small as 2500. The values decreased somewhat but were still

I at respectable rates (70-100%) for the smallest population
area (625) for very high levels dispersal, Ne over 200. More-

7 8 9 10 over, I-statistics for short distances have small SDs. Naturally,
the average values and the power dropped off as the distance
of separation increased. However, it is only when the scale of
the smallest distance class (roughly the square-root of porosity,

-orrelation statistics (I) for on the quadrat scale) was near the x-intercept (the distances at
1l distance, for sets of 100 which I-correlograms take the value zero) that the "statistical
t amounts of dispersal (see power" was low. Based on well-known theoretical results (see
sets 1 (<o) and 2 (0). All ref. 12), this was the sample scale situation for the I-statistics
dingly smaller values for reported in Slatkin and Arter (28). Values for distances near

5 (same value of neighbor the x-intercepts were also more variable.
calculated for the finest We found veryhigh porebiase.th each quadrat containing We found very high positive biases ofFis over 0 (results not

ror bars represent ± 1.0 shown), the latter being a "less biased" measure of the
tions (analogous to errors partition of genetic variation (37). Even 0 was biased for 100

simulations and 23 sampling schemes of truly random sam-
pling, where the expected value of F is zero. Moreover, we

ise in spatial scale of found that a standard method of constructing confidence
e four, mean values for intervals based on jackknifing over populations (37) (jackknif-
r porosities 4, 9, and 25 ing is required for single locus estimates) rejected the null
kose for porosity 1 with hypothesis from 4% to 47%, with an average of 21.5%, (if cases
(0.37, 0.29, and 0.18; where there were only 4 sample quadrats are excluded, then
effects of porosity and the range is from 10% to 47%, with an average of 23.4%) of
distance classes (results the samples even when the null hypothesis was true. This

inflation invalidates the use of these tests. We obtained
me quadrat unit gener- similarly high rejection rates for an approximately normal test
(SDs) among the 100 statistic based on Fst. With these kinds of inflated "apparent"
sampling scheme. For rejection rates it is meaningless to try to measure the statistical
stance class, for quadrat power function under alternative hypotheses: only upper
057, 0.059, 0.065, 0.080, bounds of the true rejection rates can be obtained. In contrast,
0.029, respectively, for Moran's I-statistics were very well-behaved, and over various

0.6
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0.23

0.1
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Table 3. Average value of Moran's I-statistics (x100) for different sampling schemes and the various dispersal levels

Dispersal model

Qsize* Porot Area* 1 2 3 4 5 6 7 8 9 10 11 12

10,000 56
10,000
10,000
10,000
5,000
5,000
5,000
5,000
2,500
2,500
2,500
2,500
1,250
625

10,000
10,000
10,000
10,000
5,000
5,000
5,000
5,000
2,500
2,500
2,500
2,500
1,250
625

10,000
10,000
10,000
10,000
5,000
5,000
5,000
5,000
2,500
2,500
2,500
2,500§
1,250
625

40
28
14
55
40
28
12
54
38
26
9

53
49
54
35
22
7

53
35
21
3

51
32
14
-7
48
43
45
23
10
-3
45
22
7

-10
42
17
-6

56 49 38 44 31 21 17
41 36 29 35 27 19 15
32 27 24 27 21 14 12
20 18 16 19 15 10 8
55 47 37 42 29 20 14
39 34 28 33 24 17 12
30 26 22 25 18 13 10
16 16 14 16 12 7 5
52 45 34 38 25 17 11
35 29 25 28 19 13 8
25 21 18 20 13 9 6
9 9 8 10 6 1 0

50 43 31 34 23 14 10
46 38 26 29 18 9 7
57 54 50 54 45 34 29
39 38 36 40 34 26 23
29 28 28 31 27 20 18
11 12 13 17 14 10 8
55 52 48 52 42 32 25
36 35 34 37 30 25 19
24 25 24 27 22 16 14
4 9 8 10 8 5 4

51 49 44 46 36 27 19
31 29 29 30 23 18 12
16 15 14 17 12 7 5
-6 -7 -4 -5 -5 -7 -7
48 46 39 40 33 24 17
43 39 32 32 26 16 11
51 53 54 56 54 48 45
31 34 37 38 37 33 32
15 18 22 24 22 19 18
0 3 4 7 10 6 6

49 49 52 54 50 45 39
27 29 33 35 31 28 24
7 12 15 16 15 12 11

-10 -5 -7 -3 -5 -3 -4
44 45 47 46 43 38 30
18 18 23 23 19 17 12
-5 -4 -3 0 -1 -6 -5

38 38 40 40 38 39 32 26
29 30 30 27 27 26 18 16

13 9
12 8
10 6
8 5

11 7
10 6
8 5
4 4
8 6
7 4
4 2
0 -2
6 4
4 3

23 17
19 14
17 10
7 4

20 14
15 11
12 7
2 -1

14 10
11 7
4 2

-10 -12
11 7
5 5

40 32
28 24
16 12
6 3

35 27
21 17
6 6

-5 -3
27 19
10 10
-6 -7

4 3
3 2
3 2
2 1
3 2
2 2
1 1
0 0

2 1
1 1
0 0

-4 -3
2 1
1 0
8 5
7 4
5 3
3 -2
6 5
5 3
1 2
0 -4
4 3
2 1

-2 -3
-10 -10

2 2
0 -1
18 13
14 10
5 3
1 -4

15 11
10 7
-2 -1
-8 -12
9 7
2 2

-12 -11

21 14 5 5
10 6 -1 -2

*The size of the quadrat samples in terms of number of sampled individuals in a quadrat.
tPorosity is the proportion of total population individuals that were sampled (before forming quadrats).
tThe total number of individuals in the population that the entire sample lattice covered.
§Values for this case are not valid because they are based on four quadrats, all pairs of which are in distance class one.

sampling schemes there was a range of 3-6% (with one

exception at 10% which was based on only 4 quadrats)
rejection rates, with an overall average of 4.89%. This is very
near (and not statistically significantly different from) what the
type I error should be, 5.0%. The average value of Moran's
I-statistics was very near the expected values, -1/(n - 1),
where n is the number of quadrats.

DISCUSSION
Our results are based on large numbers (1300) of simulations
and sampling schemes (69 for each of the 1300 simulations, or

89,700 samples in total) for patterns of genetic variation within
populations. We found that for most investigated cases of
interest, I-statistics had high statistical power, and low sto-
chastic and statistical variation. This was true even when
sample sizes were quite small, as long as the spatial scale of
sampling was smaller than the scale of spatial autocorrelation,

as is typically advised (10-12, 15). The reason for this scale-
dependency is that at large sampling scales the expected values
of I-statistics are near zero. Slatkin and Arter's (28) result
could be reproduced only when the scale of sampling was at
least 50% of the scale of the spatial patterns. Moran's I-sta-
tistics are especially useful in cases where the spatial scale of
sampling is within the context of a larger spatial pattern (10,
12); this is inherent in the definition of "spatial autocorrela-
tion" (31). Slatkin and Arter sampled on too large a scale (12,
33). Results parallel to ours were found for systems of discrete
populations (33).
The standard errors of I-statistics are small as long the total

sample size (number of quadrats x number of individuals per

quadrat) times the number of loci is on the order of 2000 (e.g.,
125 four-individual quadrats for four loci), which is well within
practical experimental ranges. Thus I-statistics provide two
useful experimental tools. First, they provide robust expecta-
tions for neutral loci, if the amount of dispersal is known, and

4 1
4
9

25
1
4
9

25
1
4
9

25
1
1

9 1
4
9

25
1
4
9

25
1
4
9

25
1
1

25 1
4
9

25
1
4
9

25
1
4
9

25
1
1
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thus a null hypothesis for neutrality; and the results also show
that stochastic and sampling variation should result in minimal
differences in autocorrelation statistics for all neutral loci in a
multiple locus sample from a population (11, 38). Perhaps
most strikingly, the results indicate that precise estimates of
dispersal can be obtained from standing spatial genetic distri-
butions within a population. With a properly designed sample
of 2000 genotypes as discussed above, and using fairly small
quadrats, estimates of standardized measures of dispersal
(Wright's neighborhood sizes, Ne) can have precision to within
a factor of 2 or less. This is quite precise compared with direct
measures of gene dispersal, which are typically subject to many
experimental errors that are difficult to control (39). Remark-
ably, this is true even when dispersal levels are very high
(values of Ne of 600 or greater). Although the mean values of
I-statistics decrease as Ne becomes large, the SDs are very
small (high repeatability-low stochastic and statistical varia-
tion), which implies small standard errors in field studies.
An important issue is the size of quadrats. For small

quadrats (e.g., four individuals), I-statistics for distance class
one decrease monotonically with Ne, except for Ne in the range
of 4-8. Completely monotonic decrease is observed for a
quadrat size of one individual (34). This contrasts with earlier
results based on quadrats of size 25 which decrease monoton-
ically only when Ne exceeds 50 (40), and our results revealed
intermediate behavior for quadrats of intermediate sizes.
Experimentalists should choose the convenience of large
quadrats only when dispersal is believed to be in the moderate
to high range (Ne > 50).
Our results contribute methods for using I-statistics based

on small numbers of individuals per quadrat, as providing
robust and unbiased estimators of standardized measures of
dispersal such as Wright's neighborhood sizes. Moreover, these
should fit populations that have existed for more than a few
dozen generations, because results demonstrate the quasi-
stationarity phenomena (see refs. 10 and 40); a finding that
reflects on Slatkin and Arter's hypothesis that such systems
"are either at a stochastic equilibrium or they are not."
Moreover, the size of quadrats can be decreased to arbitrarily
small numbers of individuals, with beneficial effects on I-sta-
tistics; but not so for Ft. Join-count statistics and Moran's
I-statistics for individual genotypes are the most powerful. In
other work, we have found that total sample sizes must as much
as 10 to 20 times as large in order for F-statistics to have power
similar to autocorrelation measures based on individual ge-
notypes, even though in these calculations we could use only
the observed power of F,t as an upper bound, because it is
inflated by biases toward rejecting Ho when Ho is true. The
most efficient use of data for individual genotypes is join-
counts or I-statistics, rather than combining individuals into
subsamples, as required for the usual estimates of F,t or 0
(which usually involves loss of information and statistical
power). However, if it is necessary by experimental constraints
to sample on a quadrat system, the smaller quadrat sizes
perform better, especially considering constraints on total
sample size. In sum, for studies of structure within populations,
spatial autocorrelation statistics are more efficient and pow-
erful than F,t. This is true for all of the cases studied, which
cover the conditions of realistic sample size and recommended
spatial scales based on logical considerations of the spatial
scales of patterns produced by limited gene flow within
populations.

Interestingly, our results also revealed some difficulties with
using F,t in analyses of spatial structure and gene dispersal. The
results showed that F,t is strongly biased (37). Slatkin and
Barton (41) found that F,t was strongly biased also in systems

of discrete populations, especially when dispersal is large. In
addition, our results showed that, for the entire range of
dispersal distances and sampling schemes, tests of significance
of Fst rejected the null hypothesis at extremely high rates (up
to 47%, with an average of 22%). In contrast, tests of signif-
icance of I-statistics based on the same simulated data rejected
the null hypothesis at a rate (4.92%) not statistically different
from the correct rate (i.e., the 5% level). The bias for the
statistics Ft and 0 is difficult to correct, because their distri-
butions are unknown (37, 42). Moran's I-statistics have well-
known actual and asymptotic distributions under the null
hypothesis (31).

This work was supported in part by National Institutes of Health
Grant GM48453 to B.K.E.
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