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Abstract
Three alternative mechanisms for age-related decline in memory search have been proposed,
which result from either reduced processing speed (global slowing hypothesis), overpersistence on
categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to
a decline in working memory (cue-maintenance hypothesis). We investigated these 3 hypotheses
by formally modeling the semantic recall patterns of 185 adults between 27 to 99 years of age in
the animal fluency task (Thurstone, 1938). The results indicate that people switch between global
frequency-based retrieval cues and local item-based retrieval cues to navigate their semantic
memory. Contrary to the global slowing hypothesis that predicts no qualitative differences in
dynamic search processes and the cluster-switching hypothesis that predicts reduced switching
between retrieval cues, the results indicate that as people age, they tend to switch more often
between local and global cues per item recalled, supporting the cue-maintenance hypothesis.
Additional support for the cue-maintenance hypothesis is provided by a negative correlation
between switching and digit span scores and between switching and total items recalled, which
suggests that cognitive control may be involved in cue maintenance and the effective search of
memory. Overall, the results are consistent with age-related decline in memory search being a
consequence of reduced cognitive control, consistent with models suggesting that working
memory is related to goal perseveration and the ability to inhibit distracting information.

Keywords
search; semantic memory; executive control; animal fluency; age-related cognitive decline

What are the mechanisms underlying age-related declines in the rate at which information is
retrieved during memory search? We tested three alternative hypotheses by investigating age
differences in a widely used fluency task (“name all the animals you can think of” and
Thurstone, 1938). With this task, numerous studies have demonstrated that older adults
consistently recall fewer items within a fixed time interval than do younger adults (e.g.,
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Kozora & Cullum, 1995; Lanting, Haugrud, & Crossley, 2009; Tomer & Levin, 1993). The
three hypotheses proposed to explain this difference each suggest a different underlying
cognitive mechanism. The global slowing hypothesis holds that retrieval deficits associated
with age are the result of age-related cognitive slowing (Mayr, 2002; Mayr & Kliegl, 2000).
According to this view, aging is associated with slower (cf. Salthouse, 1996) but otherwise
unaffected cognitive processing and therefore predicts no age differences in the use of
memory retrieval cues. Two alternative proposals, however, suggest that the impact of aging
goes beyond global slowing. In particular, these proposals suggest that aging may impact
how memory is queried through the ability to appropriately handle perseveration or
abandonment of memory retrieval cues.

One of the alternative proposals, the cluster-switching hypothesis (Troyer, Moscovitch, &
Winocur, 1997), sees memory retrieval as a dynamic process involving, first, a search for
semantic categories (e.g., pets) and, second, a search for and recall of words within a
category (e.g., dog). Troyer et al. (1997) developed a hand-coded categorization of animals
on the basis of typical recall patterns and developed measures of switching (i.e., the number
of switches between categories) and clustering (i.e., the mean number of items in a cluster).
Several studies have now used these switching and clustering measures to investigate age-
related differences in semantic fluency. A common finding is that along with a recall of
fewer items overall, aging is associated with fewer total switches between categories
(Lanting et al., 2009; Troyer, 2000; Troyer et al., 1997; but see Rosselli, Tappen, Williams,
Salvatierra, & Zoller, 2009). Results regarding the size of each cluster are less clear, with
two studies finding no differences (Troyer, 2000; Troyer et al., 1997) and others finding
increased numbers of items per cluster with increased age (Lanting et al., 2009), at least for
some semantic categories (Rosselli et al., 2009). On the basis of this empirical observation,
Troyer and colleagues (Troyer, 2000; Troyer et al., 2007) proposed that aging is associated
with reduced switching between retrieval cues (categories), an outcome they proposed must
be linked to cognitive control brain networks affected by aging (Bäckman, Nyberg,
Lindenberger, Li, & Farde, 2006; Braver & Barch, 2002; Buckner, 2004; Hedden &
Gabrieli, 2004; Li, Lindenberger, & Bäckman, 2010). However, this prediction lacks a clear
development of the cognitive mechanisms that would reduce switching and has come under
fire because it uses the absolute number of switches as a dependent measure, which has been
shown to be problematic for several reasons (Mayr, 2002; also, see below).

The third view of age differences in memory search, the cue-maintenance hypothesis, arises
out of the literature on working memory. According to this view, memory retrieval can also
be seen as a dynamic process by which individuals use specific retrieval cues to access
memory. Theories of cognitive control see working memory as the ability to maintain focus
on one cue while ignoring other potentially distracting ones (e.g., Hills, Todd, & Goldstone,
2010; Kane & Engle, 2000). Consequently, loss of executive capacities leads to a loss of cue
focus and thus more frequent switching between retrieval cues (e.g., Unsworth & Engle,
2007). Aging is associated with lower working memory capacity, as measured by either
simple or complex span tasks (Bopp & Verhaeghen, 2007), likely due to age differences in
the structure and function of prefrontal brain networks (Buckner, 2004; Hedden & Gabrieli,
2004), specifically, the frontostriatal dopamine system (Bäackman et al., 2006; Braver &
Barch, 2002; Li et al., 2010; Paxton, Barch, Racine, & Braver, 2008). Notably, studies have
found that lower working memory capacity is associated with increased switching between
retrieval cues during recall in fluency tasks (Hills & Pachur, 2012; Rosen & Engle, 1997;
Unsworth, Spillers, & Brewer, 2011). Consequently, the cue-maintenance hypothesis
predicts that age-related decline in working memory capacity should lead to increased
switching between retrieval cues.

Hills et al. Page 2

Dev Psychol. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although declines in the rate of retrieval follow directly for global slowing, the other two
hypotheses are based on the implicit assumption that optimal retrieval from memory
requires switching between categories that is neither too frequent nor too infrequent—in
much the same way a bird may forage among patches of berries. Switching too frequently
leads to inadequate retrieval of items that are related to one another and thus leaves clusters
of related items before many of these items are recalled. In this case, most of the time is
spent moving between clusters. Switching too infrequently leads to perseveration in regions
of memory where most of the items have already been recalled, again leading to lower recall
rates because almost everything in the local region of the memory space has already been
retrieved. Indeed, recent research has shown that individuals who do not leave categories
either too soon or too late retrieve items faster from memory in a fluency task, whereas those
who switch between categories either too frequently or too infrequently retrieve items more
slowly (see Hills, Jones, & Todd, 2012).

To summarize, three hypotheses—global slowing, cluster switching, and cue maintenance—
make different predictions about age-related differences in dynamic memory search.1

Although the global slowing hypothesis predicts slowing but otherwise no differences in the
nature of cue utilization with increased age, the other two hypotheses posit specific changes
in cue utilization with increased age, with the cluster-switching hypothesis predicting
reduced switching (per item recalled) between retrieval cues and the cue-maintenance
hypothesis predicting increased switching (per item recalled) between retrieval cues. In what
follows, we investigate this issue by providing the first test of these competing hypotheses
through computational modeling of semantic retrieval patterns in a fluency task.

To do this, we used the computational search framework provided by the search of
associative memory model (Raaijmakers & Shiffrin, 1981; see also Hills et al., 2012) to
describe memory retrieval given a well-defined memory representation (Jones & Mewhort,
2007). Crucially, this framework allowed us to build different models that varied concerning
the cues used to sample memory. We were thus able to assess how different assumptions
concerning cue utilization could account for age differences in memory search. Specifically,
this approach made it possible to assess the link between age and individual differences in
cognitive control and specific model parameters (i.e., the amount of switching between
retrieval cues). Our goal was to infer whether, contrary to the global slowing hypothesis, we
would find age differences in cue utilization and, if so, whether age differences in cue
utilization were consistent with prior characterizations of the cluster-switching or cue-
maintenance hypotheses. Finally, the participant data we use to address these questions
included digit span measures as part of an additional study, which allowed us to further
investigate more general predictions of declines in cognitive control.

Method
Participants and Procedure

Two hundred one participants (30% men, 70% women), with ages ranging from 27 to 99
years (Mdn = 68 years, M = 65.45 years, SD = 13.53), participated in the study. Sixteen
participants were excluded because of low scores on a dementia screener (Mini-Mental State
Examination; Folstein, Folstein, & McHugh, 1975). We also excluded individuals with

1Our approach takes the falsifiable position made by Mayr (2002) that slowing is proportional across cognitive faculties and, as such,
slowing alone predicts no differences in cue utilization as a function of age. Note that a slowing hypothesis that leaves room for age-
related changes in switching—without stating how switching will change—is unfalsifiable. Specific interpretations of global slowing
that do not assume proportional slowing may be viable, but only those consistent with the increased switching predicted by the cue-
maintenance hypothesis are supported by the present data. Indeed, researchers conducting future studies should investigate the
assumptions necessary for nonproportional global slowing models to predict the observed results.
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education-adjusted scores below 27 (Crum, Anthony, Bassett, & Folstein, 1993), leaving
185 participants for analysis with ages ranging from 29 to 99 years (Mdn = 69 years, M =
66.66 years, SD = 12.74).2 Participants had different levels of education, ranging from 7 to
20 years of schooling (Mdn = 16 years, M = 15.26 years, SD = 2.54). Participants were
recruited through postings at a health center in the San Francisco Bay Area as part of a study
on health-related decision making. Participants were tested individually at the health center
and first completed questionnaires regarding preferences for treatments within hypothetical
health states (e.g., cancer, dementia), followed by a small battery of cognitive tests, which
included the animal naming (Lindenberger, Mayr, & Kliegel, 1993; Thurstone, 1938) and
digit span (Wechsler, 1997) tasks—used as measures of fluid intellectual ability in the health
preferences study—and a vocabulary task (Wechsler, 1997). The animal naming task
consisted of asking participants to name all the animals they could in 1 min, using the
following instructions: “When I say start, please tell me as many words that you can think of
that fit into the category of animal. Start!” The experimenter wrote down all words in the
order that participants recalled them and stopped the participant after 1 min. Both forward
and backward span were included in the digit span task.3 The scores reported are the sum of
trials completed in the forward span (which assesses short-term maintenance) and backward
span (which assesses both maintenance and item manipulation), and we use it as a measure
of working memory. The vocabulary task requires participants to provide open-ended
definitions to each word in a list. Summary statistics of individual difference measures by
age decade are provided in the Appendix. Participants were compensated for their
participation ($50).

Representation of Semantic Memory
The first step toward formalizing search in semantic space is to provide an explicit
representation of the space being searched. In our modeling, we used the lexical semantic
representations of animals computed in prior work (Hills et al., 2012) using the bound
encoding of the aggregate language environment (BEAGLE) semantic space model (Jones
& Mewhort, 2007). BEAGLE learns semantic relations by assigning each word an initial
vector with vector elements sampled randomly from a Gaussian distribution with μ = 0 and
σ = 1/D, where D is the vector dimensionality (set to 1,000 in these simulations). As the text
corpus is processed, a second vector, the word’s memory vector, is updated each time the
word is encountered as the sum of the initial vectors for the other words appearing in context
with it. Once the entire corpus has been learned, a word’s memory representation is a vector
pattern reflecting the word’s history of co-occurrence with other words. By this method,
words that frequently co-occur will develop similar vector patterns (e.g., bee–honey), as will
words that commonly occur in similar contexts, even if they never directly co-occur (e.g.,
bee–wasp). We used the pairwise similarity metric vector cosine (a normalized dot product
between two word vectors) for our comparisons. BEAGLE was trained on a subset of
Wikipedia, composed of approximately 400 million word tokens and 3 million word types.
Support for BEAGLE comes from its success at accounting for a variety of effects,
including semantic typicality, categorization, sentence completion (Jones & Mewhort,
2007), priming (Jones, Kintsch, & Mewhort, 2006), and retrieval from long-term memory
(Hills et al., 2012).

2To be even more conservative, we also tested all of our hypotheses after excluding an additional six individuals who performed in the
lower 5th percentile of age-normed digit span or fluency (Ivnik et al., 1992; Tombaugh, Kozak, & Rees, 1999). Results lead to the
same statistical conclusions as those presented and indeed do so even if we exclude individuals in the lower 10th percentile. However,
it is impossible to exclude all pathological processes with any test, as some may yet still be undefined, and thus our results—like those
of all aging studies—may reflect influences beyond normal aging.
3Forward and backward digit span were combined at the time of data entry. Thus, we cannot determine whether the same results
would be obtained if forward and backward span were considered separately. However, recent research in this area suggests there is
“no evidence of a discriminant validity pattern” between these two measures (Bowden, Petrauskas, Bardenhagen, Meade, & Simpson,
2012).
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Search in Semantic Memory
Memory retrieval can be viewed as the result of probing a memory representation with one
or more cues to activate a response (e.g., Gronlund & Shiffrin, 1986; Walker & Kintsch,
1985). Under this assumption, the simplest possible model of memory search would assume
that search is guided by a single cue. More complex models could assume a combination of
cues or include dynamic switching between cues as a function of retrieval success. To model
these various approaches, we used a framework similar to the item-level recall probability
equation from the search of associative memory model (see Raaijmakers & Shiffrin, 1981):

(1)

where S(Qk, Ii) represents the retrieval strength from cue Qk to item Ii in memory and wk
represents the saliency or attention directed at the kth cue. The probability of retrieving a
given item, Ii, is given by the ratio of the activation strength of that item and the sum of the
activation of all other items in memory given those same cues. The saliency parameter, w,
provides a measure of the deterministic nature of the activation; higher values of w lead
items with higher retrieval strengths for a given cue, Qk, to gain a larger share of the recall
probability, whereas lower values of w more evenly distribute the probability of recall over
all items.

We considered two cues: a global context cue and a local context cue. The global context
cue activates each item in memory in the category animals that you know, and we assume
that this is best approximated by the frequency of occurrence of each animal name in the
Wikipedia corpus (e.g., Hills et al., 2012; Raaijmakers & Shiffrin, 1981). The local context
cue activates each item in memory in relation to its semantic similarity to the cue currently
held in primary memory, that is, the previous item recalled. Thus, the most recently recalled
item is the cue used to query local memory, and activation is defined as the pairwise
semantic similarities produced by BEAGLE (Jones & Mewhort, 2007) with all animals yet
to be recalled. Note that for the global context cue, items are activated in proportion to their
frequency. For the local context cue, items are activated in proportion to their semantic
similarity with the most recently recalled item. Thus, given a set of cues, we can compute
the predicted retrieval probability for any sequence of animal names by repeatedly using
Equation 1.

As an example, if a participant recalled dog, which shared a BEAGLE-based semantic
similarity of 0.5 with cat, then S(‘DOG’,‘CAT’) = 0.5. This would be placed in the
numerator of Equation 1, while the sum of the semantic similarities over all animals would
be placed in the denominator. If cat were the next item recalled, followed by fox, then
S(‘CAT’, ‘FOX’) would be in the numerator to compute the next probability of recall, with
the activation for all remaining animals summed in the denominator. Using this framework
to compute probabilities, we then fit w parameters to each participant to maximize the
observed probabilities of recall and produce a maximum likelihood fit (see Lewandowsky &
Farell, 2010, for an overview on model fitting).

We tested five models on the basis of previous work (Hills et al., 2012; Hills & Pachur,
2012), which differed in how cues were used to guide the search process. This allowed us to
evaluate whether each additional assumption made by a model was warranted, on the basis
of whether it provided a significantly better fit to participants’ recall sequences than did a
model without the additional assumption. The main distinction between the five models we
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tested concerns the nature of cue use, namely, whether the cues were used in a static or
dynamic fashion, which has not been previously tested in a mature adult cohort.

Static models (Models 1, 2, and 3) used the same cue arrangement over the entire recall
interval. Model 1 used a single global cue, frequency. This assumes that individuals recall
sequences of animals that reproduce their natural strength of activation in memory as a
consequence of frequency alone. Model 2 used a single local cue, semantic similarity. This
assumes that individuals rely only on the previously recalled item as a cue for the next
recall, producing a chain of pairwise associated animals. Model 3 represents the
simultaneous combination of global and local cues: both frequency and semantic similarity.
This assumes a process of recall based on semantic similarity to the previous item that is
further informed by the frequency of past experience with those items.

Dynamic models (Models 4 and 5) assume that people transition between global and local
cues as they search through memory. The logic underlying these models can be best
understood by likening the search process in semantic space to foraging in physical space.
The dynamic models we tested assume that the representational space is patchy or clustered
and that people rely on global cues to travel from one patch to another while they rely on
local cues to move within a patch. Search thus involves both traveling between distant
patches and searching within a patch. In line with previous work, our models share the
assumption that frequency alone guides search between clusters of items while both
frequency and similarity guide search within a cluster (Hills & Pachur, 2012; Hills et al.,
2012; Raaijmakers & Shiffrin, 1981).

Models 4 and 5 differ in their assumptions concerning when transitions between clusters
occur and, consequently, they make different predictions about switches in the composition
of the memory probe. Model 4 switches between local and global search when two
successively recalled items do not share a category, as defined by the cluster-switching
hypothesis (Troyer et al., 1997). For example, if dog was immediately followed by cat
during memory retrieval, because both are in the category pets, the model predicts local
search. However, if dog was followed by shark, because these do not share a category, the
model predicts a transition to global search (frequency only) to recall shark. The Troyer et
al. (1997; see also Troyer, 2000) categorization scheme contains 22 nonexclusive categories,
including African animals, water animals, and beasts of burden. The categorization
contained 155 unique animal names but was extended by Hills et al. (2012) to contain an
additional 214 animal names found in Wikipedia.

Model 5, which we call the similarity drop model, implements a different view of transitions
between patches. Previous research indicated that similarity drop was a plausible alternative
hypothesis to Troyer et al. (1997) categories (Hills et al., 2012). Similarity drop defines
switches between memory cues wherever a sequence of four items, A, B, C, and D, have
BEAGLE-defined semantic similarities that follow the pattern S(A,B) > S(B,C), and S(B,C)
< S(C,D). In words, the semantic similarity decreases between clusters and then increases
again once search resumes locally with a subsequent cluster (e.g., a sequence of A, B, C, and
D items might be dog, cat, shark, and whale), with a similarity drop between cat and shark.
Previous work identified these similarity drops as places where individuals left a patch of
locally semantically similar items to transition globally to another patch of locally
semantically similar items (Hills et al., 2012). Note that, unlike Model 4, Model 5 prohibits
two consecutive items to both represent global switches.

For all models, once an item was recalled, that item was removed from the retrieval
structure. As in previous work (Hills et al., 2012; Hills & Pachur, 2012), removing or
replacing items after retrieval had no effect on our conclusions. Also note that all dynamic
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models predict switches after they occur and thus test where the most plausible locations for
switches are, given the underlying representation. How to best predict switches before they
occur in fluency data is still an open question in the literature (see Hills et al., 2012, for
further discussion).

Results
Participants recalled, on average, 16.8 (SD = 5.3, range: 5–33) animal names. As expected,
age was associated with recalling significantly fewer items. For all analyses, we included a
quadratic term, but this was the only case where the quadratic term was significant (for more
information on linear and nonlinear aging effects, see Verhaeghen & Salthouse, 1997;
Salthouse, 2004). A regression with a linear term and a quadratic term for age as the
independent variables and total number of animals recalled as the dependent variable
resulted in a significant effect for the linear term, B = 0.41, t(182) = 2.14, p = .03, and
quadratic term, B = −0.004, t(183) = −2.80, p < .01, r = .33 (see Figure 1). In all subsequent
analyses, the quadratic terms were not significant, and we therefore report only the linear
terms.

In what follows, we first present results showing that the modeling of semantic retrieval
supports dynamic memory search. We then correlate age and digit span with the frequency
of switching per item to address the three hypotheses for age-related memory decline.

Do People Switch Dynamically Between Retrieval Cues?
Table 1 presents the Bayesian information criterion (BIC) of Models 1–5. BIC is a
commonly used measure of model fit and comparison that includes penalization for the total
number of free parameters to reduce overfitting (Lewandowsky & Farrell, 2010); smaller
values of BIC indicate better model fit. The results show that the best single predictor of
recoveries is frequency rather than similarity, as suggested by the superior fit of Model 1
relative to Model 2. In turn, Model 3 outperformed both Models 1 and 2, showing that
combining both frequency and similarity information was an improvement over single-cue
models. Adding dynamic transitions between frequency and similarity further improved the
model fit (compare Model 3 with Model 5), but only when using similarity drop to predict
transitions between retrieval cues. Model 4, which predicted switches on the basis of the
Troyer et al. (1997) categorization scheme, did not produce a dramatic improvement over
Model 3. This suggests that the Troyer et al. (1997) categories could benefit from additional
computational evaluations to ascertain how they might be improved to capture patterns of
retrieval in the fluency task.

Note that the poor performance of the Troyer et al. (1997) categorization scheme is a
conservative estimate, because dynamic models use information from the data about the to-
be-retrieved items to identify switching points. Thus, the dynamic models should outperform
the static models if transition points are accurately identified. Crucially, although the
difference in BIC between Models 4 and 5 is small (as it is based on only those locations
where switches are predicted to occur and thus represents a difference of approximately 5
data points per participant), the dynamicmodel using similarity drop provides a better
explanation of the data for the majority of the participants. Moreover, this pattern is the
same regardless of the age group considered: Using a median split on age (Mdn = 68), the
similarity drop model provided the best fit to the data of both younger (56%) and older
(53%) participants in our sample, with the remainder spread over the other four models.
Overall, our results suggest that the process of recall is dynamic, consistent with the basic
assumptions of both the cluster-switching and the cue-maintenance hypotheses. Although
these dynamics are not well characterized by the Troyer et al. (1997) cluster-switching
categorization scheme, it may still be that age-related changes in switches per item are
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consistent with the cluster-switching hypothesis. In what follows, we focus on similarity
drop switches (supported by the best fitting Model 5) to compare the three hypotheses—
global slowing, cluster switching, and cue maintenance—by evaluating differences in
switching across adulthood.

Is Age Related to Dynamic Switching Between Retrieval Cues?
Participants produced a mean of 5.09 similarity drop switches (SD = 1.73) over the course of
the recall interval. The total number of similarity drop switches derived from the dynamic
model of memory search (Model 5) was negatively correlated with age, r = −.21, t(183) = –
2.89, p < .001. However, the total number of similarity drop switches was also strongly
correlated with the total number of recalls, r = .88, t(183) = 24.96, p < .001. This produces
an obvious confound. Because switches may occur at regular intervals during recall, the
reduction in switching may not represent a second search component as proposed by the
cluster-switching hypothesis (Troyer et al., 1997) but simply the outcome of a single slower
recall rate as suggested by the global slowing hypothesis (see also Mayr, 2002). For
example, if there is a switch every four items, fewer total items recalled would lead to fewer
total switches, and this would account for age-related differences in switching without the
need for an agerelated influence on cue switching processes.

A more meaningful correlation with age is the number of switches per item, which corrects
for the total number of items recalled. Switches per item are more weakly negatively
correlated with total number of recalls, r = −.16, t(183) = −2.16, p = .03. More important,
switches per item are positively correlated with age, r = .17, t(183) = 2.30, p = .02 (see
Figure 2). Controlling for vocabulary, education, and gender in a multiple regression did not
alter these results. Further, note that switches based on Model 4 (i.e., Troyer et al., 1997)
were not significantly (p = .10) correlated with age. In sum, the number of switches between
retrieval cues per item recalled correlates positively with age. This result is inconsistent with
the global slowing hypothesis that predicts no qualitative differences in switching as a
function of age, as well as the cluster-switching hypothesis that predicts decreased switching
as a function of age. This result is, however, consistent with the cue-maintenance hypothesis
that assumes increased switching between retrieval cues as a function of age-related decline
in cognitive control.

Is Cognitive Control Related to Dynamic Switching Between Retrieval Cues?
According to the cue-maintenance hypothesis, age-related cognitive control deficits are
responsible for the increase in switching between retrieval cues. Therefore, the effect of age
should be similar to the effect of reduced cognitive control. We used digit span as a measure
of cognitive control. Digit span ranged between 8 and 28, with a mean of 16.52 (SD = 4.30),
and was not significantly correlated with age, r = −.12, t(183) = −1.62, p = .11. A multiple
regression predicting similarity drop switches per item resulted in a significant independent
effect of both digit span, B = −0.002, t(183) = −2.10, p = .04, and age, B = 0.0006, t(183) =
2.06, p = .04. Figure 3 shows the correlation between similarity drop switches per item and
digit span, r = −.15, t(183) = −2.34, p = .02. Again, controlling for vocabulary, education,
and gender in a multiple regression did not alter these results. Individuals with higher digit
span scores switched less often per item, supporting the cue-maintenance hypothesis, which
predicts that reduced cognitive control abilities lead to increased switching between retrieval
cues.

Note that a multiple regression predicting total number of recalls is still significant for age,
F(1, 180) = 12.17, p < .001, after controlling for the effect of both similarity drop switches
and digit span (both of which are significant: For similarity drop switches, F(1, 180) = 5.58,
p = .02, and for digit span, F(1, 180) = 24.00, p < .001). This indicates that these measures
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do not fully capture individual differences in cognitive control that contribute to age
differences in memory search and that additional factors may also play a role in age-related
memory decline. One possibility is that although the digit span measure can tap into
individual differences in cognitive control, it may not be powerful enough to detect age
differences in these processes. In future studies, researchers should use more specific
measures of cognitive control and inhibitory function to examine the link between memory
search and cognitive control.

Discussion
We modeled the semantic search processes of adults between 27 to 99 years of age in a
fluency task to investigate potential mechanisms of age-related decline in memory search.
Our results suggest that people transition between local and global cues when searching
long-term memory. Specifically, people appear to switch between global frequency-based
and local item-based retrieval cues to navigate their semantic memory (cf. Gruenewald &
Lockhead, 1980; Hills et al., 2012; Hills & Pachur, 2012; Raaijmakers & Shiffrin, 1981).
Our results further show that the number of switches between global and local cues per item
recalled increases with age. This is consistent with the cue-maintenance hypothesis, which
suggests that age-related differences in cognitive control cause difficulties in focusing on
specific item-level cues and thus lead to increased switching between global and local
retrieval cues. This leads to less efficient memory search, because efficient memory search
requires an appropriate balance between too little and too much focus on local search cues
(Hills et al., 2012). The cue-maintenance hypothesis is supported with evidence that the
number of switches between retrieval cues per item recalled was correlated with a measure
of cognitive control (digit span), with more switching correlated with lower spans and fewer
items recalled. This corroborates previous research showing a relationship between
cognitive control and fluency tasks (Hills & Pachur, 2012; Rosen & Engle, 1997; Unsworth
et al., 2011). It also further supports proposals that working memory plays an important role
in the ability to maintain focus on specific cues (Hills et al., 2010; Kane & Engle, 2000) and
may be associated with age-related cognitive decline (e.g., Paxton et al., 2008).
Nevertheless, in future studies, researchers should test the ability of cognitive control
measures to predict switching relative to others measures of cognitive function to further test
the cognitive control hypothesis, that is, the idea that a specific deficit in control processes
and not general cognitive decline underlies age differences in switching between memory
representations.

Age-related global slowing may also contribute to age-related decline in memory search.
However, our results indicate that this cannot be the only explanation, because the global
slowing hypothesis proposes that age-related differences in memory retrieval are the result
of slower memory processes overall. Thus, global slowing alone predicts no differences in
cue utilization as a function of age (Mayr, 2002). Similarly, our results contrast with the
clusterswitching hypothesis, which suggests that age-related differences in cognitive control
are associated with decreased switching between retrieval cues per item recalled (Troyer et
al., 1997). Indeed, our results indicate switching increases when using the best predictor of
switches in dynamic memory search (similarity drop switches) and show no change in
switches per item when using switches based on the Troyer et al. (1997) categorization. This
suggests that the Troyer et al. (1997) categories, which were hand-coded, are potentially
insufficiently accurate to assess switching behavior and could benefit from future research
on how categories are structured.

Several limitations of the present research should be addressed in future work. First, the
study is cross-sectional, so we cannot evaluate the extent to which the observed age
differences are due to true age-related cognitive change or cohort differences in cognitive
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ability more generally. Statistically controlling for education, vocabulary, and gender did not
alter our results, but other cohort-related factors may be at work. Second, younger adults in
their twenties and thirties are underrepresented in the sample. Control analyses not reported
here suggest this did not bias the results (e.g., including an indicator variable in our analyses
for age above or below the median did not reveal a significant interaction in any of our
analyses, suggesting the slopes are not different between age groups). However, future work
is needed to more precisely examine age differences in the earliest stages of adulthood.
Third, our models assume that age differences take place at the level of search. However, the
underlying semantic representation may degrade with age, causing items in memory to have
smaller local activation levels, and this may offer an alternative explanation (not based on
changes in cognitive control) for increased switching (e.g., Borge-Holthoefer & Arenas,
2010). There is indeed evidence of age differences in vocabulary and priming tasks that are
compatible with semantic representations differing between younger and older adults (Laver
& Burke, 1993; Myerson, Ferraro, Hale, & Lima, 1992; Verhaeghen, 2003). However,
evidence based on free associations suggests that representations do not degrade with age
(Burke & Peters, 1986). With respect to the present study, the correlation between switches
per item and digit span score would not necessarily be predicted by such changes in
representation. Researchers conducting future studies could further clarify this matter by
testing search- versus representation-based explanations against one another using models
that have different representational assumptions. An alternative would be to focus on
domains where it is possible to evaluate the representation directly, for example, by using a
social fluency task based on participants’ social networks (e.g., Hills & Pachur, 2012).
Fourth, future researchers could use timing data to corroborate patterns of switching (as in
Rosen & Engle, 1997) and provide additional data to be accounted for by cognitive models.

In sum, our work provides an example of how formal modeling can provide insights into the
cognitive processes underlying adult age differences in memory search. Specifically, our
results suggest that there may be life span changes regarding cue use in memory search, with
age-related deficits in cognitive control being associated with increased switching between
memory cues.

Appendix

Participant Counts, Means, and Standard Deviations for Education, Vocabulary, Digit Span,
and Animals Recalled by Age Decade

Age range No.

Education Vocabulary Digit span Animals recalled

M SD M SD M SD M SD

29–39 8 15.9 2.9 41.5 7.4 17.5 3.6 18.3 4.2

40–49 13 14.3 2.0 45.0 14.5 16.8 2.7 19.7 6.8

50–59 16 15.7 2.2 43.5 14.7 16.1 4.8 18.2 5.4

60–69 62 15.3 2.3 44.6 10.9 17.1 4.7 17.5 5.1

70–79 65 15.5 2.7 43.4 12.6 16.4 4.2 16.5 4.8

80–89 18 13.8 2.9 34.0 16.8 15.1 3.9 12.8 4.6

92–99 3 13.3 4.2 40.7 14.6 15.3 3.2 10.0 3.6

References
Bäckman L, Nyberg L, Lindenberger U, Li S-C, Farde L. The correlative triad among aging,

dopamine, and cognition: Current status and future prospects. Neuroscience and Biobehavioral
Reviews. 2006; 30:791–807.10.1016/j.neubiorev.2006.06.005 [PubMed: 16901542]

Hills et al. Page 10

Dev Psychol. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Bopp KL, Verhaeghen P. Age-related differences in control processes in verbal and visuospatial
working memory: Storage, transformation, supervision, and coordination. Journals of Gerontology,
Series B: Psychological Sciences and Social Sciences. 2007; 62:P239–P246.10.1093/geronb/
62.5.P239

Borge-Holthoefer J, Arenas A. Semantic networks: Structure and dynamics. Entropy. 2010; 12:1264–
1302.10.3390/e12051264

Bowden SC, Petrauskas VM, Bardenhagen FJ, Meade CE, Simpson LC. Exploring the dimensionality
of digit span. Assessment. 2012 Advance online publication. 10.1177/1073191112457016

Braver TS, Barch DM. A theory of cognitive control, aging cognition, and neuromodulation.
Neuroscience and Biobehavioral Reviews. 2002; 26:809–817.10.1016/S0149-7634(02)00067-2
[PubMed: 12470692]

Buckner RL. Memory and executive function in aging and AD: Multiple factors that cause decline and
reserve factors that compensate. Neuron. 2004; 44:195–208.10.1016/j.neuron.2004.09.006
[PubMed: 15450170]

Burke DM, Peters L. Word associations in old age: Evidence for consistency in semantic encoding
during adulthood. Psychology and Aging. 1986; 1:283–292.10.1037/0882-7974.1.4.283 [PubMed:
3267408]

Crum RM, Anthony JC, Bassett SS, Folstein MF. Population-based norms for the Mini-Mental State
Examination by age and educational level. JAMA: Journal of the American Medical Association.
1993; 269:2386–2391.10.1001/jama.1993.03500180078038

Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: A practical method for grading the
cognitive state of patients for the clinician. Journal of Psychiatric Research. 1975; 12:189–
198.10.1016/0022-3956(75)90026-6 [PubMed: 1202204]

Gronlund SD, Shiffrin RM. Retrieval strategies in recall of natural categories of categorized lists.
Journal of Experimental Psychology: Learning, Memory, and Cognition. 1986; 12:550–
561.10.1037/0278-7393.12.4.550

Gruenewald PJ, Lockhead GR. The free recall of category examples. Journal of Experimental
Psychology: Human Learning and Memory. 1980; 6:225–240.10.1037/0278-7393.6.3.225

Hedden T, Gabrieli JDE. Insights into the ageing mind: A review from cognitive neuroscience. Nature
Reviews Neuroscience. 2004; 5:87–96.10.1038/nrn1323

Hills TT, Jones MN, Todd PM. Optimal foraging in semantic memory. Psychological Review. 2012;
119:431–440.10.1037/a0027373 [PubMed: 22329683]

Hills TT, Pachur T. Dynamic search and working memory in social recall. Journal of Experimental
Psychology: Learning, Memory, and Cognition. 2012; 38:218–228.10.1037/a0025161

Hills TT, Todd PM, Goldstone RL. The central executive as a search process: Exploration and
exploitation in generalized cognitive search processes. Journal of Experimental Psychology:
General. 2010; 139:590–609.10.1037/a0020666 [PubMed: 21038983]

Ivnik RJ, Malec JF, Smith GE, Tangalos EG, Peterson RC, Kokmen E, Kurland LT. Mayo’s older
Americans normative studies: WAIS–R norms for ages 56 to 97. Clinical Neuropsychologist.
1992; 6(Suppl. 1):1–30.10.1080/13854049208401877

Jones MN, Kintsch W, Mewhort DJK. High-dimensional semantic space accounts of priming. Journal
of Memory and Language. 2006; 55:534–552.10.1016/j.jml.2006.07.003

Jones MN, Mewhort DJK. Representing word meaning and order information in a composite
holographic lexicon. Psychological Review. 2007; 114:1–37.10.1037/0033-295X.114.1.1
[PubMed: 17227180]

Kane MJ, Engle RW. Working-memory capacity, proactive interference, and divided attention: Limits
on long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and
Cognition. 2000; 26:336–358.10.1037/0278-7393.26.2.336

Kozora E, Cullum CM. Generative naming in normal aging: Total output and qualitative changes using
phonemic and semantic constraints. Clinical Neuropsychologist. 1995; 9:313–
320.10.1080/13854049508400495

Lanting S, Haugrud N, Crossley M. The effects of age and sex on clustering and switching during
speeded verbal fluency tasks. Journal of the International Neuropsychological Society. 2009;
15:196–204.10.1017/S1355617709090237 [PubMed: 19203431]

Hills et al. Page 11

Dev Psychol. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Laver GD, Burke DM. Why do semantic priming effects increase in old age: A meta-analysis.
Psychology and Aging. 1993; 8:34–43.10.1037/0882-7974.8.1.34 [PubMed: 8461113]

Lewandowsky, S.; Farell, S. Computational modeling in cognition: Principles and practice. London,
England: Sage; 2010.

Li S-C, Lindenberger U, Bäckman L. Dopaminergic modulation of cognition across the life span.
Neuroscience and Biobehavioral Reviews. 2010; 34:625–630.10.1016/j.neubiorev.2010.02.003
[PubMed: 20152855]

Lindenberger U, Mayr U, Kliegl R. Speed and intelligence in old age. Psychology and Aging. 1993;
8:207–220.10.1037/0882-7974.8.2.207 [PubMed: 8323725]

Mayr U. On the dissociation between clustering and switching in verbal fluency: Comment on Troyer,
Moscovitch, Winocur, Alexander, and Stuss. Neuropsychologia. 2002; 40:562–566.10.1016/
S0028-3932(01)00132-4 [PubMed: 11749985]

Mayr U, Kliegl R. Complex semantic processing in old age: Does it stay or does it go? Psychology and
Aging. 2000; 15:29–43.10.1037/0882-7974.15.1.29 [PubMed: 10755287]

Myerson J, Ferraro FR, Hale S, Lima SD. General slowing in semantic priming and word recognition.
Psychology and Aging. 1992; 7:257–270.10.1037/0882-7974.7.2.257 [PubMed: 1610515]

Paxton JL, Barch DM, Racine CA, Braver TS. Cognitive control, goal maintenance, and prefrontal
function in healthy aging. Cerebral Cortex. 2008; 18:1010–1028. 10.1093/cercor/ bhm135.
[PubMed: 17804479]

Raaijmakers JGW, Shiffrin RM. Search of associative memory. Psychological Review. 1981; 88:93–
134.10.1037/0033-295X.88.2.93

Rosen VM, Engle RW. The role of working memory capacity in retrieval. Journal of Experimental
Psychology: General. 1997; 126:211–227.10.1037/0096-3445.126.3.211 [PubMed: 9281831]

Rosselli M, Tappen R, Williams C, Salvatierra J, Zoller Y. Level of education and category fluency
task among Spanish speaking elders: Number of words, clustering, and switching strategies.
Aging, Neuropsychology, and Cognition. 2009; 16:721–744.10.1080/13825580902912739

Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychological
Review. 1996; 103:403–428.10.1037/0033-295X.103.3.403 [PubMed: 8759042]

Salthouse TA. What and when of cognitive aging. Current Directions in Psychological Science. 2004;
13:140–144.10.1111/j.0963-7214.2004.00293.x

Thurstone, LL. Primary mental abilities. Chicago, IL: University of Chicago Press; 1938.

Tombaugh TN, Kozak J, Rees L. Normative data stratified by age and education for two measures of
verbal fluency: FAS and animal naming. Archives of Clinical Neuropsychology. 1999; 14:167–
177.10.1016/S0887-6177(97)00095-4 [PubMed: 14590600]

Tomer R, Levin BE. Differential effects of aging on two verbal fluency tasks. Perceptual and Motor
Skills. 1993; 76:465–466.10.2466/pms.1993.76.2.465 [PubMed: 8483658]

Troyer AK. Normative data for clustering and switching on verbal fluency tasks. Journal of Clinical
and Experimental Neuropsychology. 2000; 22:370–378.10.1076/1380-3395(200006)22:3;1-
V;FT370 [PubMed: 10855044]

Troyer AK, Moscovitch M, Winocur G. Clustering and switching as two components of verbal
fluency: Evidence from younger and older healthy adults. Neuropsychology. 1997; 11:138–
146.10.1037/0894-4105.11.1.138 [PubMed: 9055277]

Unsworth N, Engle RW. The nature of individual differences in working memory capacity: Active
maintenance in primary memory and controlled search from secondary memory. Psychological
Review. 2007; 114:104–132.10.1037/0033-295X.114.1.104 [PubMed: 17227183]

Unsworth N, Spillers GJ, Brewer GA. Variation in verbal fluency: A latent variable analysis of
clustering, switching, and overall performance. The Quarterly Journal of Experimental
Psychology. 2011; 64:447–466.10.1080/17470218.2010.505292 [PubMed: 20839136]

Verhaeghen P. Aging and vocabulary scores: A meta-analysis. Psychology and Aging. 2003; 18:332–
339.10.1037/0882-7974.18.2.332 [PubMed: 12825780]

Verhaeghen P, Salthouse TA. Meta-analyses of age-cognition relations in adulthood: Estimates of
linear and nonlinear age effects and structural models. Psychological Bulletin. 1997; 122:231–
249.10.1037/0033-2909.122.3.231 [PubMed: 9354147]

Hills et al. Page 12

Dev Psychol. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Walker WH, Kintsch W. Automatic and strategic aspects of knowledge retrieval. Cognitive Science.
1985; 9:261–283.10.1207/s15516709cog0902_3

Wechsler, D. Wechsler Adult Intelligence Scale: Revised Manual (WAIS–R). New York, NY:
Psychological Corporation; 1997.

Hills et al. Page 13

Dev Psychol. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Number of animals recalled during a 1-min interval as a function of age. Each point
represents a single individual. The line is the best fit regression, which used the linear and
quadratic terms reported in the text.
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Figure 2.
Similarity drop switches per item as a function of age. Similarity drop switches were
computed as described in the text, representing places in the production interval where the
sequence of recalled animals showed very low and then very high semantic similarity as
measured by the bound encoding of the aggregate language environment (BEAGLE) model.
The line is the best fit regression line (B = 0.0007, r = .19).
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Figure 3.
Similarity drop switches per item as a function of digit span. The line is the best fit
regression line (B = −0.002, r = −.20).
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