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Advancements in high-content fluorescence microscopy have driven development of
analytical approaches for extracting meaningful information from rich and complex
biological image data. Algorithm development can be aided dramatically by the use of
curated test data. To evaluate the generality and performance of new algorithms, test data
should ideally contain annotation for how images differ in terms of cell phenotypes,
population heterogeneity, and/or micro-environmental1 effects. Currently there is a paucity
of diverse, well-annotated data. A complementary approach is to make use of synthetically
generated data, in which biological1 and imaging2 effects can be varied independently and
“ground truths” known. While approaches exist for rendering realistic cells3,4, creating
biologically realistic cell population images has remained challenging; biomarker, cell, and
population phenotypes can be subtle, interconnected, and system dependent. To deal with
these challenges, we developed SimuCell (http://www.SimuCell.org), an open-source
framework (Fig. 1a) for specifying and rendering realistic microscopy images containing
diverse cell phenotypes, heterogeneous populations, micro-environmental dependencies and
imaging artifacts.

SimuCell differs from existing cell population generators5 in three ways. Firstly, SimuCell
can generate heterogeneous cellular populations composed of diverse cell types. Each cell
type can be defined independently by specifying models for cell and organelle shape, and
distributions of markers over these shapes. Models are typically algorithmic, but there is
support for rendering produced by other tools, such as the highly realistic models learned
from image data by CellOrganizer3 (via the new SLML markup language). Secondly,
SimuCell allows users to specify interdependencies between population, biomarker and cell
phenotypes. For example, a marker’s cellular distribution can be affected by the cell’s
microenvironment (Fig. 1b; marker 1) as well as the localization pattern of another marker
(Fig. 1b; markers 2 and 3). These definable image properties are accessible to users either
via a novel scripting syntax built on top of MATLAB, or through a graphical user interface,
while intermediate results can define further “ground truths” (e.g. cell boundaries can be
used to validate segmentation algorithms).

Finally, SimuCell was designed to be easily extensible, providing a standard framework for
defining new plugins that can also be shared through the SimuCell website. Users interested
in adding novel phenotypes to SimuCell’s palette can typically do so by writing just a few
lines of code, in part due to MATLAB’s extensive library of functions. Taken together,
SimuCell allows the definition of a broad range of phenotypes, encompassing highly non-
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trivial population-level effects such as cell-type heterogeneity or local cell-density effects
(Fig. 1c). While realistic synthetic data cannot replace true experimental data6, SimuCell can
be a useful part of the algorithm developer’s toolbox by generating rich, flexible test image
data sets containing specified, parameterized “biological” effects.
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Figure 1.

Rajaram et al. Page 3

Nat Methods. Author manuscript; available in PMC 2013 November 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


