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ABSTRACT

Motivation: Dynamic simulation of genome-scale molecular
interaction networks will enable the mechanistic prediction of geno-
type-phenotype relationships. Despite advances in quantitative biol-
ogy, full parameterization of whole-cell models is not yet possible.
Simulation methods capable of using available qualitative data are
required to develop dynamic whole-cell models through an iterative
process of modelling and experimental validation.

Results: We formulate quasi-steady state Petri nets (QSSPN), a novel
method integrating Petri nets and constraint-based analysis to predict
the feasibility of qualitative dynamic behaviours in qualitative models of
gene regulation, signalling and whole-cell metabolism. We present the
first dynamic simulations including regulatory mechanisms and a
genome-scale metabolic network in human cell, using bile acid homeo-
stasis in human hepatocytes as a case study. QSSPN simulations re-
produce experimentally determined qualitative dynamic behaviours
and permit mechanistic analysis of genotype-phenotype relationships.
Availability and implementation: The model and simulation software
implemented in C++ are available in supplementary material and at
http://sysbio3.fhms.surrey.ac.uk/gsspn/.

Contact: a.kierzek@surrey.ac.uk

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

One of the fundamental goals of molecular biology is to delineate
the molecular mechanisms by which genetic information is ex-
pressed in response to environmental cues, giving rise to a spe-
cific phenotype. Given the number of molecular components of a
cell and the dynamic non-linear nature of their interactions,
mechanistic computational modelling is an indispensable tool.
Mechanistic models formally represent the current knowledge
about the molecular machinery of cells. The molecules and inter-
actions included into such models reflect the extent of genome
sequence annotation, with computer simulation used to predict
system behaviour under particular environmental conditions. In
systems biology, such unbiased representation of molecular inter-
actions in mechanistic models is referred to as reconstruction
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(Oberhardt et al., 2009). In a sense, the ultimate goal of recon-
struction is to reverse engineer the entire molecular machinery of
the cell in a computer model capable of reproducing the
responses of specific cells/tissues to any environmental perturb-
ation. In particular, the ability to predict the consequences of
genetic background on human cell behaviour is of practical
importance in clinical settings (Kolodkin et al., 2012). Genetic
and molecular profiling of individuals and diseased tissues is
becoming increasingly important not only for the development
of new therapies, but also in the design of patient-tailored treat-
ment regimes. We believe that mechanistic prediction of geno-
type—phenotype relationship through computer simulation of the
genome-scale molecular interaction networks in human cells is
indispensable to the development of personalized medicine
(Hood and Tian, 2012).

Significant effort has already been dedicated to the formal
representation of existing knowledge of the molecular machinery
of the cell. The predominant framework is a bipartite graph
where nodes representing molecules are connected to nodes rep-
resenting interactions. This representation underlies established
knowledge bases such as Reactome (Croft et al., 2010), BioCyc
(Caspi et al., 2011), KEGG (Kanehisa et al., 2011) and dedicated
large-scale reconstructions of cellular systems, including human
cell networks relevant to major diseases (Calzone et al., 2008;
Oda and Kitano, 2006; Raza et al., 2010). It is also reflected in
major data exchange standards such as systems biology markup
language (SBML) (Hucka ef al., 2003) and graphical notations
such as (systems biology graphical notation) SBGN (Le Novere
et al., 2009). A major roadblock in using this wealth of formally
represented knowledge to predict cellular behaviour is the lack of
quantitative data about molecular amounts and interaction rates,
a prerequisite to constructing dynamic models. Despite the rapid
development of quantitative methods in molecular biology, full
parameterization of genome-scale dynamic models, particularly
of human cell systems, is still prevented by the lack of data. On
the other hand, both high-throughput methods of functional
genomics and traditional molecular biology routinely generate
timecourse data, where dynamic changes in relative molecular
activity after perturbation are monitored. Thus, there is a need
to develop dynamic mechanistic computer simulation methods,
capable of generating qualitative predictions about system be-
haviour that can be compared with available experimental
data. Qualitative simulation would facilitate the iterative refine-
ment of whole-cell mechanistic models through both theoretical
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prediction and experimental validation. They would also make it
possible to fully use currently available network connectivity re-
constructions to provide insights into the molecular mechanisms
of human disease.

Although it is not yet possible to create a mechanistic model of
the molecular interaction network involving all gene products,
the metabolic capabilities of a whole cell can already be mech-
anistically simulated using constraint-based methods (CBM)
(Lewis et al., 2012; Price et al., 2004). Briefly, a set of metabolic
reaction formulas is constructed according to the complement of
enzymes/transporters inferred from genome annotation. Next, a
linear model of flux distribution at steady state is constructed
and linear programming used to identify maximal possible flux
through selected reactions in the network. This basic flux balance
analysis (FBA) method can identify metabolites that can be pro-
duced given the composition of available nutrients. Even at this
purely qualitative level of network description, the consequences
of varying genetic background can be studied through in silico
gene inactivation experiments. The major limitation in extending
this methodology to other classes of molecular interaction is the
assumption of a steady state. Owing to this assumption, essential
transient behaviours such as burst or oscillations cannot be stu-
died. However, the timescale separation between fast metabolic
reactions and slow gene regulatory processes means that con-
straint-based models can be combined with dynamic models of
regulatory processes (Covert et al., 2001; 2008; Karr et al., 2012;
Min Lee et al., 2008). These quasi-steady state methods have
been used for the simulation of model microorganisms, where
relatively small-scale metabolic networks have been integrated
with dynamic models of regulatory processes. However, none
have yet been applied to the study of the clinically relevant cel-
lular behaviours in human tissues.

Petri net (PN) theory provides a general representation of inter-
acting components in a network (Breitling ez al., 2008). PNs are
bipartite graphs comprising two node classes: places and transi-
tions. The state of the system is represented by the number of
tokens assigned to each place. Transitions represent interactions
within the system by moving tokens between places. This formal-
ism naturally lends itself to the representation of molecular inter-
action networks, with places representing molecules, transitions
molecular interactions and tokens corresponding to numbers of
molecules or discrete molecular activity levels. Molecular inter-
action networks represented as PNs can be analyzed using a var-
iety of simulation and formal analysis methods developed in the
PN field (Rohr et al., 2010). PNs have been applied in the model-
ling of molecular network dynamics (Breitling et al., 2008; Goss
and Peccoud, 1998; Mura and Csikasz-Nagy, 2008). However, of
interest here is that PNs have also been shown to be advantageous
for qualitative modelling of gene regulatory networks (Grunwald
et al., 2008; Steggles et al., 2007) and signalling pathways (Ruths
et al., 2008a, b), where network connectivity is analyzed without
knowledge of quantitative molecular concentrations and inter-
action rate constants.

Here, we describe quasi-steady state PNs (QSSPN), a novel
algorithm capable of qualitative dynamic simulation of genome-
scale molecular interaction networks including all classes of mo-
lecular interactions. We apply the algorithm to simulation of the
interplay between whole-cell metabolism and gene regulatory
and signalling networks involved in bile acid (BA) homeostasis

in human hepatocytes. To our knowledge, this is the first dy-
namic simulation of a molecular interaction network involving
gene regulation, signalling and full genome-scale metabolic net-
work (GSMN) in a human cell. The unique feature that enables
QSSPN to perform this simulation is Monte Carlo sampling of
the feasible dynamic sequences of molecular transitions in the
qualitative quasi-steady state model. In the following sections,
we introduce QSSPN method, demonstrate its application to
human hepatocyte simulation and compare its features with
other approaches.

2 METHODS
2.1 QSSPN algorithm

Figure 1 shows an overview of the QSSPN method. The molecular inter-
actions are divided into two sets: quasi-steady state fluxes (QSSF), rep-
resenting metabolic reactions; and dynamic transitions (DT), representing
other classes of molecular interaction, such as signalling pathways and
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Fig. 1. Overview of quasi-steady state PN simulation. The DT component
of the model is represented using the PN formalism. Circles denote places;
dots within circles are tokens; squares are transitions; arrows are edges;
open circle headed arrows are inhibitory edges; and full circle headed
arrows are read edges. Constraint and objective nodes couple dynamic
PN to QSSF network leading to synthesis of metabolite B. The constraint
node sets bounds of the rate limiting reaction producing B. The objective
node requests evaluation of the maximal flux towards metabolite B by
FBA. The objective value (o) at initial state is 0.5. The four basic stages
of a single QSSPN iteration are shown: (1) firing of PN transition leads to
increased number of tokens on constraint node. The pre-place and transi-
tion that fired are connected by a read edge, hence no token was consumed.
(2) The metabolic flux bounds are updated using the lookup table asso-
ciated with that constraint node. (3) FBA is executed to evaluate the ob-
jective function and the associated lookup table, mapping objective
function value to the number of tokens, is used to update the state of the
objective node. (4) The algorithm proceeds to next iteration. Multiple it-
erations of steps 1-4 generate a single token game trajectory
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gene regulation. QSSF are interrogated through CBMs, whereas DTs are
represented using extended PN formalism (Breitling ez al., 2008).

The activities of molecular species represented by PN places are given
by an integer number of tokens. In most instances, tokens represent dis-
crete levels of activity, but fully quantitative description is, in principle,
possible, with node token status reflecting molecular quantities. QSSF
and DT interaction sets are connected by two classes of PN places: con-
straint places set flux bounds in QSSF, translating place token status in to
flux bounds; objective places represent metabolic outputs of the QSSF
network.

Each molecular interaction in a PN subset is represented by a transi-
tion connected to pre-places representing substrates, activators and
inhibitors and post-places representing products. Substrates and products
are connected to transitions by standard edges, whereas catalytic activa-
tors and inhibitors are connected to transitions by read and inhibitor
edges, respectively. When a transition fires, tokens from substrate
pre-places are consumed and tokens representing products fired to
post-places; the states of pre-places connected to transitions by read or
inhibitor edges are not changed. In the simplest definition of system dy-
namics, transitions can fire if each substrate and activator pre-place has at
least one token and all inhibitory pre-places have no tokens. To allow
formulation of general rules involving token number thresholds, we
define transition propensity Equation (1):

N
Pr=¢ l_[Mi(xi) (1
i=1

where P, is a propensity function of transition t, ¢ is a rate constant, N is
the number of pre-places of transition t, X; is the number of tokens at pre-
place i and p; is the pre-place activity in the transition depending on the
pre-place state. The activity function is a look-up table of T thresholds t;
and activities a; allowing general definition of the pre-place contribution
to the transition propensity Equation (2):
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The interpretation of a transition propensity during simulations is de-
pendent on the transition class: stochastic, continuous or immediate.
Stochastic transition propensity is interpreted as the probability density
of the transition firing in the next, infinitesimally small, time step.
Continuous transitions are updated after each iteration of the simulation,
and the number of tokens moved is proportional to the propensity (i.e.
the propensity is used as reaction rate). Immediate transition fires once
whenever its propensity function is different than 0. To further enhance
the power of our method to integrate experimental data, we allow sto-
chastic transitions to be delayed (Bratsun et al., 2005).

Supplementary Figure S1.1 shows the algorithm that is used to gener-
ate a single dynamic trajectory of the QSSPN network, which following
PN nomenclature will be referred to as a token game trajectory. The
algorithm is based on the Gillespie algorithm (Gillespie, 1977) and the
hybrid maximal timestep method (Puchatka and Kierzek, 2004), making
it numerically stable and facilitating interrogation of modular models
reconstructed at varying levels of detail. Detailed formulation of the
QSSPN algorithm is provided in Section 1 of the Supplementary
Materials.

2.2 Monte Carlo sampling of token game trajectories

A major feature of QSSPN simulations is the Monte Carlo sampling of
token game trajectories. Multiple simulations, starting from the same
initial conditions, output a sample of token game trajectories differing
as the result of alternative sequences of stochastic transitions. Trajectories
are examined to detect occurrences of dynamic behaviours of interest.
Occurrence of a single trajectory exhibiting the behaviour of interest

indicates that there exists a sequence of interactions, permissible with
the given network connectivity, that mechanistically explains the behav-
iour. The major application of token game trajectory sampling is then to
predict effects of system perturbations, such as gene inactivation or
inhibition of molecular interaction. The number of trajectories exhibiting
behaviour of interest is calculated before and after perturbation. The
binomial probability confidence intervals are then used to determine
whether perturbation significantly affects the fraction of trajectories
exhibiting the behaviour. The simulations of human hepatocyte presented
in this work demonstrate that comparative token game trajectory sam-
pling provides an invaluable tool for mechanistic prediction of the effects
of genetic polymorphisms and environmental changes on dynamic cellu-
lar behaviour. It enables qualitative simulation where tokens are inter-
preted as discrete activity levels of molecular species. The maximum
numbers of tokens allowed on the network nodes are low and only a
few discrete activity levels are considered. The rates are all set to the same
value, meaning all stochastic transitions, for which input conditions are
satisfied, are equally likely to happen; time is interpreted qualitatively,
with the time axis reflecting the order of events rather than actual time.
Our results show that this approach is successful in using qualitative
reconstructions of molecular interaction networks to predict results of
qualitative molecular biology experiments. Finally, we would like to
note that formulation of our algorithm allows incorporation of rate con-
stants as they become available. In a fully quantitative scenario, the
number of tokens can represent the number of molecules in the cell
and equations 1 and 2 can express mass action kinetics with rate con-
stants. Quasi-steady state simulation would then produce molecular
number timecourses in real time.

3 RESULTS

3.1 General model of gene expression

Regulation of gene expression is a key cellular process that needs
to be included in any attempt to mechanistically simulate geno-
type—phenotype relationship. To enable QSSPN simulation of
molecular networks in human cells, we have constructed a gen-
eral model of gene expression, using qualitative rules to describe
the relationship between gene regulation, transcription, transla-
tion, precursor availability and messenger RNA (mRNA)/
protein degradation (Fig. 2). PN formalism allows us to incorp-
orate established SBGN and also use graphical notation to
represent model rules.

The gene expression model is illustrated using a hypothetical
gene operating in a human hepatocyte. The ‘Gene’ place is used
to represent the presence or absence of the gene in the genome,
represented as 0 or 1 token, respectively. The ‘Active_Gene’
place represents the presence of a fully assembled transcription
initiation complex for the respective gene, meeting the conditions
for transcription. This is modelled by the transition that requires
‘Active_Gene’ to fire and places tokens on the ‘mRNA’ place.
The PN read edge is used to ensure that the transition does not
consume tokens from ‘Active_Gene’. Translation is modelled in
a similar way; it requires the presence of ‘mRNA’ and places
tokens on ‘Protein’ place without consuming ‘mRNA’.
Degradation transitions remove tokens from both ‘Protein’ and
‘mRNA’ places. The flexibility of the PN formalism is used to
express dependency between synthesis and degradation as a set
of rules. Transitions and edges exclusively describing model rules
are shown in grey to distinguish them from PN elements repre-
senting biological processes. The inhibitory edge that connects
‘Active_Gene’ with ‘mRNA’ degradation introduces the rule that
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Fig. 2. Qualitative gene expression model. (A) QSSPN network diagram
using graphical notation based on SBGN is used to distinguish PN nodes
representing DNA elements (yellow oval), RNA molecules (green oval),
proteins (large green circles) and degradation products (small pink cir-
cles). Light grey colour is used for edges that are used solely to express
rules rather than physical interactions. Read and inhibitory edges are
headed by full and open circles, respectively. (B) Single token game tra-
jectories. In qualitative QSSPN simulation, molecular activities are rep-
resented by 0, 1 or 2 tokens and a time axis is used to represent order of
events rather than physical time. Transcription initiation conditions are
satisfied at the initial state. Subsequently, transcript and protein levels
reach maximal level. Enzymatic activity of the protein enables synthesis
of agonist, which shuts down transcription. The mRNA degradation is
then followed by protein degradation. In the absence of enzyme, agonist
is not made, which enables transcription. Importantly, the qualitative
trajectory exhibits oscillatory dynamic behaviour of negative feedback

there is no net mRNA degradation if transcription is possible.
We then introduce a second rule that prevents the unnecessary
firing of the transcription reaction, when ‘mRNA’ has two
tokens, which is a maximal number of tokens in this model.
This rule is implemented as an inhibitory edge, which sets pro-
pensity of transcription to 0, if ‘mRNA’ has two tokens.
Together, these rules result in ‘mRNA’ place acquiring two
tokens when conditions of transcription are satisfied and remain-
ing at this state as long as the transcriptional pre-conditions are
met. When conditions for transcription are no longer satisfied,
the degradation transition removes tokens from the ‘mRNA’
place. Translation and protein degradation are modelled in the
same fashion. Thus, we can describe the rise of a transcript/pro-
tein to two functional levels and its subsequent degradation in a
rule-based model that uses only a few discrete activity levels and
is computationally efficient.

Our PN model of gene expression also includes the metabolic
demands of transcription and translation processes. Although
the model shown in Figure 2 is for method illustration purposes
only and does not represent any existing biological system, we
have coupled the gene expression model to a published GSMN
reconstruction of human hepatocyte whole-cell metabolism
(HepatoNet1) (Gille et al., 2010). This allows us to test integra-
tion of the gene expression model with a realistic scale model of
metabolic demands. The ‘dNTPs’ and ‘AAs’ objective nodes test
the sum of fluxes towards the 4 nucleotides and 20 amino acids,

respectively. In a qualitative model only the producibility of all
precursors is required, with both objective nodes assuming the
state of 1 if the objective values are more than a threshold of 1073
(equivalent to testing ‘greater than 0’ condition). The ‘dNTPs’
and ‘AAs’ are connected to transcription and translation transi-
tions as logical pre-places, modelling the precursor requirement
of these processes. Logical PN nodes (depicted as shaded places)
are an established feature of extended PN formalism, meaning
that every ‘dNTPs” and ‘AAs’ node has the same token status
across a PN network. An additional rule is introduced to trigger
net degradation of mRNA/protein if transcription/translation
stops because of a lack of precursors.

To complete our illustration of a general gene expression
model and its coupling with whole-cell metabolism, we have
introduced transcriptional regulation by a transcription factor
that senses availability of a small molecular agonist produced
by metabolic network and made synthesis of this metabolite de-
pendent on enzymatic activity of a protein produced by the
‘Gene’. We wuse intracellular cholate as an agonist and
cholesterol-7-alpha-monooxygenase (CYP7A1l) for enzymatic
activity. The agonist is an objective node, the state of which
depends on maximal producibility of intracellular cholate. The
‘Protein’ is a constraint node, which sets bounds of CYP7AI
catalyzed reactions in HepatoNetl. We then model interference
of the agonist with transcription factor binding at the site con-
trolling transcription initiation. The free and bound state of the
binding site is represented by two PN places, with transcription
factor and agonist affecting transitions between both forms (i.e.
the binding site is bound if transcription factor is present and
agonist is absent).

We used the model to perform qualitative simulation of gene
expression dynamics (Fig. 2B), with the PN node state of two
tokens being used to represent a steady state where transcript
and protein are functional. Time has been used to order the
sequence of events rather than to represent physical time, and
is expressed in arbitrary units (a.u.) and relative rates in 1/a.u.
We assume that formation of a transcriptionally active gene
complex is rate limiting and use immediate transcription and
translation transitions. We use stochastic transitions, with a rela-
tive rate of 100/a.u. for the formation of transcriptionally active
complex, so in the case of a realistic system with multiple genes,
the genes are fired asynchronously and multiple trajectories with
different sequences of gene activation are sampled. The dissoci-
ation of stable complex between transcription factor and binding
site was assumed to be slow and was modelled by a stochastic
transition with a relative rate of 10/a.u. Stochastic transitions
with the rates of 1/a.u. were used for degradation reactions.
All other processes were assumed to be fast and were modelled
by immediate transitions. We would like to stress that rates and
activity thresholds are used to express qualitative rules.

The timecourses of gene expression dynamics qualitatively re-
produce the major qualitative features of gene expression behav-
iour and its coupling with whole-cell metabolism. When
transcription activation conditions are satisfied, transcript and
protein quickly reach their functional steady states. When en-
zymatic activity of the protein enables synthesis of the agonist,
transcription is no longer possible, mRNA and protein degrad-
ation processes are no longer balanced by synthesis and both
transcript and protein products degrade. This negative feedback
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leads to oscillations and demonstrates that QSSPN can generate
qualitative trajectories exhibiting complex dynamic behaviours.
In the following case study, we will demonstrate that these
trajectories are directly comparable with readily available experi-
mental data. Moreover, the simulation of these trajectories is
computationally efficient and crucial for generation of trajectory
samples (section 8 of Supplementary Materials). The oscillatory
behaviour can be modelled with just two activity levels and thus
the number of molecular events that need to be simulated is
relatively small. This is important, as any change of state may
potentially trigger evaluation of objective functions of whole-cell
metabolic model, the most computationally expensive step of the
QSSPN. Thus, apart from addressing the major challenge of
sparse quantitative information, the rule-based approach
shown here has a substantial computational advantage over
ordinary differential equation (ODE) or stochastic simulation;
in quantitative models many state changes would have to be
simulated to model the balance between synthesis and degrad-
ation, requiring a lot of CBM evaluations. In contrast, our novel
rule-based gene expression model generates complex qualitative
dynamics with far fewer state updates.

3.2 Dynamic simulation of BA homeostasis

To demonstrate the power of our approach, we applied QSSPN
to the complex system of BA homeostasis in human hepatocytes,
the major cell type within the liver. Primary BAs are produced by
hepatocytes as the products of cholesterol catabolism. They are
vital for the intestinal absorption of lipophilic nutrients and the
hepatobiliary secretion of endogenous and xenobiotic metabol-
ites. They also act as signalling molecules and play important
roles in the regulation of glucose lipid metabolism in the entero-
hepatic system and peripheral tissues (Chiang, 2009; Li and
Chiang, 2012). Given their essentiality for health, but toxicity
at high levels, it is not surprising that BA synthesis is tightly
regulated. Despite the importance of BA homeostasis, there are
limited quantitative measurements of molecule numbers and re-
action rates of this system, necessitating qualitative modelling.
Thus, our test case represents a typical situation faced by mod-
ellers; detailed quantitative measurements are in general not
available for clinically relevant molecular interactions networks.
In the Discussion and Supplementary Materials, we summarize
evidence that QSSPN is a method of choice for qualitative mod-
elling of this system.

Using the QSSPN framework, we have reconstructed a
molecular interaction network representing whole-cell metabol-
ism of hepatocyte coupled to the gene regulation and signalling
processes known to be involved in BA homeostasis. For the
QSSF, we use the published HepatoNet1 whole-cell reconstruc-
tion of human hepatocyte metabolism (Gille et al., 2010). The
objective nodes in our reconstruction monitor producibility of
the BAs chenodiol and cholate in the cytoplasm, endoplasmic
reticulum, bile canalicular and sinusoidal space; the producibility
of cholesterol was also monitored in these compartments, allow-
ing simulation of regulatory feedback. Intracellular BAs
are farnesoid X receptor (FXR) agonists, regulating transcrip-
tion through the FXR response element, inverted repeat (IR)I.
FXR functions as a heterodimer with retinoid X receptor
(RXR)a, although the exact molecular events of

A B
patocyte GSSPN Model 10 e ihcloaaeesl
Petri net Places 206
Enzymes & 8 — Chulais_
Transporters 9 2 A —— Chenodiol
Nuclear Receptors ]
Petri net Transitions 214
Hepatocyte-specific Reactions 2539
Enzymatic 853
Transport 1454
Hepatocyte-specific Metabolites 777
i 11.1%

Time (a.u'.) ! !

Fig. 3. QSSPN model of the global metabolism regulation maintaining
BA homeostasis in human hepatocyte. (A) Summary table of hepatic
model composition. (B) Example, single QSSPN trajectory showing
homeostatic response to cholesterol perturbation. The continuous piece-
wise-linear cholesterol perturbation is modelled by continuous transitions
and large numbers of tokens. Token numbers in the cholesterol time-
course have been divided by 100000 to fit onto the plot. The synthesis
flux for both BAs quickly rises to maximal level in response to increasing
cholesterol availability. Subsequently, the regulatory network decreases
the BA flux to basal level

this interaction are unknown (Chiang, 2009; Kalaany and
Mangelsdorf, 2006). As such, we have defined qualitative rules
such that transcriptional regulation of genes through IR1 re-
quires the presence of both FXR and RXRa proteins.
Transcriptional regulation through the liver X receptor (LXR)
response element direct repeat (DR)4 was modelled in the same
way, requiring the producilibility of endogenous LXR agonist,
hydroxycholesterol, another cholesterol catabolite and the pres-
ence of both LXRa and RXRe (Kalaany and Mangelsdorf,
2006; Zhao and Dahlman-Wright, 2010). DR1 requires the bind-
ing of both fetoprotein transcription factor (FTF) and hepato-
cyte nuclear factor (HNF)4« for transcriptional activation of its
regulated genes. In contrast, small heterodimer partner (SHP)
and cFOS individually inhibit transcription of DR1 regulated
genes. Nucleotide and amino acid producibilities were included
as metabolic feedbacks required for gene expression, as described
previously. Diacylglycerol (DAG) and cyclic adenosine mono-
phosphate (cAMP) producibilities were also included as meta-
bolic inputs into the mitogen-activated protein kinase (MAPK)
signalling pathway. Qualitative rules were constructed to repro-
duce a homeostatic response of the system to an increase in
intracellular cholesterol within maximal simulation time. The
full set of rules and a network diagram of the hepatocyte
model are given in the supplementary materials
(Supplementary Table S3.1 and Supplementary Fig. S2.1).
Figure 3 presents statistics of our reconstruction and an
example qualitative trajectory exhibiting a homeostatic response.
Rising availability of intracellular cholesterol results in the in-
crease of BA fluxes to maximal levels; cholesterol is cleared
through conversion to BAs plus increased transport reactions.
When the cholesterol source is depleted, the level of intracellular
BAs starts to decrease. During this time the regulatory network
responds to the high BA flux by down-regulating conversion of
cholesterol to BAs. BA flux is stabilized at the basal level, slow-
ing the rate of cholesterol clearance, which is then dependent on
efflux transport alone. In summary, the system responds to the
burst in cholesterol availability by altering network fluxes to
maximize cholesterol clearance, but prevents prolonged synthesis
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of large quantities of BA, mitigating against their potential tox-
icity. Simulated trajectories demonstrate that a dynamic response
reproducing known biology is feasible in this hepatocyte model.
It is worth noting that modelling the activity of only six nuclear
receptors, controlling 15 genes, the network regulates the activity
of 269/2539 metabolic reactions. This highlights the importance
of modelling dynamic regulatory networks to facilitate the study
of mechanism, crosstalk and feedback.

Quantitative measurements of molecular amount timecourses
are not available for this system, but qualitative experimental
data on responses to perturbations are a common situation in
the literature. A powerful feature of QSSPN is its capacity to
make use of qualitative data to validate and refine qualitative
models. Using our QSSPN hepatocyte model, we simulated the
published experimental conditions of Song et al. where cultured
human hepatocytes were treated with an FXR-specific agonist
and subject to small interfering RNA (siRNA) knock-out of
SHP (Song et al., 2008). Simulations were started from an initial
state where there was one token on each gene place and all other
PN nodes token states 0, representing the genotype of the system.
Simulations were run for one arbitrary time unit to allow all
genes to reach basal expression levels, and the FXR permanently
activated to simulate treatment with the FXR-specific agonist,
GW4064. We compared the results of 120 simulated trajectories,
with relative mRNA expression data obtained by qRT-PCR in
the original publication (Fig. 4). In Section 4.1 of the
Supplementary Material, we present detailed definitions of quali-
tative behaviours, which are used to evaluate both experimental
data and simulation results, thus ensuring direct comparison of
simulation and experiment.

The experimental data (Fig. 4B) show that following GW4064
treatment, CYP7A1 transcription is inhibited, SHP shows a
burst in expression, FGF19 expression is activated and HNF4«
transcripts remain constant. Despite a small sample size we can
establish that each of the transcripts exhibits experimentally
determined behaviours with a probability higher than upper
95% confidence interval of other behaviours. To robustly simu-
late experimental data, it was necessary to incorporate the nega-
tive auto-regulation of the SHP gene, as described by Chanda
et al (Chanda et al., 2010). Without this auto-regulation, SHP
exhibits the same prolonged activation as FGF19 rather than a
burst behaviour. Moreover, our preliminary simulations indi-
cated that to reproduce the single burst behaviour of SHP, as
reported by Song et al., SHP protein must be set as stable. The
necessity of this stability was supported by experimental data,
where SHP stability increased at least 6-fold in the presence of
BA (Miao et al., 2009). Thus, adjustment of the qualitative par-
ameters required to reproduce experimental data of Song et al.
agrees with published experimental data (Miao et al., 2009) that
was not used to refine the model. This demonstrates that quali-
tative modelling in QSSPN framework is capable of providing
novel mechanistic insight. Next, we evaluated performance of
our model in predicting the effects of siRNA knock-outs in the
response to recombinant FGF19 treatment. We calculated the
fraction of trajectories in which CYP7A1 mRNA transcript
levels reached maximum (two tokens) and remained at maximum
until the end of each simulation. The system was then perturbed
to mirror either exposure to exogenous FGF19 and/or SHP
knock-down via siRNA. Setting the FGF19 protein node to
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Fig. 4. QSSPN simulations with hepatocyte model reproduce experimen-
tal data. (A) Example trajectory of the simulation of relative transcript
level timecourses, reproducing (B) experimental data from treatment of
primary human hepatocytes with FXR agonist, GW4064. In agreement
with experimental data, CYP7AI1 transcription is inhibited, FGF19
mRNA level increases, SHP mRNA transcription is activated followed
by inhibition (burst) and HNF4« remains constant. (C) The fraction of
trajectories in which CYP7A1, FGF19, SHP and HNF4« transcripts ex-
hibit activation, inhibition, constant and burst behaviours in response to
FXR-specific agonist, GW4064. (D) The fraction of trajectories in which
CYP7A1 transcript levels increase in the original unperturbed model
(WT), with permanent FGF19 expression, with SHP siRNA and the
subjected to both SHP siRNA and FGF19 perturbations. Results are
in agreement with experimental data (E). C and D show results of 120
trajectories, error bars show 95% binomial probability confidence inter-
vals. B and E show experimental results digitized from Song et al. (2008).
Relative expression data in B were transformed to fit onto one plot, as
such the plot should only be interpreted in terms of qualitative behaviours

the maximum level of two tokens and removing protein degrad-
ation transitions simulated treatment with FGF19. Knock-down
of SHP via siRNA was simulated by introducing an
‘NROB2_siRNA’ node connected by an inhibitory edge to the
SHP ‘translation’ transition node and connected by a read edge
to an additional SHP mRNA degradation transition with a high
rate of 1000, abolishing SHP gene expression at the mRNA level.
Again, simulation results reproduced the qualitative observations
of experimental system behaviour (Song et al., 2008); treatment
with FGF19 resulted in a decrease in CYP7A1 activation, and
FGF19 inhibition of CYP7AL transcript did not change as the
result siRNA transfection. Moreover, QSSPN reproduced the
increase in CYP7A1 expression after siRNA transfection. The
Supplementary Material shows (Section 4) evaluation of QSSPN
predictive power against the complete set of experimental data
available in Song er al. (2008). The method achieves high
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correlation with experimental data (Matthews correlation
coefficient of 0.812) and only fails to predict 2/14 experimental
behaviours available in the original experimental publication. We
also demonstrate that QSSPN parameters are qualitative, per-
turbation of their quantitative values does not affect results
(Supplementary Material Section 5). Finally, we argue that fur-
ther refinement of the model, to reproduce all 14 experimental
behaviours available in Song et a/l. (2008) would require quanti-
tative fine-tuning of parameters and would result in over fitting.

3.3 Analysis of genotype—phenotype relationship

Having demonstrated that the QSSPN framework can accurately
reproduce a dynamic response to experimental perturbation in a
human cell system, we went on to examine the genotype—pheno-
type relationship within the model system. We simulated single
gene knock-outs of all genes represented in the DT set and
evaluated their impact on the qualitative dynamic response to
cholesterol perturbation. The initial conditions of simulations
were set as before, with each of the genes sequentially knocked
out by setting the number of tokens on the ‘inactive gene’ node
to 0; for each in silico gene knock-out 120 trajectories were run.
Subsequently, we calculated the fraction of trajectories showing
six behaviours of interest designed to monitor BA homeostasis
(Fig. 5).

This analysis shows that the system is robust and unsurprising,
given its importance in BA homeostasis. The majority of single
gene knock-outs did not result in significant departure from wild-
type system behaviours, with only 23% of knock-out/behaviour
comparisons showing behaviour probabilities outside of 95%
binomial probability interval of a wild-type (WT). The analysis
identifies a cluster of three genes, FTF, HNF4«a and CYP7A1
that influence all behaviours to maximal extent. Knock-out of
any of these genes results in all simulated trajectories exhibiting
slow cholesterol clearance and no other behaviours. Our analysis
also identifies SHP as a key regulatory molecule in BA homeo-
stasis, as it is the only gene knock-out that significantly decreases
the probability of slow cholesterol clearance. Such rapid choles-
terol clearance is through the unregulated synthesis of BA, which
could result in BA accumulation and toxicity. The mechanistic
rationale underlying this observation is the fact that SHP tran-
scription is regulated by FXR, which is activated by primary
BAs. As SHP acts at the DR1 binding motif and inhibits pro-
duction of BA synthesis enzymes, forming a negative feedback
loop. Elimination of this feedback loop leads to a physiological
imbalance in cholesterol clearance and disrupts the composition
and concentration of the BA pool.

Simulations with our model also identify the coupling of the
chenodiol and cholate branches of the BA synthesis pathway
through the regulatory network. Knock-out of CYP8BI1 affects
both chenodiol and cholate homeostasis, despite only acting in
the cholate branch of primary BA synthesis pathway.
Simulations of CYP8B1 knock-out with the HepatoNetl
model using conventional CBM alone changes the maximal
flux towards cholate from 0.898 to 0.1, without impacting on
the maximal flux towards chenodiol. However, in our QSSPN
model, CYP8B1 knock-out gene significantly decreases the
number of trajectories in which both chenodiol and cholate
rise to a maximal level. Examination of simulated trajectories
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Fig. 5. Clustering heatmap of computational knock-out results. Results
of computational gene knock-down simulations of the model responding
to cholesterol perturbation; 120 trajectories were run for each gene
knock-out. Colour spectrum represents fraction of trajectories exhibiting
behaviour of interest. Increasing colour intensity represents higher frac-
tion of trajectories. The knock-down behaviour pairs where fractions
are within 95% confidence intervals of WT are assigned the same
colour as WT. Dendrogram shows result of complete-linkage clustering
using Euclidean distance; bootstrap values (1000 iterations) are shown at
major nodes. Monitored behaviours are defined in Supplementary Table
S6.1. Significant deviation from wild type occurs in only 30/120 gene
knock-out behaviour fields

and network connectivity shows that both branches of the BA
biosynthesis pathway are coupled through the transcriptional
regulatory network of nuclear receptors. Both primary BAs are
FXR agonists and FXR activates the bileacyl-CoA synthetase
(BACS) enzyme through an IR1 binding site in its promoter
region. BACS impacts both chenodiol and cholate synthesis.
Therefore, when CYPS8BI is inactivated, the maximal flux to-
wards cholate decreases, decreasing the probability of FXR ac-
tivation, BACS up-regulation and so affects the synthesis of both
primary BAs. This result is a novel mechanistic insight into the
clinically important process of BA synthesis, which could not
have been obtained by FBA simulation of metabolic reaction
network alone.

3.4 Software and model distribution

The QSSPN is implemented in C++ as a command line tool,
extending our SurreyFBA software (Gevorgyan et al., 2011). The
CBM calculations are performed by SurreyFBA functions driven
by the new code implementing PN data structure and QSSPN
algorithm. Supplementary material provides the C++ source
code and Mac OSX and Linux binaries of command line tool
under GNU general public license (GPL). The models are built
with Snoopy, a general graphic PN editor available as free soft-
ware (Rohr ez al., 2010). The PN editor is used to create network
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connectivity of the DT part of the model, and QSSPN-specific
parameters are contained within comments. One of the PN tran-
sitions represents the QSSF part of the model, which is fully
described in an external file in SurreyFBA format. The
SurreyFBA editor JyMet can be used to convert available
GSMN reconstructions from SBML to SurreyFBA ,and thus
QSSPN can benefit from the legacy of the ‘off the shelf
genome-scale metabolic models. The extensible mark-up lan-
guage file produced by Snoopy is converted to the input file of
QSSPN command line tool by a Python script, which is also
provided in supplementary material. The supplementary material
provides hepatocyte model shown earlier in the text. The files in
Snoopy and QSSPN formats can be used to reproduce simula-
tions presented in this work and modify models. Network struc-
ture is also provided in PDF files, where vector graphics enable
detailed examination of the connectivity. Finally, we have used
Snoopy to generate SBML representation of the DT part of the
hepatocyte model. The QSSF part of the model has been origin-
ally represented in SBML. The QSSPN rates and lookup tables
are provided in the annotation sections of the SBML file. We
believe that it is, in principle, possible to fully represent these
QSSPN-specific features with SBML, but we consider this to
be a subject of future development.

4 DISCUSSION

We present qualitative dynamic simulations of BA homeostasis
in human hepatocytes incorporating gene regulation, signalling
and whole-cell metabolism. This is the first dynamic simulation
of molecular interaction networks describing gene regulation,
signalling and whole-cell metabolism in human cells. We repro-
duce experimentally determined relative molecular activity time-
courses and use the model to mechanistically investigate
genotype—phenotype relationship in a clinically relevant system,
which yields novel mechanistic insight. The presented mechanis-
tic computer simulations are performed with QSSPN, a novel
algorithm formulated in this work. QSSPN performs quasi-
steady state simulation of genome-scale molecular interaction
networks involving all classes of molecular interactions.
Metabolic reactions are assumed to be much faster than other
cellular processes and whole-cell, steady state, metabolic flux dis-
tribution is explored using well-established CBMs. Dynamic cel-
lular processes are represented using extended PN formalism,
and we introduce two new classes of PN node that integrate
the steady state metabolic flux network and dynamic PN com-
ponents of the model. Constraint nodes set the bounds of speci-
fied fluxes in the metabolic network according to a lookup table
mapping its discrete token state to flux bounds. Objective nodes
use predefined lookup tables to establish token state based on the
evaluation of objective function in a whole-cell metabolic model.
QSSPN is a stochastic simulation algorithm that generates a
sample of dynamic trajectories permissible given the properties
of the system under study and modelled stimuli. Thus, each
trajectory represents a feasible sequence of molecular transitions.
Trajectory sampling is used to study the effects of system per-
turbation (e.g. growth condition, gene knock-down, agonist/an-
tagonist addition). Samples are generated for WT and perturbed
states and the fraction of trajectories exhibiting a behaviour of
interest is calculated for each state. QSSPN can be used to test

not only simple reachability of a particular node of the network
or the producibility of a particular metabolite, but also occur-
rence of dynamic behaviours (e.g. bursts and oscillations). We
use piecewise linear definition of the stochastic transition pro-
pensity, where contribution of the pre-place (substrate, catalyst,
inhibitor) to the propensity is determined by a lookup table with
thresholds (Equations 1 and 2). This allows formulation of quali-
tative rules and enables simulations where complex qualitative
dynamic behaviours can be generated in computationally effi-
cient models representing molecular activities by a few discrete
states.

Taking into account the features discussed earlier in the text,
we believe that QSSPN is substantially different to existing
approaches and offers numerous advantages in the modelling
of genome-scale molecular interaction networks in human cells.
In Section 7 of the supplementary material, we present detailed
comparison with existing approaches and the remaining part of
this discussion summarizes its conclusions. First, the only simu-
lation of human metabolism in a quasi-steady state framework
published so far (Krauss et al., 2012) did not include gene regu-
lation or signalling. The CBM model used the dFBA approach
(Varma and Palsson, 1994) to integrate ODE models of drug
concentration in physiological compartments. Currently, quali-
tative rule-based models of regulatory processes can be inte-
grated with an FBA of metabolism using rFBA (Covert et al.,
2001). However, rFBA uses Boolean rules expressing relation-
ships between network nodes representing genes. Importantly,
transcription and translation processes are not distinguished
and known mechanistic details about the nature of experimen-
tally monitored or perturbed molecules cannot be expressed,
both of which are achieved with QSSPN. We have created
coarse-grained versions of our BA homeostasis model using the
rFBA framework (Supplementary Material, Section 7). We show
that to faithfully model human cell systems the original rFBA
needs to be modified to remove reliance on maximization of
biomass and simulation of cell culture growth. Furthermore,
we show that even the best adaption of rFBA to simulation of
human cell is still not able to achieve the predictive power of
QSSPN (Table 1.) This is due to the fact that the rFBA gene
regulatory network does not distinguish transcription and trans-
lation processes. As a result it fails to reproduce the qualitative
behaviour of transcript activity in a negatively auto-regulated
gene. QSSPN makes the correct prediction because of its repre-
sentation of gene expression, which does not require quantitative
parameters, but does resolve the two fundamental stages of gene
expression.

Detailed quasi-steady state models, resolving mechanistic de-
tails of gene expression process, can be constructed with iFBA
(Covert et al., 2008) and idFBA (Min Lee et al., 2008) methods,
where CBMs are coupled to ODE models through quasi-steady
state assumption. Alternatively, detailed quantitative models
have been coupled to CBMs through a ‘diverse mathematics’
approach (Karr, 2012), where a tailored model for a particularly
well-studied small model microorganism has been created.
However, these methods require quantitative data to parameter-
ize ODEs. For our test case study and other clinically relevant
human systems such data are rarely available. Thus, the QSSPN
is significantly better than other quasi-steady state methods in
addressing the trade-off between detailed representation of
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Table 1. Summary of predictive power of TFBA and QSSPN approaches
in comparisons between simulation and experimental data

Modelling rFBA rFBA2 rFBA3 QSSPN
Approach no delay  constant delay  variable delay

Matthews 0.360 0.360 0.543 0.817
correlation

coefficient

molecular mechanisms and the requirement for quantitative
data. We believe that this makes it ideally suited to modelling
human systems, where accurate quantitative knowledge is more
difficult to obtain, but qualitative molecular activity timecourses
are readily measurable either by well-established qRT-PCR and
western-blot assays or high-throughput ‘omics’ technologies. In
Section 8 of the Supplementary Material, we analyze the com-
putational efficiency of QSSPN and demonstrate that it is
scalable to mechanistic modelling of GSMN in human cells.
The quasi-steady state methods developed to date are
synchronous and deterministic; they produce one trajectory
where at every step all rules are synchronously evaluated. By
comparison, QSSPN is the first method that enables asynchron-
ous, stochastic and rule-based simulations of a quasi-steady state
system involving whole-cell metabolism. In every iteration, only
one stochastic transition is generated, resulting in multiple alter-
native sequences of molecular interactions. This is an important
advantage as biological systems are fundamentally asynchron-
ous, meaning that asynchronous algorithms should be used for
qualitative rule-based simulations (Remy ez al., 2003). Moreover,
as QSSPN allows incorporation of quantitative rates, it offers the
exciting prospect of building semi-quantitative models where in-
dividual trajectories are interpreted as different cellular behav-
iours occurring in a population of genetically identical cells
because of stochastic phenotypic switching (Balaban ez al., 2004).
PN trajectory sampling in wild-type and perturbed systems has
previously been used in the signalling PN approach (Ruths ez al.,
2008a,b). For the first time, QSSPN uses PN trajectory sampling
in the context of quasi-steady state simulations involving
GSMN:Ss. As a result, it hugely extends the scale of models that
can be qualitatively studied. Moreover, signalling PN is based on
the comparison of average simulation timecourses; although this
can be done within the QSSPN approach, we recommend the
implementation of an alternative approach developed in the
model-checking field of computer science. Here, the numbers
of trajectories exhibiting the behaviour of interest in the reference
and perturbed systems are statistically compared: binomial
probability confidence interval statistics have already been used
in statistical model-checking software such as Prism
(Kwiatkowska et al., 2011). Finally, we use a piecewise-linear
formulation of propensity functions. Piecewise-linear functions
were previously used to provide a discrete qualitative equivalent
of ODE models (Baldazzi et al., 2010). Here, we use them for the
first time to define propensity functions in a stochastic simulation
algorithm. The stochastic model-checking approach is capable of
analyzing arbitrary large-scale models, whereas previous appli-
cations of piecewise-linear functions were limited by algorithms

based on generation of full reachability graph, which is usually
too large to be computed for genome-scale networks.

In summary, we believe that QSSPN is a unique method for
reconstruction and simulation of genome-scale molecular inter-
action network dynamics. It provides qualitative insight into
system dynamics through qualitative simulation and enables
mechanistic simulation of genotype—phenotype relationships in
human cells, where quantitative data are sparse and qualitative
molecular biology data are readily available. It is therefore an
ideal approach for the iterative cycle of reconstruction, simula-
tion and measurement that will eventually lead to the prediction
of genotype—phenotype relationships in human tissues, through
the mechanistic simulation of whole-cell molecular biology.
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