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ABSTRACT

Motivation: Statistical potentials have been widely used for modeling

whole proteins and their parts (e.g. sidechains and loops) as well as

interactions between proteins, nucleic acids and small molecules.

Here, we formulate the statistical potentials entirely within a statistical

framework, avoiding questionable statistical mechanical assumptions

and approximations, including a definition of the reference state.

Results: We derive a general Bayesian framework for inferring statis-

tically optimized atomic potentials (SOAP) in which the reference state

is replaced with data-driven ‘recovery’ functions. Moreover, we

restrain the relative orientation between two covalent bonds instead

of a simple distance between two atoms, in an effort to capture orien-

tation-dependent interactions such as hydrogen bonds. To demon-

strate this general approach, we computed statistical potentials for

protein–protein docking (SOAP-PP) and loop modeling (SOAP-Loop).

For docking, a near-native model is within the top 10 scoring models in

40% of the PatchDock benchmark cases, compared with 23 and 27%

for the state-of-the-art ZDOCK and FireDock scoring functions,

respectively. Similarly, for modeling 12-residue loops in the PLOP

benchmark, the average main-chain root mean square deviation of

the best scored conformations by SOAP-Loop is 1.5 Å, close to the

average root mean square deviation of the best sampled conform-

ations (1.2 Å) and significantly better than that selected by Rosetta

(2.1 Å), DFIRE (2.3 Å), DOPE (2.5 Å) and PLOP scoring functions

(3.0 Å). Our Bayesian framework may also result in more accurate

statistical potentials for additional modeling applications, thus afford-

ing better leverage of the experimentally determined protein

structures.

Availability and implementation: SOAP-PP and SOAP-Loop are

available as part of MODELLER (http://salilab.org/modeller).

Contact: sali@salilab.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Computational modeling can be used to predict the structures

of whole proteins or their parts (e.g. loops and sidechains) as well

as complexes involving proteins, peptides, nucleic acids and

small molecules (Audie and Swanson, 2012; Baker and Sali,

2001; Dill and MacCallum, 2012; Ding et al., 2010; Skolnick

et al., 2013; Wass et al., 2011). A modeling method requires a

conformational sampling scheme for proposing alternative struc-
tures and a scoring function for ranking them. Significant pro-

gress has been made on both fronts (Fernández-Recio and

Sternberg, 2010; Moult et al., 2011). In particular, many phys-
ics-based energy functions and statistical potentials computed

from known protein structures have been described (Andrusier
et al., 2007; Benkert et al., 2008; Betancourt and Skolnick, 2004;

Betancourt and Thirumalai, 1999; Brenke et al., 2012; Chuang

et al., 2008; Colovos and Yeates, 1993; Cossio et al., 2012;
Dehouck et al., 2006; Fan et al., 2011; Ferrada et al., 2007;

Gao and Skolnick, 2008; Gatchell et al., 2000; Hendlich et al.,
1990; Huang and Zou, 2010; Jones, 1999; Keasar and Levitt,

2003; Kocher et al., 1994; Li et al., 2013; Liu and Gong, 2012;

Liu and Vakser, 2011; Lu and Skolnick, 2001; Lu et al., 2008;
McConkey et al., 2003; Melo and Feytmans, 1997; Melo et al.,

2002; Miyazawa and Jernigan, 1996; Park and Levitt, 1996;
Pierce and Weng, 2007; Qiu and Elber, 2005; Rajgaria et al.,

2008; Rata et al., 2010; Reva et al., 1997; Rojnuckarin and

Subramaniam, 1999; Rykunov and Fiser, 2010; Samudrala and
Moult, 1998; Shapovalov and Dunbrack, 2011; Shen and Sali,

2006; Simons et al., 1997; Sippl, 1993; Summa et al., 2005;
Tanaka and Scheraga, 1975; Wang et al., 2004; Xu et al., 2009;

Zhang and Zhang, 2010; Zhao and Xu, 2012; Zhou and

Skolnick, 2011; Zhou and Zhou, 2002; Zhu et al., 2008).
Derivation of a statistical potential has often been guided by

an analogy between a sample of known native structures and the

canonical ensemble in statistical mechanics, suggesting that the

distributions of spatial features in the sample of native structures
follow the Boltzmann distribution (Sippl, 1990). Thus, statistical

potentials are generally calculated in two steps: (i) extracting a
probability distribution of a spatial feature (e.g. a distance

spanned by a specific pair of atom types) from a sample of

known protein structures and (ii) normalizing this distribution
by a reference distribution (e.g. the distribution of all distances,

regardless of the atom types). Statistical potentials can differ in a
number of aspects, including the sample of known protein struc-

tures, the protein representation (e.g. centroids of amino acid

residues, C� atoms and all atoms), the restrained spatial feature
(e.g. solvent accessibility, distance, angles and orientation

between two sets of atoms), the sequence features (e.g. amino
acid residue types, atom types, residue separation in sequence

and chain separation), the treatment of sparse samples and the

definition of the reference state. Here, we optimize the accuracy
of a statistical potential over most of these aspects. This opti-

mization challenge is addressed by formulating a statistical*To whom correspondence should be addressed.
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potential independently from any assumptions grounded in stat-
istical mechanics; instead, we rely on a Bayesian approach based

on data alone. Although the proposed theory applies to any kind

of a statistical potential, we illustrate it by deriving specific stat-

istical potentials for protein–protein docking and loop modeling.

2 METHOD

We begin by defining statistical potentials in terms of distributions

extracted from known protein structures (Section 2.1), followed by a

description of a protocol to actually compute a statistical potential

(Sections 2.2–2.7, Fig. 1).

2.1 Theory

For structure characterization of a given protein sequence by either

experiment or theory, we ideally need a joint probability density function

(pdf) for the structure, given everything we know about it (Shen and Sali,

2006). In general, our knowledge can come from different kinds of

experiments with the protein (e.g. X-ray crystallography), physical the-

ories (e.g. a molecular mechanics force field) and/or statistical inference

(e.g. all known structures or only homologous known structures). Here,

we focus on a joint pdf for a given sequence based on the knowledge of all

known protein structures deposited in the Protein Data Bank (PDB)

(Kouranov et al., 2006); thus, our joint pdf is a statistical potential.

To derive the joint pdf for a structure of a sequence, we need to

approximate it by using terms that can actually be computed from the

PDB. The structure X of an amino acid sequence is defined by the set of

its features f cðmÞ
� �

,m ¼ 1 . . . n, such as a distance between two specific

atoms. Thus, we can approximate the joint pdf by the product of pdfs

(restraints) for individual features:

pðXÞ �
Y

1�m�n

p fcðmÞ
� �

; ð1Þ

Without any loss of accuracy, we define the restraint p f cðmÞ
� �

as the ratio

between the feature distribution p f cjQKð Þ from a sample of informative

features in a set of proteinsQK with known structures (e.g. for a distance,

all distances spanned by the same atom types in QK) and an unknown

recovery function g f cjQKð Þ:

p f cðmÞ
� �

¼ p f cjQKð Þ=g f cjQKð Þ; ð2Þ

In other words, the recovery function is defined such that the product of

restraints approximates the joint pdf as well as possible (c.f., Equation 1),

while minimizing the number of parameters that need to be fit to the data.

Construction of the sample of informative features involves a comprom-

ise between including only features of known structures that are most

likely to resemble the predicted feature f cðmÞ (which minimizes sample

size) and minimizing the statistical noise (which maximizes sample size).

The features used in the sample are termed to be of the same type c as the

inferred feature (Section 2.2). The restraints on all features of X of type c

are calculated from the same set of informative features and thus are the

same. Here, the sample of informative features includes all features of the

same type from representative known protein structures (Section 2.3).

2.2 Feature types

To illustrate the general theory mentioned earlier in the text, we derive

optimized statistical potentials for assessing protein–protein interfaces

(SOAP-PP) and loop conformations (SOAP-Loop). We restrain the

following feature types:

2.2.1 Atomic distance Distance dja1, a2, bs is considered to depend on

atom types a1 and a2 as well as the ‘covalent separation’ between the two

atoms (bs). The atom type depends on the residue type, resulting in the total

of 158 atoms types for the 20 standard residue types (Shen and Sali, 2006).

Covalent separation is measured in three ways. First, by the minimum

number of covalent bonds between the two atoms (bond separation).

Second, by the number of residues separating the two atoms in the poly-

peptide chain (residue separation). Third, by chain separation, which is 0 if

the atoms are in the same chain and 1 otherwise. The distance is mapped in

the range from 0 to a parameterized distance cutoff, such as 15 Å.

2.2.2 Orientation between a pair of covalent bonds Orientation

d, �1, �2, jt1, t2, bs is defined by a distance d, two angles �1, �2 and a

dihedral angle  (Fig. 2). It is considered to depend on covalent

bond types (t1, t2) defined in turn by their atom types and covalent

separation (bs); there are 316 covalent bond types for the 20 standard

residue types.

Fig. 1. Flowchart for optimizing statistical potentials. The corresponding

sections in the text are indicated

Fig. 2. Distance and angles between two covalent bonds, A–B and C–D.

d, distance between atoms A and C. �1, angle between atoms B, A and C.

�2, angle between atoms A, C and D.  , dihedral angle between atoms B,

A, C and D. bs is defined using atoms A and C
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2.2.3 Relative atomic surface accessibility Accessibility sja is con-

sidered to depend on the atom type (a) (Sali and Blundell, 1993).

2.3 Feature distributions

2.3.1 Known protein structures A small fraction of the known pro-

tein structures from the PDB (and their decoy structures) is used only for

assessing the accuracy of statistical potentials (Section 2.5). The remain-

ing structures from the PDB are filtered to construct the known protein

structure set K, including only structures determined by X-ray crystallog-

raphy at the resolution better than 2.2 Å and Rfree better than 25%. Three

additional subsets of representative structures were obtained by requiring

at most 30, 60 and 95% sequence identity to any other representative

structure, respectively, with preference for structures determined at higher

resolutions and with lower Rfree values. A statistical potential is optimized

by choosing among the entire set K or its three subsets to estimate the

feature distributions p f cjQKð Þ.

2.3.2 Calculation of feature distributions The sample for comput-

ing this distribution is the set of the individual features of type c in protein

set QK, where each feature is represented by the distribution of this

feature -p f cðmÞjQK

� �
. The feature distribution p f cjQKð Þ is the average

of these sample distributions. For a distance and an angle, p f cðmÞjQK

� �
is approximated by a Gaussian distribution p0 f cðmÞjQK

� �
with the mean

equal to the observed value and the standard deviation computed by the

propagation (Neuhauser, 2010) of the uncertainties of individual atomic

positions, which in turn are estimated from the atomic isotropic tempera-

ture factors (Carugo and Argos, 1999; Cruickshank, 1999; Schneider,

2000). For relative atomic surface accessibility, p f cðmÞjQK

� �
is approxi-

mated using a delta function p0 f cðmÞjQK

� �
centered at feature f cðmÞ in K.

The approximated feature distribution p0 f cjQKð Þ is then computed from

the approximated sample distributions p0 f cðmÞjQK

� �
.

2.4 Bayesian smoothing and smoothing priors

The feature distributions p0 f cjQKð Þ can be noisy when the sample K is

relatively small, as is often the case for the orientation between a pair of

covalent bonds (Fig. 3A). Thus, we use Bayesian inference to calculate a

smooth feature distribution:

p p f cjQKð Þjp0 f cjQKð Þð Þ / p p0 f cjQKð Þjp f cjQKð Þð Þ � p p f cjQKð Þð Þ ð3Þ

where p f cjQKð Þ is the ideal distribution without noise from an infinitely

large set of known structures. Both the likelihood p p0 f cjQKð Þjp f cjQKð Þð Þ

and the prior S � p p f cjQKð Þð Þ are multivariate Gaussian distributions

(Rasmussen and Williams, 2005). The smoothness of p f cjQKð Þ is speci-

fied by the prior S; here, the prior is a multivariate Gaussian distribution

with a zero mean and a squared exponential covariance function

(Mackay, 2003). The characteristic length scale of the covariance function

defines the range over which the two points are still correlated (the

smoothness of the curve). We set the characteristic length equal to a

scale parameter L multiplied by 0.2 Å for distance, 10� for angles and

0.1% for atomic surface accessibility. A set of smoothing priors S is

obtained by varying L. Using a scale of 2.0 as an example, the inferred

p f cjQKð Þ is significantly smoother than p0 f cjQKð Þ (Fig. 3B).

2.5 Decoys and assessment criteria

2.5.1 Learning set for SOAP-PP This set consists of 176 native

complex structures in the pairwise protein docking benchmark 4.0

(Hwang et al., 2010) and �4500 decoys for each of the complexes

generated using PatchDock (Duhovny et al., 2002).

2.5.2 Testing set for SOAP-PP This set consists of 176 native com-

plex structures in the pairwise protein docking benchmark 4.0 (Hwang

et al., 2010) as well as �212000 decoys for each of the complexes gener-

ated using PatchDock (Duhovny et al., 2002) and �54 000 decoys for

each of the complexes generated using ZDOCK (Pierce et al., 2011).

2.5.3 Assessment criteria for SOAP-PP Each model is assessed for

accuracy based on root mean square deviation (RMSD) from the native

structure, as used at CAPRI (Lensink et al., 2007). A docking model is

considered acceptable if the ligand C� RMSD after superposition of the

receptors is510 Å or the interface C� RMSD is54 Å. A docking model is

of medium accuracy if ligand C� RMSD is55 Å or interface C� RMSD is

52 Å. The success rate for SOAP-PP is the percentage of benchmark cases

with at least one medium or acceptable accuracy model in the top N

predictions.

2.5.4 Learning set for SOAP-Loop This set consists of 3838 native

loop conformations of 4–20 residues and �500 decoys for each loop

generated using MODELLER (Fiser and Sali, 2003; Sali and Blundell,

1993). Loops were extracted from X-ray crystallography structures in the

PDB using DSSP (Kabsch and Sander, 1983; Joosten et al., 2011). We

only considered protein structures determined at a resolution better than

2 Å, Rfree better than 0.25 and crystallized between pHs 6.5 and 7.5; no

pair of source structures had sequence identity higher than 30%. Each

loop has only standard residues, no missing non-hydrogen atoms, average

atomic surface accessibility between 5 and 60%, no crystal contacts, no

clashes with nearby atoms, no contacts with metal ligands and does not

occur in the PLOP loop modeling decoy set (Jacobson et al., 2004).

2.5.5 Testing set for SOAP-Loop This set consists of 833 native

loop conformations of 4–12 residues and �450 decoys for each loop

generated using PLOP (Jacobson et al., 2004).

2.5.6 Assessment criteria for SOAP-Loop Each model is assessed

for accuracy based on its main-chain RMSD to the native conformation,

after superposition of all non-loop atoms (RMSDglobal) (Fiser et al.,

2000); main-chain atoms include amide nitrogen, C�, as well as carbonyl

carbon and oxygen. SOAP-Loop is assessed by the average RMSDglobal

of the top ranked model for each loop.

2.6 Recovery functions and functional forms

We estimate the recovery function g f cjQKð Þ by optimizing the accuracy

of the corresponding statistical potential on a benchmark of interest.

To avoid overfitting, we assume either a single recovery function for all

feature types or the same recovery function for a subset of similarly

distributed feature types.

The set of recovery function forms Gf is different for distances, angles

and accessibility: The recovery function for the atomic distance is mod-

eled using one of three functional forms: (i) dq, where d is distance and q is

a constant (Zhou and Zhou, 2002); (ii) the ideal gas distribution in

spheres with varying radii (Shen and Sali, 2006); and (iii) spliced cubic

splines. For orientation, the recovery function is defined as the product of

Fig. 3. Distance and dihedral angle joint distribution between

alanine N-C� and alanine O-C, when �1 2 ½60
o, 90o� and �2 2 ½60

o, 90o�.

(A) Original distribution. (B) Smoothed distribution
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a recovery function for d, �1, �2 and  , respectively. The recovery func-

tions for angles �1, �2 and dihedral angle  are modeled using two

different functional forms: (i) the feature distribution calculated using

the ideal gas assumption and (ii) spliced cubic splines. For the relative

atomic surface accessibility, the recovery function form is spliced cubic

splines. Control points of cubic splines are defined by their x and y values.

When searching for the best cubic spline recovery function, the x values

of the control points are either fixed at discrete sampling values or

inferred together with the y values.

To optimize the recovery functions, we need to balance minimizing

noise and maximizing precision. Thus, for atomic distances, we clustered

the distance distributions p f cjQKð Þ for different atom type pairs using

k-mean clustering and assumed that the pairs of atom types with similar

distance distributions have a similar recovery function (Fig. 4).

2.7 Bayesian inference and model selection

A statistical potential is defined by four discrete input variables (the known

protein structure subset K, the feature type subset F , the smoothing prior

S and the recovery function form Gf) and a vector of continuous input

variables (the recovery function parameters G�). We elected to define the

best values for the four discrete variables are those that result in the most

generalizable statistical potential, as judged by the Bayesian predictive

densities (Vehtari and Lampinen, 2002), whereas the best values for the

recovery function parameters are those that result in the most accurate

statistical potential, as judged by a given benchmark. Because each of the

five variables can be sampled at many values, enumeration of all combin-

ations is not computationally feasible. Thus, the search for the best values

is carried out in four stages, as follows.

First, irrespective of the final restrained feature F , we begin with the

atomic distance and a single recovery function for all atom type pairs.

The optimal values of the discrete variables F ,K,S,Gf
� �

are found by an

iterative discrete search:

(1) Choose an arbitrary starting value for each variable out of their

possible value sets fF,K,S,Gfg (Supplementary Table S1 and S2).

(2) For each variable, choose the best value and eliminate the worst

value in the value set using Bayesian model selection based on

Bayesian predictive densities (Vehtari and Lampinen, 2002). The

Bayesian predictive density for each value is calculated with other

variables fixed at their best previous values:

Y
ft, vg

Z
pðDvjF ,K,S,Gf,G�Þ � p G�jF ,K, ,S,Gf,Dt

� �
dG� ð4Þ

where the learning decoysD are randomly separated multiple times

into a training set Dt and a validation set Dv, from which the

integrals are estimated using Monte Carlo sampling (Evans and

Swartz, 2000). p G�jF ,K, ,S,Gf,Dt

� �
is calculated following the

Bayes rule:

p G�jF ,K, ,S,Gf,Dt

� �
/ p DtjF ,K,S,Gf,G�

� �
� p G�jGf
� �

ð5Þ

here the likelihood pðDtjF ,K,S,Gf,G�Þ is a half-normal distribu-

tion whose corresponding normal distribution has the mean equal

to the accuracy of an imaginary statistical potential generating

scores that correlate perfectly with the decoy-native RMSD and

the standard deviation computed by dividing the mean by the

number of the cases in the training set Dt; the prior pðG�jGfÞ is

an informative prior defining a reasonable range for G�.

(3) Repeat step 2 until the best values do not change.

(4) Repeat five times steps 1–3 for different random initial values.

(5) Keep the best performing variable values.

Second, keeping the optimal values from the previous step fixed, we find

the optimal values for the feature type, smoothing length scale and the

number of spline anchor points using the same 5-step iterative discrete

search outlined earlier in the text.

Third, if the optimal spatial feature selected in the previous step is not

orientation, we vary the number of recovery functions and the number of

anchor points to optimize their values, again using the 5-step iterative

discrete search.

Fourth, using the selected fF ,K,S,Gfg, we infer the best recovery

function parameter values G� by maximizing p G�jF ,K, ,S,Gf,D
� �

(Equation 5). The optimized statistical potential is then calculated

(Equation 2) and assessed on testing decoy sets.

SOAP-PP and SOAP-Loop are available as part of MODELLER

(http://salilab.org/modeller). All the training, learning, testing, decoys,

benchmark sets and scripts are available at http://salilab.org/SOAP.

3 RESULTS

3.1 Scoring protein–protein interfaces

SOAP-PP is an atomic statistical potential for assessing a binary
protein interface, computed with our Bayesian framework by
optimizing its accuracy on the learning set for SOAP-PP

(Supplementary Table S1).
Using the recovery function parameters optimized for 15 sets

of training decoys (each set is randomly selected 50% of the
learning set), the average top10 success rate (Section 2.5.3) is

44.7	 1.2% on the sets of training decoys and 38.4	 1.7% on
the sets of validation decoys. The relatively small difference
between the two success rates likely results from overfitting. To

investigate overfitting, we increased the size of the training decoy
set from 50 to 67% of the entire learning set of 176 proteins. As a
result, the average top10 success rate on the training decoys

decreased from 44.7 to 44.2%, but the average success rate on
the validation decoys (the remaining 33% of the learning set)
increased from 38.4 to 39.8%. This observation suggested that

increasing the size of the training set may be an effective way of
reducing overfitting (Murphy, 2012). Thus, we optimized SOAP-
PP using the entire learning set of 176 proteins as the training set,
even though this forces subsequent testing on the training protein

sequences. To estimate the resulting overfitting, we calculated six
optimized statistical potentials, each one of which was based on a
training set that included a random subset of �67% of the learn-

ing set. Next, we tested these potentials on two testing sets: the

Fig. 4. Distance distributions p fcjQKð Þ for different atom pairs are

clustered into 15 different groups. Each line represents a distance distribu-

tion from a pair of atoms of certain types. Each group has 6–8401 distri-

butions. During k-mean clustering, the number of clusters was set to 20,

resulting in 14 clusters with45 distributions and 6 clusters with55 distri-

butions; the latter 6 clusters are grouped together (bottom right panel)
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first set consisted only of the training proteins; the second set
consisted of the remaining learning proteins. The average top10

success rate for the PatchDock decoys is 41.1% and 38.6% for
the first and second test set, respectively; for the ZDOCK decoys,

the average top10 success rate is 40.0 and 38.9% for the first and
second test set, respectively. Therefore, given that increasing the
training set size reduces overfitting as shown previously, the

accuracy of SOAP-PP estimated based on a completely different
testing set is expected to be within 2.5% of the current estimate
(later in the text).

SOAP-PP was assessed on the PatchDock (Schneidman-
Duhovny et al., 2012) and ZDOCK decoy sets (Pierce et al.,
2011) (Fig. 5). For PatchDock decoys, the top10 success rate

of SOAP-PP is 40% (Fig. 5A) compared with 23% for
ZRANK and 27% for FireDock. If only models of medium or
better accuracy are considered, the top10 success rate is 33% for

SOAP, 17% for ZRANK and 23% for FireDock (Fig. 5B).
For ZDOCK decoys, the top10 success rate of SOAP-PP is

41% (Fig. 5C) compared with 30% for ZRANK and 22% for
FireDock. If only models of medium or better accuracy are
considered, the success rate is 32% for SOAP-PP, 22% for

ZRANK and 17% for FireDock (Fig. 5D).
High accuracy of SOAP-PP can sometimes be attributed to the

weaker short-distance repulsion (Fig. 6A) compared with

ZRANK (Pierce and Weng, 2007) and FireDock (Andrusier
et al., 2007), both of which use a modified van der Waals repul-
sion term; thus, the clashes of the best sampled structure with a

receptor are likely less penalized by SOAP than by ZRANK
and FireDock. Although SOAP-PP is more successful than
ZRANK and FireDock overall, picking near-native protein–

protein complex models out of decoys remains a hard problem

(Fig. 5). For some cases, all three scoring functions perform

badly, especially when the protein–protein interfaces are small

and have poor shape complementarity (Fig. 6B).

3.2 Scoring loops

SOAP-Loop is an atomic statistical potential for assessing pro-

tein loop conformations, computed with our Bayesian frame-

work by optimizing its accuracy on the learning set for SOAP-

Loop (Supplementary Table S2).

SOAP-Loop was assessed on the PLOP loop modeling decoy

set (Jacobson et al., 2004). We compare SOAP-Loop with DOPE

(Shen and Sali, 2006), DFIRE (Zhang et al., 2004), Rosetta 3.3

(Simons et al., 1999) and PLOP 25.6 scoring functions (Jacobson

et al., 2004) (Fig. 7A). For short loops, SOAP-Loop and Rosetta

perform similarly and better than the other tested scoring func-

tions: the main-chain RMSD of SOAP-Loop’s top ranked struc-

ture is close to that of the best decoy structure. For longer loops,

the accuracy differences become larger. SOAP-Loop is still able

to pick structures close to the best decoy structures: for 12-resi-

due loops, the average main-chain RMSD of the best scored

conformations by SOAP-Loop is 1.5 Å, close to the average

RMSD of the best decoy conformations (1.2 Å) and significantly

better than that by DOPE (2.5 Å), DFIRE (2.3 Å), Rosetta

(2.1 Å) and PLOP scoring functions (3.0 Å). We note that this

assessment should not be used to rank the PLOP scoring func-

tion because the decoy set used here was generated with PLOP.

Thus, we further compare different scoring functions by their

average all-atom RMSD values of the best scored conformations

using our learning set for SOAP-Loop (Section 2.5.4 and

Supplementary Table S3).
Although no testing protein occurs in the learning set, 11 pairs

of testing-learning loops have the same sequence. Excluding

these 11 loops from the testing set, the average RMSD of the

top ranked loop by SOAP-Loop increases insignificantly from

0.895 Å to 0.897 Å; the average RMSD of the best decoy con-

formations also increases insignificantly from 0.566 Å to 0.567 Å.

The relative success of SOAP is attributed to the scoring of the

orientation instead of distance and the use of the recovery func-

tions instead of a reference state (Fig. 8). However, SOAP-Loop

Fig. 5. Success rates of SOAP-PP, ZRANK and FireDock on the

PatchDock and ZDOCK decoy sets. (A) Success rates on the

PatchDock decoy set, where a success is defined as having an acceptable

accuracy structure in the top N predictions (x-axis). (B) Success rates on

the PatchDock decoy set for picking structures with medium accuracy.

(C) Success rates on the ZDOCK decoy set for picking structures with

acceptable accuracy. (D) Success rates on the ZDOCK decoy set for

picking structures with medium accuracy

Fig. 6. Comparison of the top ranked, best sampled and native config-

urations. (A) 2G77. (B) 1OC0. The receptor is shown in gray. The ligand

is shown in the native configuration (yellow), the best sampled configur-

ation (green for 2G77 and black for 1OC0) and the top ranked config-

uration by SOAP (green), FireDock (blue) and ZRANK (red)
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still fails to identify the best-sampled conformation in some

cases. For a loop in 1CYO, for example, the failure can be

attributed to the lack of a sufficiently native conformation

among the tested conformations and the absence of significant
interactions between the loop and the rest of the protein

(Fig. 9A). It is also possible that some interactions, such as

long-range interactions, are not treated accurately by any scoring
function, indicating the need for further development of the

theory of statistical potentials.

4 DISCUSSION

We developed a Bayesian approach to optimizing statistical
potentials based on probability theory and without recourse to

questionable statistical mechanical assumptions and approxima-

tions. We also applied this approach to calculate optimized

statistical potentials for assessing protein interactions (SOAP-
PP) and loops (SOAP-Loop). These two statistical potentials

perform better than others in their class. For PatchDock
and ZDOCK decoys, the top10 success rate of SOAP-PP is
410% higher than that of FireDock and ZRANK (Fig. 5).

For 12-residue loops in the PLOP benchmark, the average
main-chain RMSD of the best scored conformations by

SOAP-Loop is 1.5 Å, close to the average RMSD of the best
sampled conformations (1.2 Å) and significantly better than
that from DOPE (2.5 Å), DFIRE (2.3 Å), Rosetta (2.1 Å) and

PLOP scoring functions (3.0 Å) (Fig. 7). The relative accuracy of
SOAP-PP and SOAP-Loop results primarily from normalizing
the raw distributions by the recovery functions instead of a

reference state, restraining of orientation instead of only distance
and thoroughly optimizing parameter values while avoiding

overfitting.
Next, we discuss three points in turn. First, we describe our

recovery functions and compare them with the reference states

used for other statistical potentials. Second, we discuss the
importance of restraining orientation and using covalent separ-
ation as an independent variable. Finally, we conclude by

commenting on future improvements of our Bayesian approach
and its applications.

4.1 Cubic splines as a recovery function form

A key difference between statistical potentials is the definition of
their reference states, which are often derived by assuming that

the PDB provides a Boltzmann ensemble of structural features
(Sippl, 1990). Here, we replace the reference state by data-driven
recovery functions, defined self-consistently without recourse to

these questionable statistical mechanical assumptions
(Finkelstein et al., 1995; Shen and Sali, 2006). In an extreme

case, we use cubic splines to compute optimal recovery functions,
relying on Bayesian inference to obtain parameter values that
result in the most accurate statistical potential given a

benchmark.
The use of splines as recovery functions is motivated by a

qualitative analysis of the recovery function (Supplementary

Equation S2). The distribution p f cðmÞjQK

� �
of a single feature

Fig. 7. Accuracy of SOAP-Loop. The average main-chain RMSD of

top ranked structures by DOPE, DFIRE, Rosetta, PLOP and SOAP-

Loop on PLOP loop modeling decoys. The average RMSD of the most

accurate conformations sampled by PLOP is plotted by a dash-dotted

line

Fig. 8. Recovery functions for SOAP-PP and SOAP-Loop are compared

with DOPE and DFIRE’s reference states

Fig. 9. Comparison of the top ranked, best sampled and native config-

urations. (A) 1CYO. (B) 2AYH. The native structure is shown in light

gray. The loop is shown in the native configuration (yellow), the best

sampled configuration (black for 1CYO and green for 2AYH) and the

top ranked configuration by SOAP (green), DOPE (blue), DFIRE (red),

Rosetta (magenta) and PLOP (light blue)
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f cðmÞ is the product of the restraint on f cðmÞ and an integral

involving the restraints on QK’s other features (i.e. the environ-

ment restraint). Then, the recovery function g f cjQKð Þ is the

distribution of feature type c in structure set K resulting from

the environmental restraints alone (Supplementary Equation S2).

We now discuss three implications of this perspective.
First, if we assume that atoms are placed randomly within the

protein shell, a recovery function will be similar to the DFIRE

and DOPE reference states based on the ideal gas assumption

(Shen and Sali, 2006; Zhou and Zhou, 2002).
Second, using the distance d between atoms A and C in

Figure 2 as an example, the environment restraint on d is a con-

sequence of the restraints on distances between A–D, C–B and

B–D as well as the bonds between A–B and C–D. The restraints

on A–D, C–B and B–D distances have short-range repulsion

components. Thus, the environment restraint on the distance

A–C will include an effective short-range repulsion. This quali-

tative analysis is consistent with the observed recovery functions

for SOAP-PP and SOAP-Loop, which all have lower values at

short distances than the DOPE reference state based on the ideal

gas assumption (Fig. 8).

Finally, the recovery functions for different feature types can

vary, because of their different environments, as observed for the

recovery functions for 15 clusters of atom type pairs used in

SOAP-PP (Fig. 8).
Although splines can mimic almost any smooth function given

a sufficient number of anchor points, its flexibility could also

lead to overfitting; moreover, a large number of anchor points

could lead to oscillations (Fig. 8). Although our Bayesian model

selection method helps with the generalizability of the optimized

cubic spline (Vehtari and Lampinen, 2002), it is conceivable that

applying Bayesian model selection to a less flexible but appro-

priate functional form will result in a more accurate and general

statistical potential than that based on splines.

4.2 Spatial and sequence features

Our orientation restraints score a spatial relationship between

two sets of atoms in more detail than distance restraints alone,

and should be particularly useful for scoring spatial relationships

between polar atoms, especially for hydrogen bond donors

and acceptors. In fact, the relative accuracy of SOAP-Loop

can be attributed to the use of orientation and recovery func-

tions instead of distance and reference state, respectively

(Supplementary Table S1). However, using orientation did not

result in a better statistical potential for ranking protein inter-

faces (Supplementary Table S2). Although we may not have

found the globally optimal statistical potential for orientation,

a more likely reason is insufficient accuracy of the tested con-

formations produced by rigid docking.
Covalent separation is another important factor affecting the

accuracy of the derived statistical potentials. Surprisingly, for

ranking protein interfaces, statistical potentials derived from

intra-chain non-local atom pairs (bond separation 49) work

better than statistical potentials derived from inter-chain atom

pairs (chain separation¼ 1) (Supplementary Table S1). A likely

reason is that many protein interfaces in the PDB result from

crystal contacts that do not reflect interfaces between proteins

in solution (Carugo and Argos, 1997; Krissinel, 2010). In the

future, a better statistical potential for ranking protein interfaces
might be obtained if only true biological interfaces from PDB

are used.

4.3 Bayesian inference

Statistical potentials can be derived for many different values of
the input variables, with little or no a priori reasons to choose

one set of values over the others. The Bayesian model selection

based on Bayesian predictive densities provides a statistically

rigorous way of choosing the values that result in most general-
izable statistical potentials (Vehtari and Lampinen, 2002).

However, one limitation of this method is that the calculation

of predictive densities is computational intensive, often requiring

more than tens of thousands of evaluations of the statistical
potential on the benchmark. Thus, such calculations are not

always practical. Fortunately, increases in the available computer

power will enable us to find more accurate statistical potentials

in an increasingly larger parameter space in the future. Another
approach to improving the search for optimal parameter values

is to use physically motivated feature types, functional forms and

allowed value ranges.
In principle, normalizing the feature distributions by recovery

functions to obtain a statistical potential (Equation 2) is not ne-

cessary. Instead, we could use parametric (e.g. the mathematical
functional forms used in molecular mechanics force fields) or

non-parametric functions to represent the statistical potential

and directly infer the optimal statistical potential by its accuracy

on a benchmark of interest. However, this approach might not
provide an accurate statistical potential in practice because of the

large number of parameters whose values would need to be

optimized.
Our method for smoothing feature distributions is a general-

ization of the two related methods used in calculating statistical

potentials (Sippl, 1990) and homology restraints (Sali and
Blundell, 1993). Both methods are equivalent to our Bayesian

smoothing method with a diagonal covariance matrix as the

smoothing prior. Their prior distribution is equivalent to the

mean of our prior S, whereas the weights on their prior distri-
butions are defined by the standard deviation in our covariance

matrix.

In conclusion, our Bayesian framework can be applied to
derive an optimized statistical potential for many other kinds

of modeling problems for which sample structures are available,

thus affording better leverage of the experimentally determined
protein structures. Examples include membrane protein topology

and complexes of proteins with small molecules or peptides.
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