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Background: Blood vessel formation is fundamental to development, while
its dysregulation can contribute to serious disease. Expectations are that
hundreds of millions of individuals will benefit from therapeutic
developments in vascular biology. MSCs are central to the three main vascular
repair mechanisms.

Sources of data: Key recent published literature and ClinicalTrials.gov.

Areas of agreement: MSCs are heterogeneous, containing multi-lineage stem and
partly differentiated progenitor cells, and are easily expandable ex vivo. There is no
single marker defining native MSCs in vivo. Their phenotype is strongly determined
by their specific microenvironment. Bone marrow MSCs have skeletal stem cell
properties. Having a perivascular/vascular location, they contribute to vascular
formation and function and might be harnessed to regenerate a blood supply to
injured tissues.

Areas of controversy: These include MSC origin, phenotype and location in vivo
and their ability to differentiate into functional cardiomyocytes and endothelial
cells or act as vascular stem cells. In addition their efficacy, safety and potency in
clinical trials in relation to cell source, dose, delivery route, passage and timing of
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Background

for their efficacy in vascular repair for regenerative medicine therapies and tissue
engineering approaches.

Areas timely for developing research: Characterization of MSCs’ in vivo origins and
biological properties in relation to their localization within tissue niches,
reprogramming strategies and newer imaging/bioengineering approaches.

Keywords: mesenchymal stem/stromal cells/pericytes/adventitial cells/
regenerative medicine/cancer/vasculogenesis/angiogenesis/arteriogenesis/tissue
engineering/transplantation
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Cells now categorized as mesenchymal stem/stromal cells (MSCs) were
identified over 4 decades ago in murine and guinea pig bone marrow by
Friedenstein et al.'~ and subsequently in human bone marrow” as a non-
haemopoietic, tissue culture plastic adherent sub-fraction of bone
marrow cells. These cells formed clonogenic fibroblastoid-like colonies or
CFU-F (colony-forming units-fibroblastoid) in wvitro. Early studies
revealed that these bone marrow MSCs possessed osteogenic potential i
vivo." Bone marrow fragments containing MSCs or MSCs themselves
were subsequently demonstrated to support haemopoiesis i vivo® or in
vitro,® with post-natal bone marrow fragments and cells also giving rise
to bone, fat, cartilage and fibrous tissue after transplantation into an in
vivo ectopic site. In 1991, Caplan” coined the phrase ‘mesenchymal stem
cells’ to describe the ability of these cells to generate cartilage and bone,
while, in 1999, Pittenger et al.® demonstrated their multi-potentiality for
forming adipogenic, chrondrogenic and osteogenic lineages after clono-
genic expansion in vitro. These cells were also subsequently referred to as
skeletal stem cells since they contain skeletal tissue progenitor cells.’
More recently, Lin and Lue'” have suggested the terminology, vascular
stem cell, to describe MSCs resident in vessel walls, although substantial
proof for their stem cell properties and their ability to also generate all
vascular lineages is required to confirm this definition.

As a key component of the bone marrow haemopoietic stem/progenitor
cell (HSPC) niche,''™"® bone marrow MSCs have also been shown to be
organizers or regulators of haemopoietic stem cell (HSC) function as well
as blood vessel formation and function.'"”° In agreement with this
latter aspect is the identification of MSCs in the vascular niche of the
bone marrow and of MSC-like cells as perivascular or adventitial cells in
a variety of foetal and post-natal tissues.'**'=>* While this localization of
MSCs or MSC-like cells adjacent to or within the vasculature might
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suggest a role in blood vessel formation by direct differentiation into
endothelial cells'® and/or as supporting niche cells* for vascular (re-)gen-
eration, it is also compatible with them being potential modulators of
hostile injury microenvironments through their immunomodulatory and
anti-inflammatory properties and their ability to limit inflammatory
damage.”>™*® From the above, it is understandable that these MSCs or
MSC-like cells have generated substantial interest in the medical areas of
transplant, regenerative medicine and cancer treatment because of their
multi-potency and multi-functionality.

Although MSCs are best known from their isolation and culture from
human bone marrow, similar cells have been isolated from such tissues as
peripheral blood,”” cord blood,”® umbilical cord derived Wharton’s
jelly,'=** adipose tissue,'®**** amniotic fluid,>’~** placenta,””* foetal
tissues,”'™** dental pulp,” periosteum,*®*” synovial fluid and mem-
brane,*”~*" articular cartilage,’® skeletal muscle and dermis,’'~? lungs’?
and from a variety of other foetal and post-natal tissues.,'%-'3716:18:21-2429
Additionally, MSC-like cells have been described in murine compact
bone’*>° and the heart.””>® Notwithstanding that these human MSC and
MSC-like cells also have distinct source-dependent features, they all express
certain surface markers (CD90, CD105 and CD73 positive, and lack of
HLA-DR, CD45, CD19, CD14 or CD11b and CD19 or CD79), have
similar transcriptomes, all adhere to plastic, all differentiate into all or some
of the classical mesenchymal lineages, chondrocytes, adipocytes and osteo-
blasts, and, in most cases modulate the immune response.'”->¢728-57764
Sourcing of MSC from living donors can be invasive as illustrated for bone
marrow and amniotic fluid. The non-invasive sourcing from umbilical
cord, cord blood and placenta procured after birth has the advantage of
not posing any risk to the donor. Moreover, these sources have a minimal
risk of viral infections and few ethical concerns associated with their pro-
curement.®’ Once sourced from various tissues, the ease of culture of MSCs
or MSC-like cells, their iz vitro proliferative potential and their ability to
home to sites of injury i vivo are even more interesting in terms of their use
as cell therapeutics. As indicated and apart from their defining characteris-
tics, MSCs and MSC-like cells are heterogeneous populations of cells, and
their function, efficacy and differentiation status change in relation to the
microenvironment in which they find themselves. Iz vivo, this microenvir-
onment can represent different stages of ontogeny or can change from
normal to injured or regenerative tissues. Several recent reviews have
emphasized the need for more robust definitions of MSCs derived from
various tissues,'””” such as defining their source, species derivation,
whether they are primary or cultured cells, their iz vitro clonogenic and dif-
ferentiation capacities and their transcriptome, proteome and secretome
profiles under defined conditions. These detailed characteristics might be
related to differences in in vivo efficacy and will hopefully predict the latter.
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In this review, unless otherwise specified, the terminology ‘MSCs’ will
refer to the heterogeneous population of mesenchymal stem/stromal cells.
Discussions will concentrate primarily on human MSCs or MSC-like cells
with reference to murine studies and will address the function of MSCs in
regulating blood vessel formation as one of their central effects. In the
studies described below, we will use haemopoietic, cardiovascular and
skin repair as exemplars where MSCs or MSC-like cells regulate blood
vessel formation. As such, they play a key role in the revascularization of
regenerating tissues and are being studied for their therapeutic potential.
In this context, their relationship to perivascular adventitial cells and peri-
cytes is crucial to acknowledge and will also be reviewed.

The blood vessel supportive properties of MSCs

Blood vessel (re-)generation occurs by different mechanisms including
vasculogenesis (de novo blood vessel formation from endothelial precur-
sors or angioblasts), angiogenesis (the sprouting of existing vessels or
intussusceptive angiogenesis) and arteriogenesis (the growth of collateral
vessels).®™®” These are illustrated in Fig. 1. MSCs and myeloid cells have
been demonstrated to enhance the de novo formation of stable vascula-
ture by endothelial colony-forming cells in surrogate models of vasculo-
genesis in vitro and in vivo."”’°% Arteriogenesis is one of the most
powerful revascularization mechanisms in adults leading to an increase in
the lumen of existing small collaterals and eventually reperfusion of
tissues downstream of a vascular obstruction.®” Arteriogenesis is thought
to be initiated by shear stress-induced activation of endothelial cells in the
vascular wall, with subsequent macrophage and lymphocyte recruitment
and adhesion, remodelling of the vascular wall by released proteases and
cell proliferation, prior to neointimal formation. MSCs, by releasing
angiogenic factors and proteases, have been reported to stimulate this
process, as illustrated for example in the ischaemic hind limb model
studies.®'~® Finally, sprouting angiogenesis, which occurs in response to
ishaemia and hypoxia, is characterized by extracellular matrix degrad-
ation and detachment of mural cells ( pericytes or MSC-like cells) from ca-
pillaries and microvessels (<100 um in diameter). This allows the
endothelial tip cells to become invasive and to form filopodia and lam-
mellipodia in response to guidance cues, while stalk cells which lie behind
the tip cells proliferate, extend the vessels and form extracellular matrix,
junctions and lumens.®®*”%%%> Once the tip cells anastomose or inoscu-
late with other tip cells,*® vessel maturation takes place and this involves
the commencement of blood flow, mural cell recruitment and extracellu-
lar matrix deposition.®”**%” Here, the mural cells come into direct
contact with capillaries and microvascular cells and stabilize the tubular
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Fig. 1 New blood vessel formation. Schematic representation of (a) vasculogenesis or the for-
mation of new vessels de novo from stem/progenitor cells; (b) Sprouting angiogenesis, where
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network. These mural cells, which are also denoted by some as pericytes,
have been demonstrated in the human to give rise to multi-potent MSCs
in vitro.?>** These pericytes or MSC-like cells are reported to express
CD146 in humans.'>"? In contrast to capillaries, the vascular wall of
human arteries and veins is composed of three layers, the lumen facing
tunica intima, the tunica media and the outer tunica adventitia. The ad-
ventitial layer especially contains cells with properties of and which give
rise to multi-lineage MSCs in vitro.** Unlike pericytes, these adventitial
cells are reported to be CD146™.*7** In the remainder of this review,
these pericytes and perivascular adventitial cells, which contain cells rem-
iniscent or equivalent to bone marrow MSCs, will be referred to as
MSC-like cells, although their heterogeneity and potentiality will be dis-
cussed in subsequent sections.

MSCs derived from murine or human bone marrow cells have the
ability to regulate new blood vessel formation, stability and func-
tion,'”’%7® and similar effects have been demonstrated with MSC-like
cells from murine adipose tissue, skeletal muscle and the heart,”” and
from human adipose tissue,”>>"®*® the limbal niche,®” the foetal circula-
tion,”® amniotic fluid,”* the vascular wall®>~* and umbilical cord
blood.”" Interestingly, second trimester human amniotic fluid MSC-like
cells appear to provide better vasculogenic support in an iz vivo surrogate
model than bone marrow MSCs.”* This might suggest that MSCs at
earlier stages of ontogeny are more supportive when compared with adult
bone marrow MSCs. This may be due to superior proliferative or homing
and retention potential or through their unique secretome profiles.
Indeed, amniotic fluid MSC-like cells secrete more than twice as many
angiogenic factors as bone marrow MSCs.”* Nevertheless, together with
this vascular-supporting function, recent data have demonstrated that
human MSCs from umbilical cord blood also show angiogenic potential
since they directly self-organize forming new functional vasculature con-
nected with the host circulatory system once implanted in mice.”’

endothelial cells respond to ischaemia or hypoxia first by movement of MSCs or pericytes
away from the endothelia with the endothelial tip cells extending filopodia or lamellipodia in
response to guidance cues (A and B). Endothelial stalk cells then proliferate extending the tip
cells and forming a lumen (C) as they inosculate with other extending vessels (C). These vessels
are then stabilized by pericyte/MSC recruitment (D); (c) Intussusceptive angiogenesis occurs
without endothelial proliferation. The endothelia protrude into the vessel to form a transen-
dothelial bridge with the aid of pericytes/MSC and fibroblastoid cells (B) before separating
into two vessels (C); (d) Arteriogenesis can occur in the absence of hypoxia with an increase in
luminal diameter and length of pre-existing arterioles following a larger vessel blockage (A)
to form larger collateral vessels. It is thought that endothelia in these smaller vessels respond
to sheer stress and recruit macrophages and lymphocytes (B). The macrophages degrade the
ECM allowing paracrine signalling and regulating interactions between endothelial and peri-
vascular cells [pericytes/MSC/smooth muscle cells (SMC)], and resulting in vascular prolifer-
ation (B) and vessel enlargement and stabilization (C).
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MSCs, the bone marrow vascular niche and haemopoietic
regeneration

A specialized intact bone marrow sinusoidal vascular niche is now well
recognized as being essential for post-natal haemopoiesis and for haemo-
poietic recovery after bone marrow damage, as exemplified by the re-
sponse to preconditioning regimes during the treatment of malignancies
and prior to transplants.'®”>?3 The concept of the HSPC inductive
microenvironment or niche was developed over four decades ago’*”° to
explain the specific ability of the bone marrow to generate blood cells. In
healthy human adults, this allows the production of over 10''-10'% new
blood cells on a daily basis. Three anatomical regions, the sinusoids (the
vascular niche), the endosteum (the osteoblastic niche) and the haemopoi-
etic tissue proper, have been identified in murine bone marrow.” Cellular
components of HSPC niches (Fig. 2) include MSCs and their osteoblastic
and adipocytic progeny, in addition to osteoclasts, macrophages, other
haemopoietic cells and sinusoidal endothelial cells.”®”” The vascular wall
of the sinusoids in the bone marrow is, however, highly specialized and
consists maximally of two cell layers. Below the continuous layer of endo-
thelial cells, a discontinuous layer of other perivascular cells (variously
termed MSCs, pericytes or adventitial reticular cells) extends into the
bone marrow compartment as an essential part of the vascular niche.'*'®

@

Fig. 2 The bone marrow niche. Schematic representation of the haemopoietic niches in long
bones. (a) Longitudinal section demonstrating blood flow into the bone and bone marrow
and the formation of sinusoidal vessels; (b) Transverse section of bone containing sinusoidal
vessels; () haemopoietic niches are located near the endosteum of the bone, near sinusoids
and in the bone marrow proper. There is controversy as to whether these are distinct niches or
a continuum of niches that allow HSPC maintenance, proliferation and differentiation. Of im-
portance to the niche in terms of MSCs or their progeny are nestin+ MSCs, CXCL12 adventitial
reticular (CAR) cells, LepR+ MSCs, osteoblasts and adipocytes.
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Some studies in mice have supported the view that the osteoblastic niche
and the vascular niche are distinct entities with different roles in support-
ing haemopoiesis.'* It has been proposed that HSCs lying adjacent to the
endosteal bone surface which is populated with osteoblasts possess
higher proliferative and transplantation capacities, while the vascular
niche supports the proliferation and maturation of HSPC subsets.” Other
studies have argued for less distinction between these niches, with both
osteoblasts and endothelial cells contributing to a trabecular HSPC
niche.” The rationale for this second model has been based on observa-
tions that most murine HSPCs are located close to bone marrow sinusoid-
al endothelial cells, that sinusoidal endothelial cell modulation affects
HSC numbers and that the endosteal region is highly vascularized.”
Although it is thought similar niches exist, the distinction between endo-
steal and vascular niches in adult human bone marrow is not as clearly
defined as in the mouse.

It is now widely accepted that, in the murine bone marrow, MSCs expres-
sing the chemokine CXCL12 play a key role in maintaining undifferenti-
ated HSCs, in HSC homing and survival, and in controlling HSPC
proliferation or differentiation.'*™'® More recently, conditional knockout
studies of CXCL12 and stem cell factor in murine bone marrow niche cells
have indicated that different HSPCs reside in specialized niches. More spe-
cifically, CXCL12 from murine perivascular MSCs was shown to be
required for HSC support, whereas CXCL12 expressing osteoblasts sup-
ported early lymphoid progenitors.'*'> The equivalent human bone
marrow cells appear to be the subendothelial CD146*CD271* skeletal pro-
genitor or MSC, which contributes to the vascular niche, and the
CD146~CD271" osteoblast, which contributes to the endosteal niche.'*!?
Since perivascular MSCs play a central role in regulating haemopoiesis in
post-natal human bone marrow, the question arises as to whether these
same cells also regulate bone marrow vasculogenesis and angiogenesis.
Sacchetti et al.'* reported that the CD146* MSC perivascular subset in
human bone marrow expressed angiopoietin-1, a secreted factor that plays
a pivotal role both in angiogenesis and haemopoiesis. After subcutaneous
transplantation into immune compromised mice, the CD146" MSCs dis-
played self-renewal capacity and the ability to differentiate into osteoblasts,
forming bone and contributing to the structure of the haemopoietic niche
via a defined developmental sequence. Bone formation preceded the ap-
pearance of a sinusoidal system, and ultimately of haemopoiesis. The
CD146" MSCs were an integral part of this sinusoidal system, residing in
the sinusoidal wall. Of note, gene knockdown of angiopoietin-1 in these
CD146" cells limited their ability to regulate microvessel assembly, suggest-
ing a key role in the vascular remodelling of the bone marrow.'* Chan
et al. reported the existence of a murine CD45 Tie2 aV*CD105 Thy1™
foetal bone skeletal progenitor subset, which following transplantation
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under the adult mouse kidney capsule, recruited blood vessels, generated
ectopic bone and ultimately gave rise to a marrow cavity populated by
HSC, suggesting that niche formation is dependent on endochondral ossifi-
cation.”® VEGFR-2 played an essential role in bone marrow sinusoidal for-
mation. In both cases, the generation of bone alone was not sufficient to
initiate niche formation and HSC engraftment, while recruitment of
host-derived vasculature was critical to this process. Building on this, we
analysed the clonal murine CXCL12 and angiopoietin-1-expressing MS-5
bone marrow-derived MSC cell line and demonstrated that this clonally
derived MSC could not only regulate human haemopoiesis, but also
promote vasculogenesis and angiogenesis from primary human endothelial
precursors in vitro.'” This provides a simplified clonal surrogate model
with which to analyse factors that promote both human blood vessel for-
mation and haemopoiesis and where CXCL12 has been shown to play a
key role in both processes. Our studies also demonstrate that both human
bone marrow MSCs and second trimester amniotic fluid MSCs, which
secrete CXCL12, can also promote human vasculogenesis and angiogen-
esis in vitro and in vivo.”* Such studies may facilitate the use of
MSC-derived cellular and molecular therapies for vascular repair of
damaged bone marrow and for improving haemopoietic recovery follow-
ing myeloablation and transplantation.

To date, preclinical surrogate models (immunodeficient mice, foetal
sheep, non-human primates) have demonstrated that co-transplanting
human HSPCs with human bone marrow MSCs or foetal lung-derived
MSC-like cells, or non-human primate CD34" HSPCs and bone
marrow MSCs can improve HSPC engraftment and haemopoietic reconsti-
tution.”” " In clinical trials, co-transplantation of human cultured bone
marrow MSCs with peripheral blood or umbilical cord blood HSPCs have
given variable results with some studies demonstrating enhanced HSPC en-
graftment'%>7'%¢ and haemopoietic recovery, while others do not.'"”
Notwithstanding the normal and specific localization of MSCs in the
marrow vascular niche, the variability of the observed co-transplantation
effects is not fully understood but may be due to differences in study design,
patient population, and the efficacy and source of the MSCs used.
However, where positive effects in terms of efficacy have been demon-
strated, it is unknown if the MSC co-transplants directly or indirectly
enhance bone marrow revascularization and the recovery of the vascular
niche. Although chemoradiotherapy conditioning before haemopoietic stem
cell transplantation in general induces grave destruction of the marrow in-
cluding its vascular architecture, infused MSCs are usually not substantially
found back in the bone marrow. Therefore, modulation of endogenous
repair instead of actual differentiation of MSC into vascular structures
might be more likely. On the other hand, while MSC co-infusion seems
most effective with limited HSC grafts, they might also facilitate homing of
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HSC to the bone marrow. Alternatively, the observations described may
merely reflect an improved efficacy and potency of the cell products used.
This latter conclusion might be supported by particularly noteworthy recent
evidence that it is possible, using peptidomimetic ligands, to direct human

MSCs to the bone where their engraftment is enhanced in xenotransplant
models.'*®

MSCs for cardiovascular and skin repair as exemplars

Cardiovascular disease is a leading cause of morbidity and mortality
worldwide,”*19%119 byt less known is the fact that in the UK and USA
alone chronic wounds currently affect over 6.7 million patients.'' "' This
burden is growing rapidly as a result of an ageing population and a sharp
rise in the incidence of diabetes and obesity worldwide. Additionally, the
treatment of full-thickness skin loss (e.g. in burn injuries) is a major clinical
challenge, with morbidity, scarring and contracture being significant
problems.''?

Medical interventions for cardiovascular disease include thrombolytic
therapy, percutaneous or surgical revascularization, and regenerative ther-
apies using cells and/or biologics.>*''3~11¢ For MSC-based therapies, bone
marrow MSCs and MSC-like cell containing populations from adipose
tissue and the vascular wall (e.g. umbilical cord and saphenous vein at the
time of coronary artery bypass grafting) have been used either in surrogate
models of myocardial infarction, cardiac myopathies, stroke or limb ischae-
mia, or in clinical trials. The use of MSCs in clinical trials treating cardio-
vascular diseases is listed on ClinicalTrials.gov and summarized in Table 1.
Those listed on ClinicalTrials.gov include the use of human allogeneic
cardiac or cardiosphere-derived cells (ALLSTAR; RECONSTRUCT;
CADUCEUS) or autologous cardiac stem or progenitor cells (SCIPIO;
ALCADIA; TICAP). A number of these trials use or plan to use human
cardiac stem cells selected for c-kit (CD117) positivity or cardiac or
cardiosphere-derived cells that have been reported to contain c-kit" cells
and other progenitor cells (e.g. MSC-like cells). Many of the clinical trials
listed are conducted as safety or feasibility studies and will require further
studies on the optimization of their efficacy."'”™"'” The outcome of the
POSEIDON:-Pilot trial (autologous vs. allogeneic MSCs) demonstrated
improved New York Heart Association classification and quality of life
indicators, but not left ventricular function, in patients receiving autolo-
gous bone marrow MSCs,'**'?! and the effects were most significant with
the lowest dosage of cells (2 x 10° per patient). Thus, the benefit of trans-
plantation of MSCs in this clinical setting is currently unclear. Short-term
follow-up (6-12 months) demonstrated significant increases in such para-
meters as viable myocardium and regional contractility for the
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Table 1 Clinical trials using MSCs to treat cardiovascular diseases

Clinical Trial Disease treated Therapeutic agent Current status
NCT01392105 Acute myocardial infarction Human autologous bone ~ Randomized
SEED-MSC marrow MSCs Completed
NTC00587990 Chronic ischaemic left ventricular Human autologous adult ~ Randomized
Prometheus dysfunction secondary to myocardial MSCs Completed
infarction and undergoing CABG
NCT01392625 Non-ischaemic dilated Human autologous vs. Randomized
Poseidon DCM cardiomyopathy allogeneic bone marrow Recruiting
MSCs
NCT01087996 Chronic ischaemic left ventricular Human autologous vs. Randomized
Poseidon-Pilot dysfunction secondary to myocardial allogeneic bone marrow Completed
study infarction MSCs
NCT00768066 Chronic ischaemic left ventricular Human autologous bone Randomized
TAC-HFT dysfunction and heart failure marrow MSCs vs. MNCs Completed
secondary to myocardial infarction
NCT01291329 ST-segment elevation acute Human allogeneic Randomized
WIJ-MSC-AMI myocardial infarction umbilical cord Wharton’s ~ Completed
jelly-derived MSCs
NCT01076920 Chronic myocardial ischaemia and Human autologous bone Active, not
MESAMI left ventricular dysfunction marrow MSCs recruiting
NCT01710888 Ischaemic dilated cardiomyopathy Human autologous bone Randomized
marrow MSCs Recruiting
NCT00883727 ST-segment elevation acute Human adult allogeneic Randomized
myocardial infarction MSCs Completed
NCT01449032 Chronic myocardial ischaemia Human cultured Randomized
MyStromalCell adipose-derived MSCs Recruiting
Trial
NCT00442806 ST-segment elevation acute Human autologous Randomized
APOLLO-01 myocardial infarction adipose-derived stem cells  Not recruiting
NCT01502514 Ischaemic congestive heart failure Human autologous Non-randomized
ADI-ME-CHF-002 adipose-derived stem cells  Recruiting
NCT00426868 Ischaemic heart disease; coronary Human autologous Randomized
PRECISE-01 arteriosclerosis; cardiovascular adipose-derived stem cells  Not recruiting

(i) NCT00790764
(ii) NCT00548613

disease; coronary disease; coronary
artery disease

Heart disease; blocked arteries;
coronary ischemia; coronary disease;
coronary artery disease; coronary
atherosclerosis

Human autologous bone
marrow MNCs and MSCs
(MESENDO)

Randomized
(i) Unknown

(ii) Completed

*Listed on ClinicalTrials.gov; CABG, coronary artery bypass graft; do not include bone marrow MNCs or

HSPCs alone.

CADUCEUS trial''” and improved left ventricular systolic function and
reduced scar size for the SCIPIO trial."'® The use of MSCs in treating limb
ischaemia has also been recently reviewed,''>''® and there are currently
five clinical trials aimed at using bone marrow or adipose tissue MSCs for
treating ischaemic cerebral stroke and peripheral vascular disease listed on
Clinical Trials.gov.

Clinical trials have progressed without necessarily understanding the
mechanism nor fully demonstrating the efficacy of the cell product in pre-
clinical models.'” Moreover, the surrogate models used may not be fully
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representative of the human disease. Furthermore, while engraftment and
therapeutic benefit may both be seen, there is not a great deal of evidence
that MSC engraftment itself is always beneficial. At least one study has
demonstrated that autologous cardiac-derived cells from neonatal rats and
which contained MSC-like cells, when administered into rats intramyocar-
dially and subsequently systemically following myocardial infarction were
retained in the heart and improved capillary density and cardiac func-
tion.'"”* A further study combining human foetal with human bone
marrow MSCs in an immunosuppressed swine model of myocardial infarc-
tion showed cell retention in the heart, reduction in scar size, engraftment
of cells into vessels, vascular proliferation and improved left ventricular
ejection fraction.'?® In other surrogate models of myocardial infarction or
peripheral vascular disease which have been recently reviewed or described
elsewhere,>*>1%3 human foetal aortic, CD34*CD31~ adult saphenous
vein, CD146*CD45"CD56 CD34~ foetal or adult muscle-derived peri-
cytes or MSC-like cells improved function and promoted blood vessel for-
mation in injured tissue.

Similar mechanisms might also be responsible for healing skin wounds.
There is accumulating evidence that MSC-like cells are also essential for
the formation and stabilization of new vessels within healing skin
wounds.®** On the other hand, MSCs might also enhance skin wound
healing through anti-inflammatory and anti-apoptotic effects, by enhan-
cing keratinocyte migration, by promoting a vascularized granulation
matrix and through ECM deposition increasing the tensile strength of
repairing wounds, both traumatic and in chronic non-healing
ulcers.!>12%125 T this respect, MSCs have also been reported to enhance
wound healing in diabetic tissue.'**'*” In a study examining the efficacy of
bone marrow MSCs in such chronic non-healing ulcers, autologous im-
plantation of bone marrow MSCs accelerated the healing process and
improved clinical parameters (pain-free walking and wound size) signifi-
cantly, emphasizing the beneficial effect of topical therapy.'*® Allied to
this, acute pathology, in particular as a result of burns, causes a breach in
the integrity of the skin that may also benefit from the vasculogenic proper-
ties of MSCs. However, a problem remains as to how to ensure that these
cells reach their target area in a timely fashion and in sufficient numbers to
maximize their therapeutic benefit. Although the infusion of MSCs may
provide a reasonable therapeutic effect by their homing capacity, skin
wounds provide the ideal candidate for a topical delivery approach. Ways
in which MSCs have been previously been delivered to a wound have
included an acrylic acid polymer carrier (ppAAC),”*'** a fibrin-based
spray' >’ and numerous collagen or fibrin-based hydrogels containing a
mixture of both MSCs and endothelial cells."'! The ppAAc carrier trans-
ferred bone marrow MSCs to decellularized human dermis in vitro and
delivered adipose-derived MSC-like cells to full-thickness murine wounds
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with high efficiency—>80% of cells transferred by 3 days. Moreover, the
presence of these cells significantly accelerated wound healing, achieving
levels equivalent to the MSCs being delivered intradermally.'*® In order to
produce the MSC-containing fibrin spray,'?” a single bone marrow aspir-
ate of 35-50 ml was obtained, and cultured autologous bone marrow
MSC were applied up to four times to chronic wounds using a fibrin
polymer spray system. Application resulted in significant decreases in size
to chronic human wounds, whilst topical application of autologous MSCs
also stimulated closure of full-thickness wounds in diabetic mice. Perhaps
more importantly, GFP tracking of the human bone marrow MSCs in
mouse wounds showed GFP” cells associated with blood vessels, suggesting
the involvement of these cells in vascularization of the healing wound.'*®

MSC secretome, microvesicles and tissue engineering as complementary
therapeutic approaches

Paracrine effects of MSCs and MSC-like cells have been highlighted as im-
portant effector mechanisms in promoting blood vessel formation and en-
dogenous cardiovascular and wound repair. While arteriogenesis and/or
angiogenesis and anti-inflammatory effects will be significant targets in
adult life, vasculogenesis may also be a likely target in ex vivo newly engi-
neered tissues. Hence, harnessing the secretome of MSCs or MSC-like cells
is another approach which may add value to cellular therapeutics. As with
cell therapies, the studies reviewed recently by Ranganath et al. and our
own studies demonstrate that the MSC secretome, at least in vitro, is de-
pendent on cell source, purity and preconditioning by microenvironmental
factors such as growth factors, small molecules and hypoxia
(Table 2).'%7%130:131 - Apsroaches to improve revascularization have
included the direct use of individual cytokines such as VEGF, FGF4 and
EPO in clinical trials, but these have not generally replicated the efficacy
observed in preclinical models.'*’ Further improvements may be achieved
by better secretome analysis and characterizing the optimal MSC or
MSC-like population, by controlling the release of factors, and identifying
MSCs or MSC-like cells in the context of three-dimensional (3D) scaffolds
or spheroids that can alter MSC function. The latter approach may be used
in tissue engineering approaches but may also be exemplary of better
understanding the signalling and transcriptional mechanisms that regulate
the MSC secretome in the vascular niches in health and disease.
Intercellular communication between MSC or MSC-like cells and their
interacting cells can also be modulated via the production of micro- or
nano- cellular membrane vesicles, which can carry mediators as well as
genetic information (mMRNA, miRNA) between cells.'*> The ability of such
microvesicles to stimulate angiogenesis has been described both iz vitro and

British Medical Bulletin 2013;108 37



S. M. Watt et al.

Table 2 Differences and similarities between the secretome of two sources of human
mesenchymal stromal cells as assessed using angiogenesis antibody arrays*

Secreted molecules  Amniotic Bone Some reported functionst
fluid marrow

Angiogenin + + A member of the pancreatic ribonuclease family;
vasculogenesis

Angiopoietin-1 + + Ligand for Tie-2; proangiogenic; endothelial cell chemotaxi;
survival; sprouting and stabilization; vessel maturation

Angiopoietin-2 + - Ligand for Tie-2; alone promotes vascular regression and
destabilizes endothelial cell-perivascular cell interactions.
With VEGF, Ang-2 promotes neovascularization.

Angiostatin + - Plasminogen cleavage fragment; angiogenic inhibitor;
inhibitor of endothelial cell proliferation and migration

Amphiregulin + - EGF-like ligand which signals through the EGFR; enhanced
lymphangiogenesis

Artemin + - Member of the GNDF ligand family; promotes angiogenesis

Tissue Factor + - Coagulation factor I1I/CD142; promotes neovascularization
and stabilization through CCL2; enhances transcription of
VEGF and decreases transcription of the thrombospondins

CXCL16 + + Proangiogenic

DPPIV (CD26) + - Membrane-bound oligo-peptidase acting on and modulating
the proangiogenic chemokine CXCL12

Epidermal growth + - Anti-apoptotic; enhances MSC proliferation and survival;

factor enhanced lymphangiogenesis

EG-VEGF + - Prokineticin 1; proangiogenic

Endostatin + - Collagen XVIII cleavage fragment; inhibitor of angiogenesis
and of endothelial cell proliferation and migration; promotes
endothelial apoptosis and G1 arrest

Endothelin-1 + + Proangiogenic and prolymphoangiogenic

Endoglin (CD105) + - Auxillary TGF-B1 receptor that modulates TGF-B1 and 3
responses; role in vascular development, angiogenesis and
vascular homeostasis

FGF-7 + + Arteriogenesis

FGF acidic/FGF-1 + - Proangiogenic

FGF basic/FGF-2 + - Vascular regeneration; induces vascular networks and
stimulates arteriogenesis

FGF-4 + - Proangiogenic

GDNF + - Glial-derived neurotrophic factor; proangiogenic

GM-CSF + - Proangiogenic

Heparin binding-EGF + + Proangiogenic

Hepatocyte growth  + - Proangiogenic

factor

IL-1B + - Proangiogenic; lymphangiogenesis

IL-8 + - Proangiogenic

TGF-p1 + - Angiogenic inhibitor

Leptin + - Promotes vascular tubule formation

MCP-1 + - CCL2; promotes neovascularization and stabilization

MIP-10 + - CCL3; reported to act on macrophages or other cells to
stimulate vessel formation

MMP-8 + - Collagenase 2 cleaves collagen type |, Il and lll; angiogenesis

MMP-9 + - Gelatinase B cleave both collagens and gelatins;
neovascularization and angiogenesis

NRG1-B1 + - Angiogenesis; arteriogenesis

Pentraxin-3 (PTX3) + + Proangiogenic

Continued
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Table 2 Continued

Secreted molecules  Amniotic Bone Some reported functionst

fluid marrow
PD-ECGF + - Thymidine phosphorylase; promotes angiogenesis
PDGF-AA + + MSC proliferation; enhances angiogenesis
PDGF-AB/PDGF-BB  + - Induces vascular networks and stimulates arteriogenesis
Persefin + - Member of the GNDF ligand family
Platelet factor 4 (PF4) + - Angiogenic inhibitor
PIGF + + Proangiogenic
Prolactin + - Proangiogenic in intact form
Serpin B5 + - Maspin; member of the serine protease inhibitor family;

negative regulator of angiogenesis

Serpin E1 + + PAI-1; member of the serine protease inhibitor family;
inhibitor of UPA; negative regulator of angiogenesis;
maintains microvascular integrity

Serpin F1 + + member of the serine protease inhibitor family; negative
regulator of angiogenesis

TIMP-1 + + Negative regulator of angiogenesis

TIMP-4 + + Negative regulator of angiogenesis

Thrombospondin-1  + + Anti-angiogenic; inhibits endothelial cell proliferation

Thrombospondin-2  + - Anti-angiogenic; inhibits endothelial cell migration and
tubule formation

uPA + + Endothelial cell proliferation, migration and tubule
formation

Vasohibin + - Negative feedback regulator of angiogenesis

VEGF + + Proangiogenic

VEGF-C + - Regulates lymphangiogenesis

Studies were conducted using angiogenic antibody arrays and 24-h conditioned media obtained from
MSCs from human second trimester amniotic fluid or from bone marrow cultured in EMB2 medium with
low serum (0.5%) as described by Roubelakis et al.”* and which had been shown to support
vasculogenesis/angiogenesis in vitro and in vivo (+: presence, — no detectable expression).

*|n separate experiments, CXCL12 was also detected although this was not present in the antibody array.
tFunctions may vary depending on tissue or environmental context.

in vivo and emerging evidence indicates that microRNAs (miRNAs) play a
significant role in vascular biology, as well as regulating other facets of
tissue repair.'*>'** Microvesicles sort and contain multiple effector mole-
cules, while miRNAs regulate multiple targets or pathways and can be
enhanced or suppressed with small molecule mimics or antagomirs. Such
small molecules may thus also be used to potentially control MSC behav-
iour (e.g. endothelial tubule formation, migration and proliferation) and
to improve neovascularization, and cardiovascular and skin formation
and function. miRNAs involved in MSC-mediated neovascularization
include miR-210, miR-126, miR-221/222, miR-296, miR-320, miR-18a,
miR-17-5, miR-132, miR-92a and miR-let-7b, with Table 3 listing examples
of known targets and as recently reviewed or described.*>'?*!3* As an
example of effector mechanisms, miR-126 plays an important in the devel-
opment of blood vessels and vascular integrity by regulating Spred1 and
PI3R2, negative regulators of the MAP kinase and PI3K signalling
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Table 3 miRNAs affecting angiogenesis

miRNA

Target

Positive effects

miR-201 NPTX1, Ephrin A3
miR-126 SPRED-1, PIK3R2, VCAM-1
miR-18a* TSP-1
miR017-5* TIMP-1
miR-132 P120RasGAP, PTEN
Let-7b TIMP-1
miR-424 Cullin 2

Negative effects
miR-221/222 c-kit
miR-296 HGF-regulated tyrosine kinase substrate
miR-320 IGF-1
miR-92a Integrin alpha5

*In Dicer depleted cells.

pathway.'*>'%¢ An additional example relates to intramyocardial injected
saphenous vein MSC-like cells which produce miR-132, resulting in
improved cardiac function in an acute myocardial infarcted murine model,
a response attributed in part to increased neovascularization.”>” miRNA
studies are being rapidly translated into clinical use, principally in biomarker
analyses or miRNA signatures as diagnostics, with 124 clinical trials involv-
ing miRNAs listed on ClinicalTrials.com."® Further miRNA network ana-
lysis in functional models, however, might lead to alternative approaches to
actually enhance and regulate blood vessel formation as therapy.

The most complicated and most recent approaches to cardiovascular and
skin therapies are the ex vivo generation of larger tissue or organ segments,
possibly even into complete transplantable organs. The cardiac-related en-
gineering approaches, which have been reviewed recently, include (i) cul-
tured cell sheets that are generated without scaffolds and can be stacked, (ii)
the reconstruction of decellularized tissues or organs reseeded with autolo-
gous cells from the recipient and (iii) the use of smart biocompatible and,
where relevant, biodegradable scaffolds or biogels derived artificially and
which may possess porous, pre-patterned, perfused channels, flexible and/
or elastic 3D designs or niches, with ordered geometry and containing key
biologics.'**715° The latter may allow the delivery of cells to the damaged
heart in injectable hydrogels, or following mechanical or electrical stimula-
tion of cells in the hydrogels or porous scaffolds and each approach cited
above is amenable to recent advances in bioreactor and in imaging tech-
nologies which assess revascularization.””'™? Of note from these studies,
fabricated multilayered cell sheets-derived in vitro are more easily vascular-
ized than thick scaffolds. Indeed, Sekine e al.'** demonstrated that these
sheets inosculate with host vasculature after i vivo transplantation. Other
approaches are to specifically engineer myoblast sheets with factors which
promote blood vessel formation and improve cardiac function upon
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transplantation into the host,"***'** or to create a preformed 3D vascular

niche that promotes revascularization and hence survival of the cardiac
patch.'*®'* In addition, optimizing the inner walls of the synthetic tubules,
for example with proteoglycans and anchor peptides to better capture
MSCs or other vascular cells and their products, aims to allow functional
vessels to extend more deeply within biocompatible scaffolds and to permit
more rapid inosculation with host vessels. Finally where organ transplant
remains the only option for treatment, and given the dearth of organs avail-
able, a whole organ bioengineering approach using decellularized organ
scaffolds, where the tissue microarchitecture is maintained and which can
be reseeded with autologous cells, is another important option being exam-
ined, although this research area will take considerable time to reach trans-
lation."*”1°Y Indeed, Taylor and colleagues'*”>'*° have pioneered whole
organ tissue engineering using naturally occurring decellularized 3D bio-
logical heart scaffolds seeded with relevant cell subsets. Similarly engineered
skin substitutes (whether artificial or from de-cellularized dermis) for treat-
ing extensive full-thickness skin loss following burn injury, which allow the
regeneration of the dermis and epidermis while minimizing scarring, would
meet the challenge of maintaining a blood supply to the graft.
Combinations of MSC or MSC-like cells with biologics and reprogram-
ming, bioreactor and imaging technologies are likely to eventually synergize
with revascularization in endogenous repair,'3%13%151,132,154=156

Safety issues and related other uses of vascular regeneration
stimulating MSC cell therapies

Using MSC or other progenitors, particularly if derived from embryonic or
reprogrammed stem cells, with proliferative and differentiation capacity as
a cell therapy should acknowledge ectopic tumour formation as a possible
side effect.">*157 The safety challenges that need to be overcome before
induced pluripotent cell-derived MSCs are used clinically have recently
been reviewed and the safety of human products has been highlighted as
‘the most important criterion for human application’.** Moreover, a
general concern of vascular regenerative therapies involves promotion of
angiogenesi-dependent malignancies. Cancers affect more than one in
three individuals in their lifetime (www.cancer researchuk.org) and one of
the hallmarks of some cancers is the induction of aberrant angiogenesis,
which can occur in solid and benign tumours and also in haematological
malignancies.'”® % The homeostatic balance between pro- and anti-
angiogenic mechanisms in normal tissues is shifted in favour of proangio-
genic signals emanating from cancer cells, or following their induction in
tumour niche cells by cancer cells, thereby leading to an ‘angiogenic
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switch’. This angiogenic switch results in abnormal angiogenesis, is regu-
lated by hypoxia and is associated with increased perivascular cell recruit-
ment."”” ! MSC-like cells have been linked to this angiogenic switch
process by the secretion of proangiogenic factors, such as fibroblast growth
factor 2, VEGF, angiogenin, TGFp, IL-6, IL-8, hepatocyte growth factor
and platelet-derived growth factor BB (PDGF-BB), as well as by contribut-
ing to the recruitment of circulating vascular progenitor cells.'®*~'%° Other
mechanisms that can contribute to tumour vascularization include vascular
co-option and mimicry.'®®'®” In the former case, tumour growth co-opts
the pre-existing vasculature, a process followed by reactive stimulation of
angiogenesis. In the latter case, tumour cells themselves form a capillary-
like vessel network. Stromal/MSC-like cells may have a differing and
pivotal role in both processes and moreover may affect the outcomes of
anti-angiogenic therapies.'®” Where specific tumour-orientated homing
and incorporation of MSCs have been demonstrated in various preclinical
cancer models, there is evidence that this can even be enhanced by irradi-
ation and/or by cytokines or chemokine gradients generated at the tumour
site.'®>71®> On the basis of these observations and with the exception of
their use to treat severe graft versus host disease following allografts for
haematological malignancies where the benefits and safety of MSCs have
been reported, all vascular (re-)generating therapies should be used with
caution in patients with active or recent malignancies.

On the other hand, this specific homing of MSCs towards tumour vascu-
lature has also led to the proposed use of MSCs as carriers for anti-cancer
gene delivery. This might be particularly handy, where the gene expression
is driven by tissue-specific promoters or enhancers, and where their effects
are targeted to the site of tumour angiogenesis. The rationale is to achieve
more efficient and directed targeting of chemo- and gene therapies or to
use these as an image-guided tool for detecting advanced solid tumours
with multiple metastases. In any case, electrophoration and other non-viral
MSC modifications that are needed for such therapies have not yet been
explored and may indeed be a more likely clinical route. Gene transduction
efficiency into MSCs using conventional adenoviral vectors has been
improved 10-fold using modified adenoviral vectors containing the RGD
(Arg-Gly—Asp) motif.'®® Using this approach, Kanehira et al.'®® demon-
strated that intravenous injection of MSCs expressing NK4, an antagonist
of hepatocyte growth factor, inhibited multiple lung tumors and prolonged
the survival of tumor-bearing mice without inducing adverse effects. Other
examples of transgenes transduced into bone marrow MSCs and inhibiting
angiogenesis in surrogate iz vivo models of solid tumours following gancy-
clovir administration include the HSV-tk suicide gene under the control of
Tie-2 or CCLS transcriptional regulatory elements. These and other
approaches aimed at targeting the tumour cells have recently been reviewed
by Keung et al.,'® with evidence in some but not all cases of reducing
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angiogenesis and/or tumour load. However, the use of genetically engi-
neered MSCs in cancer treatment has been met by a general concern
related to biosafety and feasibility. Insertional mutagenesis of introduced
transgenes and thus potential tumorigenicity in this respect need to be
acknowledged. On the other hand, as with all vascular modulatory therap-
ies, such MSCs may also enhance tumour growth by increasing the vascu-
lature. The cellular heterogeneity of MSCs, variability in their chemokine
or adhesion receptor expression and hence homing properties, and their
diverse functions within different host-tumour microenvironments make
their effect largely unpredictable and may affect the safety and efficacy pro-
files of these approaches.'®’

The heterogeneity of MSCs: does this affect their
therapeutic efficacy?

MSCs or MSC-like cells can be sourced from a variety of tissues and are
often used as heterogeneous populations of cells in autologous or allogen-
eic transplant settings. This heterogeneity can affect their potency, safety,
tissue specific efficacy, regulation and mechanism of action. Additionally
and as in all cell therapies, in vitro expansion of small cell subsets to clin-
ical doses is difficult and potentially might result in a loss of efficacy with
population doublings. Cultured human MSCs have been shown to
express a different gene signature during culture and when compared
with enriched mesenchymal stem cells.'®”'”* Additionally, MSCs from
different locations, at different stages of differentiation and at various
stages of ontogeny demonstrate both similarities and differences in their
surface marker profiles, multi-potentiality, transcriptome, proteome and
secretome fingerprints, their growth abilities and potency in their func-
tional efficacy. A first attempt to create some uniformity in the field was
the International Society of Cellular Therapy proposal in 2005 on three
minimal criteria defining human bone marrow MSCs: (i). tissue culture
plastic adherence, (ii) phenotype (specifically expression of surface
markers CD90, CD105 and CD73, together with lack of HLA-DR as
well as haemopoietic surface markers such as CD45, CD19, CD14 or
CD11b and CD19 or CD79), and (iii) capacity to differentiate into adipo-
genic, osteogenic and chrondrogenic lineages.®>®* Although these criteria
can be applied to all MSC-like cells, they do not include markers for
many other in vitro measurable phenotypic characteristics of MSC and
MSC-like cells which indeed differ between cells sourced from different
tissues and which vary in relation to iz vitro (and in vivo) microenviron-
mental cues notwithstanding the fact that the minimal criteria are still ful-
filled. Neither the 2005 criteria nor the newly discovered markers allow
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Conclusions

for the prospective identification and purification of such cells prior to in
vitro expansion culture as these markers separately also occur on other
cell types and as there is currently no single cell surface marker available
to allow pure mesenchymal stem cell identification or isolation.
Mesenchymal stromal cell subsets, however, can be enriched when using
a combination of positive or negative selection markers. For example,
CFU-Fs have been enriched from both lin™/CD271*/CD457/CD146™ and
lin7/CD271*/CD457/CD146* bone marrow cell fractions and CD271
identifies a small population of cells with an MSC-like phenotype that are
found as either perivascular (CD146%) or bone-lining cells in the bone
marrow (CD1467).'%13:167

The vascular or perivascular localization of MSCs or MSC-like cells has
led to the proposal that such cells might be categorized as vascular stem
cells.'®7*175 However, as has been proposed, such cells, at least in vitro,
should then have the ability to generate endothelial cells and pericytes in ca-
pillaries and endothelial and vascular smooth muscle cells in larger vessels,
as well as generating mesenchymal cells with tri-lineage potential (bone, car-
tilage, fat). Interestingly, recent research has demonstrated that autologous
cells can be reprogrammed to vascular stem or at least progenitor cells,
which can stimulate coronary collateral vessel growth or be used to engineer
durable vessels in surrogate iz vivo models.'”*~'”® The importance of MSCs
is further supported by an earlier demonstration that epidermal growth
factor (EGF) pre-conditioned MSCs stimulate collateral growth of coronary
vessels in a rodent model.'”” The main issue that still remains is that more
detailed investigations on the phenotype and functionality of MSCs or
MSC-like cells will further illustrate donor, acquisition site, culture methods,
passage and microenvironment modulated heterogeneity of these cells,
which can even persist within one culture. However, so far there is no good
evidence as to which iz vitro markers and functionality are of importance
for final in vivo therapeutic efficacy. In this respect, we also need conclusive
evidence as to whether the vessel-associated MSC subsets or vascular stem/
stromal cells are more efficacious as a vascular regenerative therapy, for
example by generating all vascular lineages i vivo or by providing stromal/
microenvironmental support for vascular regeneration iz vivo. Clonal re-
population assays iz vivo that are reminiscent of those studies carried out in
defining haemopoietic stem cells could give us clues in this respect.

MSCs are localized in the vascular niche in bone marrow, but also found
as MSC-like cells around adult vessels (also termed pericytes and adven-
titial cells) and there is substantial evidence that they play a pivotal role
in regulating blood vessel formation and function through multiple
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mechanisms such as vasculogenesis, arteriogenesis and angiogenesis.
Although MSCs or MSC-like cells have been safely used and do not pose
the ethical concern of embryonic stem cells, their effects in clinical studies
cannot be delineated to specific mechanisms. These might include different
simultaneously acting MSC-induced mechanisms. Immunomodulation
towards a more repair-friendly microenvironment, actual differentiation
into vascular tissue and paracrine or systemic release of vasculogenic,
angiogenic and/or arteriogenic-stimulating factors should in this respect be
acknowledged. Additionally, the results of preclinical studies have been
shown to not only depend on the model chosen and the endogenous repair
capacity of the cardiovascular tissue iz vivo, but also on cell source, admin-
istration route, timing of cell delivery and cell dosage and with these specif-
ic homing and retention mechanisms. Clinical studies on necessarily
heterogeneous patients adds many variables (e.g. inflammatory and disease
status, co-morbidities, concomitant medication etc.) and may explain the
differences in the results observed so far. Future studies will undoubtedly
lead to a more defined MSC product and more personalized and tissue
specific approaches to the use of these cells in regenerative medicine.
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