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Abstract

The current report presents a temporal learning account as a potential alternative to the conflict adaptation account of list-
level proportion congruent effects in the Stroop paradigm. Specifically, retrieval of information about response times on
previous trials influences a participant’s preparedness to respond at a similar time on following trials. First, an adaptation of
the Parallel Episodic Processing (PEP) model is presented, and a list-level effect is produced with a temporal learning
mechanism. Next, linear mixed effect model analyses show that temporal learning biases are present in list-level proportion
congruent data. A non-conflict experiment is then presented in which a list-level effect is observed with a contrast, rather
than congruency, manipulation. Analyses of the experimental and simulated data could not, however, provide a clear
picture of whether temporal learning was the sole contributor to the list-level proportion congruent effect. These results do,
however, demonstrate that caution is warranted when interpreting list-level proportion congruent effects.
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Introduction

The ability to learn the relations (or contingencies) between

events in our environment is crucial for interacting with the world

[1]. Perhaps equally fundamental is the knowledge of how things

covary in time. Knowing the series of notes in a song, for instance,

is insufficient information to play it if we know nothing about the

timing and duration of said notes. Like the concept of space-time

in physics, all human actions are actions occurring in time. The

when is just as important as the what. It has already been argued

that participants encode not only what stimuli we present them,

but also temporal information about these stimuli [2]. Further-

more, knowledge about when to respond has important influence

over performance in speeded response time tasks [3–6]. In the

current work, it is argued that temporal learning might be able to

explain an experimental finding that was previously interpreted as

strong evidence for conflict adaptation: the list-level proportion

congruent effect.

Standard, Item, and List Proportion Congruency
In the Stroop paradigm, participants must ignore the identity of

a distracting word and respond to the colour it is presented in [7].

Response times are slower when the word and colour are

incongruent (e.g., the word RED presented in blue; REDblue)

relative to when they are congruent (e.g., REDred). The size of this

congruency effect is further influenced by the proportion of

congruent trials in the task. Specifically, the effect is much larger if

most of the trials are congruent (e.g., 70% congruent, 30%

incongruent), rather than incongruent (e.g., 30% congruent, 70%

incongruent). This proportion congruent (PC) effect is typically

interpreted in terms of conflict adaptation [8–11]. Specifically, it is

argued that when most of the trials are incongruent participants

attempt to avoid further conflict by minimizing attention to the

source of conflict (viz., the distracting word), thus resulting in a

smaller congruency effect. In contrast, when there are very few

conflict trials, attention to the word is allowed, resulting in a larger

congruency effect.

In recent years, however, some concerns with the conflict

adaptation account have been raised. For instance, Jacoby,

Lindsay, and Hessels introduced the item-specific PC task [12].

Instead of manipulating PC between-participants or between-

blocks, it was manipulated between items. That is, some words

(e.g., BLUE and RED) were presented most often in their

congruent colour, while others (e.g., GREEN and YELLOW)

were presented most often in an incongruent colour. A larger

congruency effect was observed for mostly congruent items. The

conflict adaptation account says that PC effects are due to

modulation of attention to the word in response to conflict, but

given that high and low PC trials are intermixed in the item-

specific preparation a participant cannot know at the start of a trial

whether they need to attend or not attend to the word. Said

differently, participants do not know whether the word is mostly

congruent or incongruent until they have already identified it (and

therefore attended to it).

Schmidt and colleagues [13–16] have argued that item-specific

PC effects are due to contingency learning. Specifically, mostly

congruent words predict (and therefore facilitate) the congruent

response (e.g., BLUE is presented most often in blue), leading to a
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larger congruency effect. Mostly incongruent words predict (and

therefore facilitate) an incongruent response (e.g., YELLOW is

presented most often in orange), leading to a smaller congruency

effect. Thus, contingencies between words and responses can

explain the item-specific PC effect.

While debate still continues as to whether contingencies are the

whole story in the item-specific PC task, a separate issue is whether

PC effects can be observed at the list-level. A list-level PC effect is a

proportion congruent effect that is driven by the PC of the task as

a whole, rather than by specific items. Recent work has shown

that, while the majority of the PC effect is explained by item-

specific learning, list-level PC effects can also be observed [17,18].

For instance, Hutchison found that critical items that do not vary in

PC across conditions that are presented along with other

congruent filler items (list-level mostly congruent) will have a larger

congruency effect than identical critical items presented along with

incongruent filler items (list-level mostly incongruent). Thus, the

PC effects for these critical items cannot be due to any sort of item-

specific learning (e.g., contingency learning), as it is the filler items

that set the PC level. This effect for the contingency-unbiased

critical items, the list-level PC effect, is easily explainable by the

conflict adaptation account, making it a critical finding in the

debate about whether or not conflict adaptation is observable.

It is important to note the differences between the standard,

item-specific, and list-level PC effects. The standard PC task

confounds item-specific and list-level PC, because all items are

presented most often in their congruent colour in the mostly

congruent condition, whereas all items are presented most often in

their incongruent colour in the mostly incongruent condition.

Thus, the standard PC paradigm is ambiguous, not allowing us to

know whether an observed effect is item- or list-based. The item-

specific PC task removes all list-level biases and focuses specifically

on item-specific biases. Neither of these two effects are of interest

in the current report. Instead, this report focuses on the list-level

PC task, which removes all item-specific biases and looks for a PC

effect within contingency-unbiased items.

The Temporal Learning Hypothesis
The list-level PC effect may seem to provide powerful evidence

for task-wide conflict adaptation. However, there may be yet

another simple learning bias that could account for the effect. The

proposal of the current work is that list-level PC effects might be

explained by participants learning when to respond (i.e., temporal

learning), rather than learning what to respond (i.e., contingency

learning). Learning about when to respond is indeed fundamental

to all human behaviour. Whether learning when to release a

baseball in a throwing motion, the timing of notes in a song, or,

more incidentally, when to anticipate a key press response in a

psychological experiment, time is an integral part of all learning.

How does this learning occur? According to the temporal coding

hypothesis we store in our memory of past events not only

information about stimuli and responses, but also information

about the timing of events [2]. Of particular importance,

information about the latency between stimulus onset and when

a participant responds (i.e., response time) might be encoded.

Further work shows that temporal information is used by

participants in an anticipatory way on following trials. For the

purposes of the current paper, this is referred to as the temporal

learning hypothesis. For instance, the literature on mixing costs

provides good evidence that speed of responding on previous trials

strongly influences the speed of responding on subsequent trials

[19]. Performance in pure lists, where there is one block of all easy

items and another block of all hard items, is compared with

performance in mixed lists, where there is a single block containing

both easy and hard items intermixed. The difficulty effect (i.e., the

difference in performance between easy and hard items) is reduced

in mixed lists relative to pure lists. There are various explanations

for such mixing costs [20–25], but what seems clear is that fast

responses to easy items affect slow responses to hard items, and

vice versa. The same should be true of fast and slow responses to,

respectively, congruent and incongruent trials.

The novel suggestion of the current report is that the list-level

PC effect may be produced by participants retrieving stored

information about when to respond and using this information to

prepare for the moment when they are ready to output a response.

For instance, if a memory search reveals that most of the previous

trials were responded to quite quickly, then participants will be

most prepared to respond during that same (fast) response window

[26]. As illustrated in Figure 1, this preparedness leads to a

decrease in the response threshold at time periods that closely

match a number previous response times. This will mean that it

will be easier to output a response at a similar time as previous

trials, resulting in rhythmic responding [27].

In the mostly congruent condition (top panel of Figure 1), this

rhythm will be fast and will benefit congruent responses. The

response will be ready at the expected time, enabling a fast response.

Figure 1. An illustration of temporal learning via anticipatory
drops in the response threshold. The threshold drops earlier in the
mostly congruent condition (top panel), benefiting congruent trials. The
threshold drops later in the mostly incongruent condition (bottom
panel), benefiting incongruent trials. Vertical tick marks on the normal
threshold represent retrieved response times.
doi:10.1371/journal.pone.0082320.g001

List-Level Proportion Congruent Effects
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On infrequent incongruent trials, response activation will be too

weak to cross the temporarily reduced threshold, resulting in no

advantage. A large congruency effect will therefore be observed. In

the mostly incongruent condition (bottom panel of Figure 1), most

previous responses are slow, leading to a slower expectancy.

Congruent trials still take less time than incongruent trials due to

the lack of conflict, but participants are less prepared for a quick

response due to the slower rhythm they are in. Incongruent trials

benefit from the slower expectancy, however, because the response is

available at the expected time (i.e., when the response threshold is

lowered). This results in a small congruency effect.

In sum, the faster rhythm in the mostly congruent condition will

lead to a larger congruency effect than the slower rhythm in the

mostly incongruent condition. An interaction between PC and

congruency is therefore produced simply because participants

have learned different expectations about when to respond in the

two PC conditions. Note that this temporal expectancy will be at

the list- rather than item-level, because episodic retrieval decreases

the global response threshold for all responses. It is also important

to realize that this mechanism will produce a similar pattern of

results in errors, as the decrease in the response threshold in the

mostly congruent condition will increase the propensity for fast

incongruent errors. Thus, a list-level PC effect in errors is

expected, as observed by Hutchison [18]. The first goal of this

paper is to demonstrate computationally that temporal learning

can produce a list-level PC effect.

Analysis 1: Simulated List-Level PC

The Parallel Episodic Processing (PEP) model [14] was adapted

to learn information about time. A representation of the model is

presented in Figure 2. In this model, colour and word Input nodes

feed activation into Identity nodes, where conflict occurs, and then

on to Response nodes. Word Input nodes also feed activation into

Episode nodes. On each trial, a new Episode node is made, which

links together the stimuli presented with the response that was

made. Thus, a given word Input node will activate the Episode

nodes that it is linked to (i.e., from trials in which that word was

presented), and these Episode nodes will then bias the Response

nodes that they are connected to. These simple storage and

retrieval processes therefore produce contingency learning. In

order to allow the model to learn about time, the model was

adjusted to record the response time of the model into each

episode. On subsequent trials, the response times of previously-

experienced episodes are retrieved and collectively bias the global

response threshold for the Response nodes. The exact changes to

the model are explained in Appendix S1, but the most important

detail to understand is that the response deadline is decreased the

most during moments at which a large percentage of recent

responses were made, with the most recent episodes having the

largest influence, similar to a recent adaptation of the ACT-R

framework [5].

The model is then used to simulate the list-level PC effect

observed by Hutchison [18]. The expectation is for an earlier dip

in the response threshold in the mostly congruent condition that

benefits congruent trials, thereby increasing the congruency effect.

In the mostly incongruent condition, a later dip will benefit

incongruent trials instead, thereby decreasing the congruency

effect. It is important to note that the model has no means to

monitor or adapt to conflict. The temporal and contingency

learning mechanisms are blind to congruency and PC. Further-

more, there is no attentional modulation system in the PEP model.

Figure 2. The structure of the Parallel Episodic Processing (PEP) model. Input nodes are stimulated first. Words and colours compete in
Identity nodes, before passing activation on to Response nodes. Words also activate Episode nodes, which then activate the associated Response
nodes. New to the model, Episode nodes also affect the response deadline dynamically over the course of a trial.
doi:10.1371/journal.pone.0082320.g002

List-Level Proportion Congruent Effects
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Thus, conflict adaptation is a priori impossible. Any observation of

a list-level PC effect is thus necessarily driven by temporal

learning.

Method
Fully documented source code for this (and the previous) version

of the PEP model is available on the author’s webpage (http://

users.ugent.be/,jaschmid/PEP/). The Appendix in Schmidt [14]

explains the precise math of the original model in detail, and

Appendix S1 in the current report describes the changes made to

the model.

Materials and design. The PEP model was presented with

the exact same manipulations as those used by Hutchison [18],

save that only one of the two mostly incongruent list types was

used (viz., ‘‘Fillersingle’’ in Hutchison’s notation). A total of 2000

simulated ‘‘participants’’ were run, half in the mostly congruent

condition and half in the mostly incongruent condition. The two

filler colour words were presented 30 times each in their congruent

colour in the mostly congruent condition. These same filler words

were presented 30 times in the opposite incongruent colour in the

mostly incongruent condition. Note that filler items are differently

biased between mostly congruent and mostly incongruent PC

participants, and are thus not analysed. The remaining four

critical colour words had equivalent cell frequencies in both

conditions. These critical items are the items of interest in assessing

a list-level PC effect. The exact cell frequencies are presented in

Table 1. Note that in this procedure of Hutchison the critical items

do vary in item-specific contingencies, but these cell frequencies

are the same in the mostly congruent and mostly incongruent

conditions. Thus, only filler items (which are not analysed) vary

between the two groups of participants. Like the actual exper-

iment, each simulated participant received 180 trials in a different

randomized order.

Results
Given the large number of simulations per condition, reliability

was high enough that statistics are not reported. Note, however,

that any of the numerical differences interpreted here were well

below the conventional alpha level.

Cycle times. The correct cycle times (i.e., simulated response

times) are presented in Figure 3a. For comparison, participant

response times are presented in Figure 3c. The model produced

congruency effects of 196 cycles in the mostly congruent condition

(congruent: 367; incongruent: 563) and 184 in the mostly

incongruent condition (congruent: 371; incongruent: 553). Thus,

a 14 cycle list-level PC effect was observed. Like the participant

data, this was primarily driven by the incongruent trials.

Percentage error. The error percentages are presented in

Figure 3b. For comparison, participant errors are presented in

Figure 3d. Errors were relatively infrequent in the model, but

consistent with the cycle times. The model produced congruency

effects of 1.90% in the mostly congruent condition (congruent:

.75%; incongruent: 2.65%) and 1.74% in the mostly incongruent

Table 1. Frequencies of critical items, and mostly congruent and mostly incongruent filler items in the list-level PC manipulation.

Critical Items Mostly Mostly Incongruent

(within manipulation) Congruent Single Mixed

Colour yellow blue red black green white green white green white

yellow 20 2 1 1 6 6

blue 2 20 1 1 6 6

red 2 2 10 16 6 6

black 2 2 16 10 6 6

green 2 2 1 1 30 30 6

white 2 2 1 1 30 30 6

doi:10.1371/journal.pone.0082320.t001

Figure 3. Analysis 1 data for congruency and proportion
congruency. Model-simulated (A^rpar; cycle times and (B) error
percentages. For comparison, the original experimental (C) response
times and (D) error percentages adapted from Hutchison (2011).
doi:10.1371/journal.pone.0082320.g003

List-Level Proportion Congruent Effects
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condition (congruent: .70%; incongruent: 2.44%). Thus, a .16%

list-level PC effect was observed.

Discussion
Analysis 1 demonstrated computationally that temporal learn-

ing can produce an apparent list-level PC effect. Most critically,

conflict adaptation processes are impossible in this episodic

learning model. The exact numerical differences reported here

were not large. This primarily has to do with the fact that

parameters were not played with to perfectly match the pattern of

the data. More important is the principle demonstrated here,

namely, that temporal learning processes will produce an apparent

list-level PC effect incidentally. It should also be noted that most of

the effect was in the incongruent condition, whereas the

description of Figure 1 in the Introduction might have suggested

an effect for both congruent and incongruent trials. Figure 1 was a

bit oversimplified for the purpose of illustrating how temporal

learning can produce a list-level PC effect. The reason for a larger

effect for incongruent relative to congruent trials in both the

modelling and participant data probably has to do with the fact

that temporal learning has more time to affect processing on

incongruent trials.

Analysis 2: Participant List-Level PC

At least in principle, the preceding computational modelling

results demonstrate that temporal learning could produce a list-level

PC effect with no need for conflict adaptation. Another important

question, however, is whether evidence for temporal learning can

be found in participant data. The focus of the current work is on

list-level PC, but a contribution of temporal learning to the

standard PC effect has already been observed. In the context of

masked priming, Kinoshita, Mozer, and Forster analysed PC data

in a linear mixed effects model in order to assess whether the

response time on the previous trial had an impact on the size of the

congruency effect on the current trial [28]. The adaptation to the

statistics of the environment (ASE) model [29,30], which inspired

their work, is conceptually similar to the temporal learning

account discussed in the current manuscript. The ASE estimates

the probability of an accurate response at a given moment, basing

this decision partly on information from previous trials, similar to

the decision model [31]. On average, this leads to a lower

threshold in easy blocks (e.g., mostly congruent) relative to hard

blocks (e.g., mostly incongruent). Easy items are more affected by

threshold changes than hard items [32,33], resulting in a smaller

congruency effect in the mostly incongruent, relative to mostly

congruent, condition.

Most critically, both the PEP and ASE models predict that the

congruency effect will be smaller the longer the reaction time was

on the previous trial. This is exactly what Kinoshita and colleagues

observed [28]. Of course, this was done in the context of a

standard (i.e., contingency-biased) PC experiment, which does not

allow us to distinguish between item-specific and list-level effects.

Their experiment also used masked priming, and only found an

effect for subliminal primes. The novel contribution of the current

work is to investigate whether such temporal learning biases

contribute to list-level PC effects, and with supraliminal, integrated

stimuli.

To test for a role of temporal learning in the list-level PC task,

Analysis 2 assessed the Stroop data of Hutchison [18] with a

similar linear mixed effects model approach as that of Kinoshita

and colleagues [28]. A critical difference from this past work is that

the current analysis assessed contingency-unbiased data. The

temporal learning hypothesis predicts that previous RT will not

only correlate with current RT, but will also interact with

congruency. Specifically, the congruency effect should be larger

following faster responses than following slower responses. In other

words, the Stroop effect gets larger the faster the temporal

expectancy. Controlling for this interaction should lead to a

reduction of the list-level PC effect. As discussed in greater detail

later in the paper, it will probably not lead to an elimination of the

PC effect, however, as previous RT is probably only a very rough

estimate of a participant’s temporal expectancy.

Method
The linear mixed effects model was nearly identical to that of

Kinoshita and colleagues [28]. Identical to that report, response

times and previous response times were normalized with an

inverse transformation (21000/RT). This is required in order to

prevent violations of distributional assumptions made by para-

metric regression. The negative numerator was used simply so that

lower values corresponded to faster RTs and larger numbers to

slower RTs. Also consistent with the past report, trials with

response times shorter than 300 ms on the current or previous

trials were deleted. This was determined via inspection of the Q-Q

plots and further corrects the response time distribution. Again

identical to the previous report, trials on which participants made

an error on the current or previous trial were excluded from the

analysis. As the goal was to study contingency-unbiased list-level

PC effects, filler trials were removed from the analysis and only

critical trials were assessed. All trials in which the colour or word

on the previous trial matched the colour or word of the current

trial were excluded to eliminate feature repetition biases [34–36].

Congruency and PC were coded as binary variables, with

congruent and mostly congruent coded as 0, and incongruent and

mostly incongruent coded as 1. Previous RT was centered on the

grand mean to avoid correlation with the intercept. The mixed

model included congruency (congruent vs. incongruent), PC

(mostly congruent vs. mostly incongruent), previous RT, and their

interactions as fixed factors. Subjects and items (the unique colour-

word combinations) were included as random factors with the

default variance components error structure. Analyses were run

with the MIXED procedure in SPSS using maximum likelihood

estimation. A total of 230 participants were used for the analysis.

Participants were not excluded on the same basis as the original

report (e.g., because the analysis here did not require that

participants had working memory span data).

The most critical analyses are the congruency by PC interaction

(PC effect) and the congruency by previous RT interaction

(temporal learning effect). By including both in one model, they

will control for each other. Thus, one possible result is a reduction

Table 2. Analysis 2 coefficients, standard errors, t values, and
p values for congruency x proportion congruency x previous
RT mixed model on inverse RTs.

Variable Estimate SE t p

Intercept 21.667405 .015013 2111.067 ,.001

Congruency .234320 .007355 31.857 ,.001

Proportion congruency .008380 .023773 .395 .693

Previous RT .185407 .008055 23.017 ,.001

Congruency: Proportion congruency .050523 .011483 4.400 ,.001

Congruency: Previous RT 2.085322 .012796 26.668 ,.001

doi:10.1371/journal.pone.0082320.t002

List-Level Proportion Congruent Effects
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of the PC effect as a result of including the congruency by previous

RT interaction in the model. The analyses also consider the

unique hypothesis that the effects of previous RT might actually be

due to a confounding with previous congruency. That is, if the

previous trial was congruent, then it would also (likely) be faster

than if it was incongruent. Any effect of previous RT could

therefore simply be a previous congruency effect in disguise.

Results
Previous RT. The final model is presented in Table 2, and

includes the main effects of congruency, PC, and previous RT, in

addition to the interactions of PC and previous RT with

congruency. Note that the parameter estimates are based on

inverse response times, which are not easily converted back to

regular response times. Excluding the theoretically less interesting

interaction between PC and previous RT and the three-way

interaction (also hypothesis irrelevant) does not significantly reduce

the variance explained, x2(2) = 1.361, p = .506, so the simpler

model is retained. The congruency effect was significant,

indicating faster overall responses to congruent relative to

incongruent trials. There was also a main effect of (centered)

previous RT, showing a positive relationship between previous

and current RT. The main effect of PC was not significant.

Critically, previous RT and congruency interacted. This negative

parameter value indicates that the congruency effect got larger the

faster the previous RT, as predicted by the temporal learning

account. The interaction between PC and congruency remained

significant, however, indicating a list-level PC effect independent

of the previous RT bias. The parameter estimate for the list-level

PC effect was reduced by including previous RT in the model,

however. For brevity, the model without previous RT as a factor is

not presented here, but the parameter for the congruency by PC

interaction was .059147.

Previous congruency. It was further tested whether the

effects of previous RT might actually be due to previous

congruency. Adding previous congruency and the previous

congruency by congruency interaction did not add significant

variance explained to the model, x2(2) = 4.391, p = .111, showing

that previous congruency does not explain unique variance

beyond that attributable to previous RT. Conversely, adding

previous RT and the previous RT by congruency interaction to a

model that includes previous congruency and previous congruency

by congruency does result in a significant increase in variance

explained, x2(2) = 446.190, p,.001, thus showing that previous

RT explains variance unique from previous congruency. Com-

bined, these two results suggest that previous RTs are important in

producing a list-level PC effect, whereas previous congruency is

not. This follows, because if previous congruency did have a real

effect on current trial congruency, then it should explain unique

variance from that attributed to the only moderately correlated

previous RT variable.

Discussion
Analysis 2 demonstrated a significant interaction between

previous response time and congruency. That is, the congruency

effect got smaller the longer the previous response time.

Importantly, this result indicates for the first time a role for

temporal learning in the list-level PC effect. Inclusion of the

congruency by previous RT interaction in the model reduces the

parameter for the list-level PC effect. However, there was still a

significant list-level PC effect independent of previous RT. It is

possible, however, that temporal learning may still explain the

whole PC effect, because previous RT is probably a bad estimate

of temporal expectancy (as demonstrated later in the manuscript).

That said, the current results are encouraging for the view that

conflict adaptation might explain part of the effect, given that a

significant list-level PC effect was still observed.

Analysis 2 also considered the unique hypothesis that effects of

previous RT may simply be due to a confounding with previous

congruency. If this were the case, it could potentially be argued

that previous RT effects are not due to temporal learning, but

simply to another form of conflict adaptation: a sequential

congruency effect [37]. However, the model results argue against

this. If the previous RT by congruency interaction was spurious,

then it should have failed at explaining unique variance when

adding previous congruency to the model. This was not the case.

Instead, previous congruency failed to account for unique variance

from that attributable to previous RT, which should not have

occurred if previous congruency had any actual effect on

congruency. Thus, it seems that it is the response speed of the

previous trial that is important, and not congruency per se.

Critically, the combined results of Analysis 2 established for the

first time that the list-level PC effect is indeed confounded by

temporal expectancies.

Experiment 1

Although some readers may find the temporal learning account

less intuitive than the conflict adaptation account, the current

experiment will show that a (pseudo) ‘‘proportion congruent’’

effect can be produced even in a task with no distracters, no

conflict, and no congruency manipulation. This is achieved simply

by controlling the percentage of fast versus slow responses that

participants make with a variable other than congruency. In

particular, participants responded to a target letter that was either

easily visible (high contrast) or difficult to see (low contrast). The

observation of faster responses to high relative to low contrast trials

is here referred to as a contrast effect. Note that there are fast and

slow responses in this task (i.e., induced by high and low contrast,

respectively), but no distracting stimuli and therefore no conflict.

The proportion of high versus low contrast stimuli, termed here

proportion easy, was then manipulated as a pseudo-PC manipulation.

For half of the participants, 70% of the stimuli were high contrast

(mostly easy). For the other half, 30% of the stimuli were high

contrast (mostly hard). If the temporal learning account is correct,

then participants will learn a faster expectancy in the mostly easy

condition, resulting in a larger contrast effect, relative to the mostly

hard condition, mimicking a proportion congruent effect.

Some work has already shown that mixing high and low

contrast stimuli leads to a reduction of the contrast effect relative

to blocked presentation of high and low contrast stimuli [25]. This

shows that mixing leads to easy trials affecting hard trials, and vice

versa. The most unique features of the current experiment are that

(a) it is tested to what extent the difficulty (contrast) effect is

affected by changes in proportions of easy trials, and, more

critically (b) unlike past temporal learning work, the manipulation

perfectly parallels a prototypical PC task. The only difference is

that congruent and incongruent trials are replaced with high and

low contrast trials, respectively. If conflict adaptation is the sole

factor that produces a list-level effect, then the removal of conflict

should eliminate it. Furthermore, this experiment makes it possible

to explore whether such a proportion easy effect can be observed

independent of the influence of the response time of the

immediately preceding trial. This could therefore lend credence

to the notion that the remaining list-level PC effect in Analysis 2

could still be due (in whole or in part) to temporal learning

occurring across the task as a whole. In that vein, similar mixed
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models analyses as those presented in Analysis 2 are conducted

following the main results.

Method
Participants. Forty-six Ghent University undergraduates

participated in Experiment 1 in exchange for J4. Participants

provided written consent prior to participation. This research was

approved by the ethics committee of Ghent University.

Apparatus. Stimulus and response timing were controlled by

E-Prime software (Psychology Software Tools, Pittsburgh, PA).

Responses were recorded on an AZERTY keyboard with the D, F,

J, and K keys using the middle and index fingers of each hand for

the stimuli ‘‘D,’’ ‘‘F,’’ ‘‘J,’’ and ‘‘K,’’ respectively.

Materials and design. The stimulus letters ‘‘D,’’ ‘‘F,’’ ‘‘J,’’

and ‘‘K’’ were presented on a dark grey background (RGB:

100,100,100) in uppercase, bold, 18 pt. Courier New font. On

some trials the letter was presented in a high contrast whitish grey

(200,200,200) and on others in a low contrast dark grey

(110,110,110), thus making eight unique stimuli. Subjectively,

both types of stimuli were easily visible, but more rapidly so for

high contrast items. A contrast effect is the observation of slower or

less accurate responses to low relative to high contrast letters.

Proportion easy was manipulated between participants by having

either 70% high contrast and 30% low contrast (mostly easy) or

30% high contrast and 70% low contrast (mostly hard). The

experiment did not use filler and critical items, because item-

specific learning is less a concern in a task with no predictive

distracters, as forthcoming follow-up work will demonstrate. The

experiment was run in two different locations, unintentionally with

two different versions of the same experiment, but only varying in

length. Ten participants saw 300 trials and the remaining saw 200

trials. No differences were observed between the groups, so the

data are combined. Trials were selected at random with

replacement.

Procedure. On each trial, participants first saw a white

(255,255,255) fixation ‘‘+’’ for 250 ms, followed by a blank screen

for 750 ms, followed by the target letter for 2000 ms or until a

response was made. The next trial immediately followed correct

responses. ‘‘XXX’’ in red (255,0,0) was presented for 500 ms

following incorrect responses and trials where participants failed to

respond in 2000 ms.

The mixed model analysis was identical to that in Analysis 2,

including data treatments, with two small exceptions: (1) inspection

of the Q-Q plots revealed no need for trimming, and (2) contrast

and proportion easy replaced congruency and PC in the model.

Thus, the model included contrast (high vs. low), proportion easy

(mostly easy vs. mostly hard), previous RT, and their interactions

as fixed factors. Subjects and items (the four letters) were again

included as random factors.

Results
Correct response latencies and percentage errors were analysed.

Trials on which participants failed to respond during the 2000 ms

stimulus presentation (less than 1% of the data) were deleted.

Response latencies. The response latency data for Exper-

iment 1 are presented in Figure 4. The 2 contrast (high vs. low) x 2

Table 3. Experiment 1 coefficients, standard errors, t values, and p values for contrast x proportion easy x previous RT mixed
model on inverse RTs.

Variable Estimate SE t p

Intercept 21.825381 .044080 241.410 ,.001

Contrast .165333 .013208 12.517 ,.001

Proportion easy 2.128134 .061775 22.074 .043

Previous RT .123592 .013313 9.284 ,.001

Contrast: Proportion easy .092703 .018698 4.958 ,.001

Contrast: Previous RT 2.041207 .017721 22.325 .020

doi:10.1371/journal.pone.0082320.t003

Figure 4. Experiment 1 data for contrast and proportion easy. Mean (A) response times and (B) error percentages.
doi:10.1371/journal.pone.0082320.g004
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proportion easy (mostly easy vs. mostly hard) ANOVA revealed a

significant contrast effect, F(1,44) = 81.514, MSE = 1515, p,.001,

g2
p = .65, indicating faster overall responses to high contrast relative

to low contrast trials. The main effect of proportion easy was not

significant, F(1,44) = 2.942, MSE = 18586, p = .093, g2
p = .06. Crit-

ically, contrast and proportion easy interacted, F(1,44) = 5.318,

MSE = 1515, p = .026, g2
p = .11, indicating a larger contrast effect

in the mostly easy condition (high: 545 ms, low: 637 ms, effect: 92

ms) relative to the mostly hard condition (high: 613 ms, low: 667

ms, effect: 54 ms).

Percentage error. The percentage error data for Experi-

ment 1 are also presented in Figure 4. Numerically, the errors

were consistent with the response latencies, but much less sensitive.

The 2 contrast (high vs. low) x 2 proportion easy (mostly easy vs.

mostly hard) ANOVA did not reveal a main effect of contrast,

F(1,44) = .871, MSE = 5.5, p = .509, g2
p = .02, or proportion easy,

F(1,44) = 2.222, MSE = 30.5, p = .143, g2
p = .05. The interaction

was also not significant, F(1,44) = .444, MSE = 5.5, p = .509,

g2
p,.01.

Mixed models. The same linear mixed effects model as

Analysis 2 was applied to the data of Experiment 1. The

parameters and statistical tests are presented in Table 3. The

contrast effect was significant, indicating faster overall responses to

high relative to low contrast trials. There was also a main effect of

previous RT, showing a positive relationship between previous

and current RT. The main effect of proportion easy was

significant. Critically, previous RT and contrast interacted,

demonstrating that the contrast effect got smaller the slower the

previous response time, again as predicted by the temporal

learning view. Similar to Analysis 2, proportion easy and contrast

still interacted, indicating that previous RT explains some but not

all variance in the temporal learning effect. Again for brevity, the

model without previous RT as a factor is not presented here, but

the parameter for the stimulus contrast by proportion easy

interaction was .099769. The proportion easy by contrast

interaction also remained when previous contrast was considered

in the model.

Discussion
This experiment provided suggestive evidence for temporal

learning in the context of a PC-like task manipulation. In the

context of a task where most of the trials take quite awhile to

respond to (mostly hard), participants are more prepared to

respond slowly to the frequent low contrast targets. This impairs a

participant’s ability to produce an (unexpected) fast response to

high contrast trials, thus resulting in a small contrast effect.

However, when most of the trials in the task can be responded to

quickly (mostly easy), participants are more prepared to respond

quickly to the frequent high contrast targets. This leads to fast

responses to these easily-identifiable targets, thus resulting in a

larger contrast effect. Note that with no main effects of proportion

easy, this ‘‘proportion easy’’ effect is not driven by scaling (i.e.,

larger effects with increasing response times and errors). Evidence

for this sort of temporal learning has been observed before [3,28].

Most critically for the topic of the current report, however, this

experiment has the novel feature of having an identical task

structure as a PC experiment, save that congruent trials are

replaced with high contrast trials and incongruent trials with low

contrast trials. Of course, this contrast experiment is only

analogical to the list-level PC paradigm and cannot be used to

draw strong conclusions about the list-level PC effect. Along with

the mixed model analyses of Analysis 2, this experiment does

shows how temporal learning might contribute to the list-level PC

effect independent of any conflict.

The mixed modelling added two other important contributions.

First, the results confirmed a role of the immediately preceding

trial in developing the proportion easy effect. Importantly, a

significant proportion easy effect still remained after controlling for

response times on the preceding trial. As hinted at in the previous

analysis, this is probably because previous RT is only a very noisy

estimate of temporal expectancy. This is an interesting finding in

the current task context, because the remaining proportion easy

effect observed here presumably cannot be interpreted as conflict

adaptation, an inference one might like to draw from the data of

Analysis 2 where the same weak effect of previous RT was

observed. Again, no strong conclusions about the list-level PC

effect can be drawn from this contrast experiment, but the results

do hint that the role of temporal learning may be much larger than

what the previous RT variable suggests.

Analysis 3: Simulated Previous RT

Analysis 2 demonstrated that temporal learning confounds do

contribute to the list-level PC effect. To reiterate, this was indexed

by larger congruency effects with faster previous RTs. However,

while including previous RT in the regression did reduce the size

of the list-level PC effect, it only did so by a small amount. The

significant remaining list-level PC effect might seem to indicate

that list-level conflict adaptation exists on top of any observed

temporal learning. This could be the case. On the other hand, the

same thing was observed with the proportion easy effect of

Experiment 1: previous RT explained some of the effect, but not

all of it.

Why could this be? Previous RT is used as a proxy for temporal

learning. Although previous RT should correlate somewhat with a

participant’s temporal expectancy, how strong will this correlation

be? To assert that previous RT is a perfect measure of temporal

expectancy requires the assumption that the relation between

previous RT and the congruency effect is linear (i.e., due to the

way regression works). In other words, it assumes that for every x

decrease in previous RT, there should be a y increase in the size of

the congruency effect. This is almost certainly not the case.

Furthermore, temporal expectancies are likely based on more than

just the previous trial, meaning that previous RT will only be

loosely correlated with a participant’s actual temporal expectancy

(e.g., consider that a given previous RT corresponds to one of the

tick marks in Figure 1, and potentially one of the outlying ones).

Noisiness in temporal expectancies will further reduce the

explanatory power of previous RT. If previous RT is only partially

correlated with temporal expectancy, then the previous RT

Table 4. Analysis 3 coefficients, standard errors, t values, and
p values for a congruency x proportion congruency x previous
RT mixed model on inverse RTs.

Variable Estimate SE t p

Intercept 22.828764 .003058 2925.129 ,.001

Congruency .687471 .004341 158.354 ,.001

Proportion congruency 2.031107 .004348 27.168 ,.001

Previous RT .018307 .002680 6.831 .005

Congruency: Proportion congruency .032729 .006174 5.301 ,.001

Congruency: Previous RT 2.010639 .003808 22.794 .005

doi:10.1371/journal.pone.0082320.t004
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variable will only explain part of the variance due to temporal

learning. What it misses, the PC by congruency (or proportion

easy by contrast) interaction will continue to soak up. This latter

result is a problem of multicollinearity.

Indeed, the goal of the current analysis is to assess whether

previous RT eliminates the list-level PC effect in the simulated

data created with the PEP model in Analysis 1. This is an

interesting question, because it is known a priori that the PEP

model produces the PC effect via temporal learning. If a list-level

PC is still observed after controlling for previous RT, this will

demonstrate why conflict adaptation is not the only possible

interpretation.

Method
The simulated data from Analysis 1 were subjected to the same

mixed modelling procedure as Analysis 2, with two exceptions: (1)

items were a priori identical in the model and were therefore not

entered as a random factor, and (2) inspection of the Q-Q plots of

the inverse cycle times (i.e., simulated RTs) revealed no need for

trimming.

Results
The results for the full model are presented in Table 4. Note

again that the parameter estimates are based on inverse response

times, which are not easily transformed back into normal response

times. As can be seen, the model produced a significant

congruency effect. The main effect of PC was also significant.

The main effect of previous RT was significant, indicating that

current and previous RTs were positively correlated. Importantly,

previous RT and congruency interacted. The negative sign of this

parameter means that the congruency effect got larger the faster

the previous response time, consistent with the temporal learning

view. Critically, PC and congruency interacted, indicating a PC

effect even after factoring out the influence of previous RT on

congruency. Furthermore, removing PC as a factor from the

regression (i.e., along with its interaction with congruency)

significantly decreased the amount of variance explained,

x2(2) = 51.504, p,.001. This means that the model finds evidence

for a PC effect that goes beyond what previous RT can explain.

There was also a significant loss in variance when removing

previous RT as a factor from the full model, x2(2) = 54.692,

p,.001. This indicates that previous RT does at least capture

some of the temporal learning effect. However, the parameter for

the PC effect for this latter model (.035452) was only reduced

somewhat in the full model (.032729), similar to the real data,

which is not particularly impressive. In other words, previous RT

misses a majority of the variance in the PC effect that temporal

learning is known to produce in the PEP model.

Discussion
The results of Analysis 3 are clear. Firstly, the results confirm

that previous RT can be used to detect whether or not temporal

learning is playing a role in the data. However, the results also

demonstrate that previous RT misses the majority of the variance

attributable to temporal learning. That is, it is known a priori that

the PEP model produces the entire list-level PC effect via temporal

learning processes, but using previous RT as a control measure of

temporal learning does not eliminate the PC effect. When

observing this in real participants (e.g., Analysis 2) there might

be a temptation by the experimenter to interpret this remaining

PC effect as evidence for list-level conflict adaptation. In the

simulated data, however, this is known to be an impossible

conclusion: the model has no conflict adaptation device. Previous

RT is simply a very poor measure of temporal learning that will

only explain a small fraction of the variance actually due to

temporal learning processes. Of course, these observations do not

exclude the possibility that conflict adaptation also occurs (it very

well may), but they tell a cautionary tale about interpretations of

list-level PC effects, even when measures have been taken to factor

out the influence of previous response times.

General Discussion

The results of the three analyses and one experiment presented

here are both clear and ambiguous. They are clear in demon-

strating that a temporal learning bias is present in list-level PC, but

ambiguous as to how large of a bias there is. Conflict adaptation

may very well still play a role. Ambiguity aside, if the list-level PC

effect is to be taken as evidence of conflict adaptation, then such an

effect should not be confounded with other things, such as

temporal expectancy. The current manuscript utilized three

approaches to make the case that concern over temporal

confounds is warranted. First, Analysis 1 presented a modified

version of the PEP model to demonstrate that temporal learning

could, in theory, produce a list-level PC effect.

Second, Analysis 2 showed that the length of response times on

previous trials was negatively related to the congruency effect with

actual participants, consistent with related findings from the

Kinoshita lab [28]. That is, with increasing previous response

times the congruency effect got smaller. Critically, this was

observed for the first time with contingency-unbiased list-level PC,

and also for the first time with supraliminal, integrated stimuli.

Including previous RT in the linear mixed effects model reduces,

but does not eliminate, the list-level PC effect. However, it is again

worth pointing out that the previous RT variable is probably a

very weak proxy of temporal expectancy, as the Analysis 3 results

on the modelled data illustrate.

Third, Experiment 1 used a contrast (rather than congruency)

manipulation to show that learning about how fast to respond in a

task can account for larger effects in a mostly easy task relative to a

mostly hard task, even when there is no conflict to adapt to. The

novel feature of this particular design is that it parallels a

prototypical PC experiment, but removes conflict from the design.

Of course, the observed ‘‘proportion easy’’ effect does not rule out

conflict adaptation as an additional mechanism in the PC task.

Rather, the proportion easy effect demonstrates the more general

point that between-participant manipulations that allow for

expectancies of when to respond can have profound effects on

the results. This has already been demonstrated repeatedly in the

temporal learning literature [6,19], but is a critical consideration

for assessing list-level PC effects. Differences in difficulty do not

always produce this sort of interaction, however [3], which might

indicate that temporal learning only influences behaviour in

certain contexts. In future work, if a context can be determined in

which temporal learning is not engaged during a list-level PC task,

then this might serve to resolve some of the ambiguities raised in

the current report.

Overall, the combined results suggest a presence of temporal

learning in this sort of task. Whether all of the list-level PC effect is

explained by this temporal learning is ambiguous, however,

because a complete dissociation of proportion congruency and

temporal learning was not possible in this work. This is a tricky

issue to disentangle, given how inherently confounded PC and the

average speed of responses are. Indeed, this is a general problem

for the conflict adaptation literature [13]. Task regularities have to

be manipulated to create variables such as proportion congruency,

which provide various sources of information (many unintended

by the researcher) for the participant to learn. Although the
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one-process temporal learning account is more parsimonious,

there could nevertheless be other active processes (e.g., conflict

adaptation) playing a role. The critical implication of the current

work, however, is that the list-level PC effect is confounded with

temporal expectancies and this muddies the interpretation of

which process(es) explain the effect.

One possible mechanistic explanation for temporal learning,

discussed in the Introduction and modelled in Analysis 1, is

basically identical to the account Schmidt has previously given for

contingency learning [38] and evaluative conditioning [39], with

the addition of a role for temporal information. Other temporal

learning accounts, such as the ASE model, can equally well

explain the list-level PC effect with mechanisms that are also

unrelated to conflict adaptation. The current results therefore do

not argue for or against any specific version of the temporal learning

account, but instead argue that temporal learning of some sort

plays a role. One benefit of the account suggested here, however, is

that both contingency and temporal learning are explainable by

the same memory storage and retrieval processes. Additionally,

there may be more to temporal learning than anticipating

accuracy (i.e., as in the ASE model). To use the example of music

again, one does not aim to play the series of notes in a song as

quickly and accurately as possible, but to play each note at the

correct time. Future research on these nuanced issues could prove

informative.

Limitations
Of course, a notable limitation of the contrast experiment is that

one must make a cross-paradigm inference to draw any firm

conclusions. One might argue, for instance, that the proportion

easy interaction produced in Experiment 1 is driven by something

entirely different than list-level PC effects. For instance, partici-

pants might squint more in the mostly hard task to better perceive

the frequent low contrast items, and this could be what results in a

reduced contrast effect. It is also notable that the pattern of the

interaction appears a bit different, with the proportion easy effect

of Experiment 1 seemingly driven by changes in the high contrast

condition (though this was not true in subsequent experiments in

our lab not presented here), whereas the PC effect of Hutchison

[18] is seemingly driven by changes in the incongruent condition

(though this does not always seem to be the case, either [9]). These

inconsistencies might indicate that something different, such as

conflict adaptation, occurs on top of the temporal learning effect

with list-level PC. One might additionally argue that low contrast

stimuli create relatively more perceptual conflict, which perhaps

does not rule out a conflict adaptation account entirely for such

results. Although less parsimonious, two different mechanism (i.e.,

temporal learning and conflict adaptation) may still be required to

explain all of the data.

It is worth noting that Hutchison also observed an effect of

working memory capacity (WMC) on the list-level PC effect, with

a larger effect for low relative to high WMC participants [18]. This

was argued as evidence that high WMC participants are generally

good at staying on task all of the time, whereas low WMC

participants are more likely to allow attention to stray to the

distracting word in the mostly congruent condition. Such WMC

effects, while beyond the scope of the current work, are equally

well explainable in terms of temporal learning. It has been

demonstrated, for instance, that high WMC participants are

generally quite good at focusing on the target task, whereas low

WMC participants are more likely to attend to and learn about

task-irrelevant information such as time [40]. Thus, temporal

learning effects should be larger for low WMC participants.

Indeed, note that both accounts of WMC effects are essential

identical, save for the proposed distracting information that

inattentive low WMC participants are being influenced by (i.e.,

conflict vs. temporal information). This might also explain the

finding of Hutchison that item-specific PC effects were larger for

low WMC participants (i.e., low WMC participants attend more

to the task-irrelevant contingencies). Future work on these issues

could therefore prove informative.

Hutchison also observed, however, a larger item-specific PC effect

for participants in the (list-level) mostly congruent condition [18].

It is less clear how a temporal learning mechanism might produce

this result. It could be that there is some sort of interaction

between contingency and temporal learning, whereby contingen-

cies have a larger effect when in a mostly easy context. However, a

post hoc ANOVA on the Analysis 1 simulated data revealed

an overall item-specific PC effect, F(1,1998) = 5.432, MSE =

1919.561, p = .020 (incidentally, this demonstrates backward

compatibility with the original modelling results), but no interac-

tion with list-level PC, F(1,1998) = .494, MSE = 1957.154, p = .482.

Thus, at least without changes to the model, the PEP does not

replicate this specific finding of Hutchison. Consequently, the

modulation of item-specific PC by list-level PC observed by

Hutchison seems to indicate clearer evidence for conflict

adaptation (though, of course, not of a completely list-level nature).

It is important to highlight the fact that stimulus contrast was

not in any way predictive of what response to make in Experiment

1. One of the two types of stimulus contrast were more likely

depending on which condition the participant was in, but stimulus

contrast does not tell a participant anything about whether the D,

F, J, or K keys should be pressed. If anything, stimulus contrast (or

luminance) could have served as a contextual cue allowing

participants to adjust their temporal expectation about when to

respond on a trial-by-trial basis. Context-level learning is

frequently observed in the cognitive control literature [41–43],

and any sort of context-level temporal learning would have

actually blurred the difference between the mostly easy and mostly

hard conditions, thus artificially reducing the proportion easy effect.

The same problem is unlikely in the proportion congruent task,

because congruency probably cannot serve as a contextual cue in

this same way. A related question that future work could aim to

answer is whether context-level temporal learning can indeed

occur in this sort of paradigm.

Statistical Caveat
One limitation of the mixed models approach used in this paper

is that temporal expectancy was operationalized as previous RT,

which Analysis 3 and other research [6] suggests is probably a very

poor measure. Previous RT is likely to miss large quantities of

variance that it should account for. Thus, temporal expectancy is

measured in an overly conservative way. Because of this problem,

the list-level PC interaction term can steal some of this missed

variance, a statistical principle demonstrated clearly in Analysis 3.

Indeed, because list-level PC is almost by definition strongly

correlated with previous reaction times (i.e., because more trials

are congruent/fast in the mostly congruent block relative to the

mostly incongruent block) the regressor for the list-level PC effect

will be extremely effective at capitalizing on this variance. In other

words, in addition to any (potential) conflict adaptation biases, the

binary list-level PC regressor can accumulate the temporal

learning biases that occur across trials that variables like previous

RT fail to capture. Thus, the measure of conflict adaptation is

extremely liberal, making it difficult to interpret the remaining list-

level PC effect found in the current work.

Note that the reverse problem is not true. Variables like

previous RT can explain temporal expectancy biases that occur
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consistently across the mostly congruent and mostly incongruent

conditions, but cannot explain systematic differences occurring

between the two PC conditions. Thus, the conflict adaptation

measure can be confounded by temporal learning biases, but not

vice versa. As an aside, it could also in principle happen that

previous congruency would steal variance from previous RT in the

same way and for the same reasons. The comparisons in the

‘‘Previous Congruency’’ section of Analysis 2 revealed no

statistically-significant evidence for this, but if observed in future

research it should be interpreted with caution for the reasons

outlined above. In statistical terms, these issues are problems of

multicollinearity.

Conclusions
The present work explored an alternative interpretation of the

list-level proportion congruent effect. With a combination of

computational modelling, statistical modelling, and experimental

results, it was demonstrated that learning when to respond

contributes to the list-level PC effect. Unfortunately, it is difficult to

know at present whether temporal learning is the whole story,

especially in light of the Analysis 3 modelling results. Indeed, none

of the current results directly argue against the possibility of list-

level conflict adaptation. Future research is therefore needed to

find more refined ways of dissociating temporal expectancy and

conflict adaptation biases. Nevertheless, the critical contribution of

the current work is the cautionary demonstration that the list-level

PC effect cannot be taken as strong evidence for conflict

adaptation without further controls.
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