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Background: Changes in tryptophan metabolism are associated with various diseases.
Results: A comprehensive model of human tryptophanmetabolism was constructed and verified with existing experimental data.
Conclusion: The subtle balance of tryptophan derivatives required for proper brain function is sensitive to alterations in
peripheral tissues.
Significance: The model is applicable as a diagnostic tool to study disease related changes in tryptophan metabolism.

Tryptophan is utilized in various metabolic routes including
protein synthesis, serotonin, and melatonin synthesis and the
kynurenine pathway. Perturbations in these pathways have been
associatedwith neurodegenerative diseases and cancer.Herewe
present a comprehensive kinetic model of the complex network
of human tryptophan metabolism based upon existing kinetic
data for all enzymatic conversions and transporters. By integrating
tissue-specific expression data, modeling tryptophan metabolism
in liver and brain returned intermediate metabolite concentra-
tions in the physiological range. Sensitivity and metabolic control
analyses identified expected key enzymes to govern fluxes in the
branches of the network. Combining tissue-specific models
revealed a considerable impact of the kynurenine pathway in
liver on the concentrations of neuroactive derivatives in the
brain.Moreover, using expression data from a cancer study pre-
dicted metabolite changes that resembled the experimental
observations. We conclude that the combination of the kinetic
model with expression data represents a powerful diagnostic
tool to predict alterations in tryptophanmetabolism.Themodel
is readily scalable to include more tissues, thereby enabling
assessment of organismal tryptophanmetabolism in health and
disease.

Tryptophan metabolism plays a number of important roles
in humanphysiology. It participates in the regulation of growth,
moods, sleep-wake cycles, and immune responses. In addition
to being an essential amino acid, tryptophan is the precursor of
important molecules such as serotonin, melatonin, and NAD

and is converted into several neuroactive compounds on its
route to these products. Imbalances in tryptophan metabolism
have been associated with neurological diseases such as Parkin-
son (1), Alzheimer (2), and Huntington (3) as well as gastroin-
testinal disorders (4). It has also been shown that some types of
cancers exhibit alterations of tryptophan utilization that enable
them to evade the immune responses of the host (5–8).
After carrier-mediated uptake into cells, tryptophan can be

used as a substrate for six different reactions, thereby entering
the individual branches of tryptophan metabolism see (see Fig.
1). The kynurenine and serotonin pathways are the two most
important branches with regard to the formation of bioactive
intermediates. The fate of tryptophan utilization is tissue-spe-
cific. Most dietary tryptophan is metabolized in the liver, and
most of the serotonin is synthesized in the gut, whereasmany of
the intermediate compounds are important in the brain (9, 10).
Given the rather complex network of reactions and the tissue
specificity of tryptophan metabolism, pathological shifts of
tryptophan metabolite concentrations (i.e. in blood plasma) do
not readily indicate the underlying alterations in enzyme
expressions or activities. Therefore, a comprehensive mathe-
matical model could provide a predictive tool that would facil-
itate the identification of potential pathological changes in
tryptophan metabolism.
One particular complication that needs to be taken into

account when building a kinetic model of tryptophan metabo-
lism is that several enzymes in the network have rather low
substrate selectivity and, therefore, catalyze reactions in more
than one branch. That is, various metabolites arising in differ-
ent branches of the network compete for the active site of the
same enzyme. For example, indoleamine-pyrrole2,3-dioxygenase
(IDO)3 uses L-tryptophan (Trp), 5-hydroxy-tryptophan, 5-hy-
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droxytryptamine (serotonin), andN-acetyl-5-methoxytryptamine
(melatonin) as substrates (cf. Fig. 1). Other enzymes that use
multiple substrates in the pathway include aromatic L-amino
acid decarboxylase (DDC), arylformamidase, kynureninase,
and kynurenine aminotransferase (KAT). Similarly, L-kynure-
nine (L-Kyn), an intermediate product of the kynurenine path-
way, is a large neutral amino acid that can be transported across
the cell membrane using the same transporters as tryptophan
(11). Because uptake of tryptophan has been suggested to be
rate-limiting for its cellular metabolism (12), competition
between L-kynurenine and tryptophan formembrane transport
could also have significant impact on the metabolic outcome.
These complex interactions are difficult to assess biochemically
and constitute another important motivation for using a mod-
eling approach to study the pathway dynamics in health and
disease.
Metabolic control analysis (13–15) has proved to be a pow-

erfulmathematical approach to assess pathway dynamics.Met-
abolic control analysis calculates the distribution of control
among the enzymes in a pathway (13–16) based on the assump-
tion that the flux control is shared by all enzymes in the path-
way. Flux control coefficients (FCCs) always sum up to unity,
implying that concentration (activity) changes of one enzyme
always affects the control exerted by other enzymes. Impor-
tantly, within biochemical pathways some enzymes may have
particularly high control (i.e. a high FCC) over the flux through
the entire pathway. Given their decisive role for the “through-
put” of the pathway, these enzymes are generally considered to
be promising drug targets. Indeed, Metabolic control analysis
has been successfully used in pharmacology to identify drug
targets but also in biotechnology to optimize the production of
desired metabolites (17, 18).
An often limiting prerequisite for building a kinetic model is

the availability of the relevant kinetic data for all enzymes in the
pathway or network. Although the exact kinetic mechanisms
are not known formany enzymes,Michaelis-Menten kinetics is
considered to be a good approximation for most enzymes and
is commonly used to describe reaction rates. The parameters
required for Michaelis-Menten kinetics are the specific half-
saturation constant or Michaelis-Menten constant (Km) and
the maximal velocity (Vmax). Vmax can either be measured
directly as tissue-specific activity or calculated from the turn-
over number (kcat) and the enzyme concentration (ET). These
kinetic parameters, except ET, can be found in kinetics data-
bases or in the literature. Due to the extensive work that has
been done to characterize tryptophan metabolism, kinetic data
for the mammalian enzymes are available for most of the
enzymes. In fact, kinetic models of the kynurenine pathway of
tryptophanmetabolism, limited to thebranch synthesizingquino-
linic acid (Quin), have been reported (12, 19).However, these sim-
ple one-branch models do not capture the complex dynamics of
the multi-branched tryptophanmetabolic network (20, 21).
Besides the kinetic data, generation of a suitable kinetic

model for specific organs or an entire organism has another
prerequisite; that of specific enzyme activities. Fluxes and their
control in metabolic pathways vary between tissues because of
differential expression of the corresponding genes as well as co-
and posttranslational modifications. Therefore, the introduc-

tion of scaling factors to adjust the activity of each individual
enzyme according to the actual expression level within a given
tissue would be required. Such a factor would essentially pro-
vide a measure for ET. Thus, simulation of the dynamics of
tryptophan metabolism in diseases or upon drug treatment
would necessitate establishing tissue-specific flux controls. As
several intermediates of tryptophan metabolism are known to
be transported into the blood (22, 23), it is reasonable to expect
that metabolites generated in one tissue can affect tryptophan
metabolism in another. To explore such interdependences
would additionally necessitate connecting the mathematical
models established for individual tissues assuming blood as
“metabolite carrier.”
In this article we report the construction of a comprehensive

kinetic model of mammalian tryptophan metabolism that
includes kinetic data for the enzymes in all known branches of
the network (see Fig. 1). The kinetic model was integrated with
gene expression data from human liver and brain, thereby
establishing tissue-specific models, and analyzed for control in
the system using metabolic control analysis. The simulations
returned expected steady state flux distributions for these tis-
sues validating the applicability of the modeling approach in
combination with gene expression data. We demonstrate the
flexibility and scalability of the model by combining the brain
and livermodels into amulti-tissuemodel. Finally, the usability
of the model for the study of diseases is illustrated by applying
gene expression data fromTuberculosismeningitis patients and
from a cancer study that resulted in the prediction of metabolic
changes that coincided with those measured in the patients.
Thus, our model provides a valuable diagnostic tool to predict
pathological changes of tryptophanmetabolism based on a lim-
ited number of clinical measurements.

MATERIALS AND METHODS

A Dynamic Model of Mammalian Tryptophan Metabolism—
The set of reactions involved in tryptophan metabolism was
obtained fromKEGG (24).When available, enzyme kinetic data
were originally retrieved from Brenda (25), and transporter
substrate affinities were retrieved from Uniprot 26). The origi-
nal literature cited in the databases was reviewed to verify the
kinetic values and tomake sure thatmeasuring conditions were
appropriate. A few reactions could not be included in themodel
due to lack of kinetic data. Fortunately, these reactions are at
the end of branches, and excluding them does not affect the
model.Michaelis-Menten kinetics ormodified versions thereof
were used for all enzymatic and transport reactions, whereas
non-enzymatic reactions were modeled using mass action
kinetics.
Establishment of a comprehensive model of tryptophan

metabolism was found to be still limited by incomplete experi-
mental data, especially with regard to tissue-specific enzyme
activities (i.e. protein levels), metabolite, and cofactor concen-
trations as well as enzyme mechanisms. Therefore, we needed
to include a few simplifications and assumptions as outlined
below.
Except for the transport processes, all reactions were mod-

eled as irreversible for two reasons. First, reactions involving
oxygenation, acetylation, ring forming, and ring breaking are
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unlikely to be reversed due to their chemical nature. Second,
potentially reversible reactions in the network are all followed
by fast non-enzymatic reactions, which drive the preceding
enzymatic reaction in the forward direction.
Some of the enzymatic reactions are inhibited by up- or

downstream metabolites such as picolinic acid, Quin, anthra-
nilic acid (AA), and kynurenic acid (Kyna) in vitro. However, in
all cases the half-maximal inhibitory concentrations are
�1000-fold above reported physiological concentrations. That
is, there is no known feedback inhibition of physiological rele-
vance, and such events were, consequently, not included in the
model.
We limited the model by setting all co-substrates, including

5-phospho-�-D-ribose 1-diphosphat, NADPH, acetyl-CoA,
and oxygen as external metabolites. Their concentrations were
set to 1mM (except NADPH� 0.03mM) to not limit the flux. In
turn, this also implied that kinetic rate laws could bemodeled as
monomolecular reactions. A full list of rate laws used is shown
in supplemental Table 1. The external tryptophan concentra-
tion was set to 5 �M unless otherwise stated.
Tissue-specific Models of TryptophanMetabolism—Two dif-

ferent approacheswere used to generate tissue-specificmodels.
One was based on reported enzyme activities measured in tis-
sue homogenates, and the other combined measured activities
of purified enzymes with tissue-specific gene expression data.
Tissue activities can be used as a measure for the maximum

reaction rate Vmax in the Michaelis-Menten equation,

v �
Vmax � S

Km � S
(Eq. 1)

where v is the reaction rate, Km is the Michaelis-Menten (half-
saturation) constant, and S is the substrate concentration. If
enzyme activitieswere lacking for liver, aswas the case formon-
oamine oxidase A/B, TPH1/2, interleukin 4 induced 1 (IL4I1),
and protein synthesis, measurements from another tissue were
scaled to liver levels using gene expression data.
In the alternative approach purified enzyme activities can be

used to calculate the enzymatic turnover number kcat, which
when multiplied with the total enzyme concentration ET, gives
Vmax,

v �
ET � kcat � S

Km � S
(Eq. 2)

In most cases, however, tissue-specific enzyme concentrations
are not available. In contrast, gene expression data are available
for many tissues, and mRNA levels can be used as a crude esti-
mate for enzyme concentration,

v �
F � mRNA � kcat � S

Km � S
(Eq. 3)

where mRNA is the measured microarray signal (unit-less)
from gene expression experiments, and F is a factor (unit mM)
used to convert microarray signals to enzyme concentrations.
In our model F is a global factor, as our model assumes that the
microarray signals are in a linear range and that the mRNA
levels correspond linearly to enzyme concentrations. To calcu-

late meaningful absolute fluxes and metabolite steady state
concentrations for substrates and products of non-enzymatic
reactions, F must be determined. In contrast, relative fluxes and
steady state concentrations of substrates and products of enzy-
matic reactions are independentofF. If not statedotherwise,Fwas
arbitrarily set to 1 mM, with the implication that the simulations
returned arbitrary absolute fluxes and arbitrary concentrations for
substrates and products of non-enzymatic reactions.
Gene expression data sets were obtained fromArray Express

or Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov).
For the tissue simulations, replicate arrays were combined
using the biweight function implemented in the gene expres-
sion analysis software J-Express Pro to obtain one signal value
representing the expression for each enzyme for a tissue.
For the glioblastoma and tuberculosis datasets, separate simu-
lations were done for each replicate array, and average concen-
trations and standard deviations were calculated afterward.
The signal valueswere used directlywithout further processing.
If a gene was represented by multiple probes on the array, the
probe with the highest signal was chosen. The various data sets
are referenced in the results section and listed in supplemental
Table 4. The sbml-file of the model generated for human liver
tryptophan metabolism is available in the BioModels database
accession number MODEL1310160000.
Enzyme Competition—The Michaelis-Menten rate law for

competitive inhibition of irreversible reactions was used for the
enzymatic reactions when enzymes catalyze more than one
reaction,

v �
Vmax � S

Km � S �
Km � I

Ki

(Eq. 4)

where I is the concentration of the competing substrate, and Ki
is the Michaelis-Menten constant of the competing substrate.
Equation 4 can be extended to any finite number of competitors
as shown mathematically by Chou and Talaly (27). For the
reversible transport of tryptophan and L-kynurenine we used a
rate law for two competing substrates based on steady state
assumptions (28).
For the approach using purified enzyme activities and gene

expression data, Vmax in Equation 4 was substituted with F �
mRNA � kcat as in Equation 3.
Sensitivity Analysis—Global sensitivity analysis was per-

formed with respect to enzyme specific Km values and the gene
expression data. To be able to do global sensitivity analysis
within a reasonable amount of time andwithmoderate compu-
tational power, we used the method described by Sahle et al.
(29). Thismethod is based on optimization of an objective func-
tion. Two different optimization algorithms were applied (evo-
lutionary programming and particle swarm) to make sure that
the result was independent of themethod used. For the optimi-
zation based on evolutionary programming, we used a popula-
tion size of 40 and 500 generations. The particle swarm algo-
rithmwas applied with the default settings (iteration limit 2000
and swarm size 50).
Sensitivity to changes in the Km values were assessed by

searching the parameter space for values that would maximize
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or minimize flux control coefficients for 3-hydroxyanthranilic
(3HAA) oxygenase (HAAO) in the kynurenine pathway and
DDC in the serotonin pathway. Combining the search with an
optimization algorithm allows searching the parameter space
for sets of Km values that leads to optimal conditions for the
objective function. To limit the search space, minimum and
maximum values were set for each Km parameter. If diverging
Km parameter values had been found in the literature or in
BRENDA, the lowest and highest values recorded were used as
limits. If the available data were consistent or only single mea-
surements were found, we set �90% of the model values as
parameter range.
Similarly, the sensitivity to changes in gene expression values

was assessed by searching the parameter space for expression
values that would result inmaximumorminimum flux through
HAAO or DDC. The parameter space for each enzyme was
limited by the minimum and maximum expression value mea-
sured for the respective genes on the microarrays across all
tissues of the data set by Dezso et al. (30) (GEO accession num-
ber GDS3113). The parameter search space for expression val-
ues was huge, and there could be several optimal parameter
combinations that would result in similar maximum and min-
imum fluxes throughHAAO andDDC. Each optimization was,
therefore, repeated 20 times to get an estimate for the variability
of optimized expression values. Enzymes with small variations
of expression values across the 20 runs would then be impor-
tant for obtaining the optimized fluxes.
Software Used for Analysis and Visualizations—Expression

data were formatted using J-Express Pro 2012 (31, 32). All
calculations of fluxes and intermediate concentrations were
performed with the steady state task of COPASI 4.10 (33).
The sensitivity analysis was performed using the metabolic
control analysis task and the command line version of the
software.

RESULTS

Kinetic Model of Tryptophan Metabolism Predicts Expected
Flux Distribution Patterns and Metabolite Concentrations in
Rat Liver—To simulate flux distributions and metabolite con-
centrations in the mammalian tryptophan pathway, we con-
structed a tissue-specific kinetic model (Fig. 1). Kinetic data for
29 enzymatic reactions and two transporters in the network
were retrieved from databases (KEGG and Brenda) and cross-
validated with the original literature. Some of the reactions are
catalyzed by different isoenzymes, e.g. KAT1–3 and TPH1–2.
Separate reactions were added to the model for each isoen-
zyme, and isoenzyme-specific kinetic constants were used if
available. Each of the two transport reactions for tryptophan
and L-kynurenine can be carried out by two different transport-
ers. Hence, the model consists of 35 enzyme-catalyzed reac-
tions (set irreversible) and 4 reversible transport reactions. For
those enzymes that catalyze more than one reaction in the net-
work, we included competition between these reactions.
Because the different substrates compete for the same active
sites of these enzymes, one substrate can be seen as competitive
inhibitor of the others. Therefore, the kinetic model included
competitive inhibition where appropriate (cf. Fig. 1). We
recently demonstrated that such competition can affect both

steady state concentrations and the dynamic behavior of meta-
bolic systems (28). Initial simulations with the tryptophanmet-
abolic model confirmed that the calculated fluxes were affected
by the inhibition as expected. Tryptophan and L-kynurenine
were allowed to be exchanged with the environment. Because
both use the same transporters, competition also had to be con-
sidered for the exchange reactions.
To adjust themodel according to liver-specific enzyme activ-

ities, we first tried to make use of published studies in which
activities were measured in rat liver homogenates. Indeed, liv-
er-specific activities were available for most of the reactions.
For the remaining reactions, activities measured in total
extracts from other tissues were used in combination with gene
expression data to scale the specific activities to liver levels (33).
The predicted flux toward protein synthesis was 98.9% relative
to tryptophan import, suggesting that almost all of tryptophan
is used for protein synthesis. This prediction is in stark contrast
to the actual situation in which little dietary tryptophan is used
for protein synthesis (10). To assess the effect of excluding pro-
tein synthesis, simulations were performedwith a variant of the
model that excluded tryptophan tRNA ligase (tryptophanyl-
aminoacyl-tRNA synthetase). This resulted in increased rela-
tive fluxes through the kynurenine pathway (tryptophan 2,3-
dioxygenase (TDO, 21%), serotonin pathway (TPH, 29.3%), and
interleukin 4-induced 1 (47.8%). However, this is still far from
physiological conditions, where up to 99% of tryptophan has
been reported to be degraded through the kynurenine pathway
in liver (9, 10). Furthermore, the calculations predicted metab-
olite concentrations far outside the physiological range (e.g.
L-Kyn, 0.053 �M; 3-hydroxy-kynurenine (3HKyn), 2.2 nM; sero-
tonin, 0.7 �M; for comparison, see Table 1). The discrepancy
between the observed and calculated fluxesmay be due to prob-
lems inherent to determining specific enzyme activities in tis-
sue homogenates. Most likely such determinations are affected
by enzyme instability (for example, TDO has a half-life of only
about 2 h (10)). Moreover, they can only to a limited extent
account for competition between pathways or product utiliza-
tion in subsequent reactions. Given this result, we did not con-
tinue building models based on enzyme activities measured
directly in tissues.
As an alternative approach, we used specific activities mea-

sured for purified enzymes that were available for most
enzymes. From these activities we calculated the enzymatic
turnover number, kcat. To estimate the total enzyme concentra-
tions, ET, gene expression data (34; ArrayExpress accession
E-BASE-4) were used as described under “Materials andMeth-
ods.” Fig. 2A shows the result (for rat liver) of steady state cal-
culations with this model in a simplified figure of the trypto-
phan metabolic pathway. For visualization purposes (here and
in subsequent figures) only the main branch points of the kyn-
urenine and serotonin pathways are shown, whereas the simu-
lations are based on the full model. Simulations suggested that
94.6%of tryptophan aremetabolized byTDO in the kynurenine
pathway and then split between KAT and kynurenine 3-mo-
nooxygenase (KMO). These predictions resemble known flux
distributions for rat liver (9, 10). In addition, as can be inferred
from Table 1, the calculated intermediate concentrations for
L-Kyn (1.2 �M) and 3HKyn (0.02 �M) are close to the values mea-
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sured in rat plasma. Consequently, kinetic modeling using turn-
overnumbers in conjunctionwithmeasuredmRNAabundanceof
the corresponding genes to adjust for gene expression appeared to

reflect the actual physiological situation rather accurately. Impor-
tantly, this approach does not rely on tissue-specific activities and,
therefore, can be readily used to generatemodels for other tissues.
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FIGURE 1. Overview of the tryptophan metabolic pathway. The two most important branches of this pathway are the serotonin pathway and the kynurenine
pathway. These have been marked by gray backgrounds. Metabolites are shown in ellipses, and directions of reactions are shown by arrows with the enzyme
names next to them. Enzyme names are written in uppercase letters. Arrows without enzyme names are non-enzymatic reactions. Dotted arrows are reactions for
which kinetic data were missing. The double vertical lines on the left hand side depict plasma membrane, and the bi-directional arrows crossing it show the
transport of tryptophan and L-kynurenine. The names of the transporters are written next to the arrows. Fkyn, formyl-kynurenine; FAA, formyl-AA; Xanth,
xanthurenic acid; Acms, 2-amino-3-carboxymuconate semialdehyde; Am6sa, 2-aminomuconate semialdehyde; Pic, picolinic acid; Cin, cinnabarinic acid; 5HTrp,
5-hydroxy-tryptophan; Trypta, tryptamine; MTrypta, methyl-tryptamine; MMTrypta, dimethyl-tryptamine; IndolAc, indole-3-acetaldoxime; 5HFKyn, 5-hydroxy-
N-formylkynurenine; 5HKyn, 5-hydroxy-kynurenine; 5HKynN, 5-hydroxykynuramine; DHQuin, 4,6-dihydroxy-quinoline; 5HAc, 5-hydroxy-indoleacetaldehyde;
F5Hkyn, formyl-5-hydroxykynurenamine; NMSer, N-methyl-serotonin; NAcSet, N-acetyl-serotonin; IndolP, indole-pyruvate. The abbreviations of the enyzmes
are as follows: AFMID, arylformamidase; KYNU, kynureninase; ACMSD, 2-amino-3-carboxymuconate semialdehyde-decarboxylase; QPRT, quinolinic acid phos-
phoribosyltransferase; IL4I1, interleukin 4 induced 1; AANAT, arylalkylamine N-acetyltransferase; ASMT, acetylserotonin N-methyltransferase; MAOA/B, mono-
amine oxidase A/B; IMNT, tryptamine N-methyltransferase; WARS, tryptophanyl-aminoacyl-tRNA synthetase. The abbreviations of the transporters are: SLC7A5,
large neutral amino acids transporter small subunit 1; SLC7A8, large neutral amino acids transporter small subunit 2.

TABLE 1
Comparison between calculated and experimentally measured concentrations of tryptophan pathway metabolites in rat
The rat liver and cortexmodelswere built using averaged tissue-specific gene expression data to scale enzyme specific activities. The calculated concentration rangeswere obtained
by varying the amount of tryptophan used as input for models. For liver, the tryptophan range was based on human blood values, as rat blood concentrations are of limited
availability. They do, however, appear to be in the same range (36, 46). The concentration of free tryptophan available for uptake in liver corresponds to 10–20% of the total
tryptophan measured (39.7–91 �M (35, 37)), and hence the input range was set to 4–16 �M. For the rat cortex model a tryptophan range of 0.9–2.6 �M, resembling human CSF
concentrations (37), was used directly.

Metabolite Units
Calculated Measured

ReferencesRat Liver Rat cortex Rat blood plasma Rat cerebrospinal fluid

Seretonin nM 4.1–10.8 6.0–16.2
L-Kyn �M 1.0–3.0 0.035–0.11 1.4–3.8 0.032–0.047 23, 36, 46
3HKyn nM 19.8–58.3 0.9–5.0 39.5–63.3 36, 46
3HAA nM 0.2–0.7 0.02–0.06
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The same turnover numberswill apply, andET values are adjusted
by tissue-specific expression data.
Tissue-specific Flux Distributions Are Similar in Human and

Rat—Tocompare predictedmetabolite concentrations and rel-
ative fluxes in different tissues of different species, we created
additionalmodels for rat cortex, human liver, and human brain.
ET in the different tissues were estimated using gene expression
datasets from rat (Ref. 34; ArrayExpress accession E-BASE-4)
and human (30; GEO accessionGDS3113). The calculated con-
centrations and fluxes are shown in Fig. 2. Interestingly, the
models predict that fluxes in rat and human liver are similar but
different from fluxes in rat cortex and human brain. Moreover,
rat cortex fluxes are comparable to those of the human brain. In
cortex and brain, the flux is shifted from the kynurenine path-
way (IDO/TDO) toward the serotonin pathway (TPH). This
results in higher concentrations of serotonin in the brain tissues
and lower concentrations of the potentially neurotoxic metab-
olites 3HKyn and 3HAA. The latter is also reflected in the flux
ratios between KAT and KMO, which is 1.5–2.1 in liver and
11–19.4 in brain. The relative flux toward protein synthesis
(tryptophanyl-aminoacyl-tRNA synthetase) is predicted to be
10 and 30.5% in rat cortex and human brain, respectively, which
is higher than expected.
To assess the validity of the predicted metabolite concentra-

tions, we performed simulations using a range of tryptophan
concentrations. The total tryptophan concentration in blood
has been reported to be in the range from 39.7–91 �M (12,
35–37) butwith only 10–18% freely available to the cells (10, 37,
38). Hence, the range for the fixed concentration of tryptophan
used in the simulations of liver metabolism was 4–16 �M. The
tryptophan concentration reported for cerebrospinal fluid and
used for simulations of brain metabolism in Table 1 was some-
what lower (1.3–2.6�M (37)). Calculatedmetabolite concentra-
tions for human liver and brain along with measured concen-
trations from blood plasma and cerebrospinal fluid are shown
in Table 2.
To assess to what extent the results from model simulations

depended on the accuracy of the kinetic values, sensitivity anal-
ysis was performed. This was done by varying the Km values
(supplemental Tables 2 and 3) and the expression data (supple-
mental Fig. 1); see “Materials and Methods” for details. The
results from the sensitivity analysis showed that someKm values
could be varied considerably without noticeably affecting sim-
ulation outcomes, whereas changing Km values for other
enzymes significantly affected the outcome. Similar observa-
tions were made when the numbers for the expression data

were varied. Generally, variation in the values for enzymes at
branchpoints resulted in greater variation of simulation results.
Therefore, it appears particularly important to accurately
determine the kinetic constants and protein concentrations for
the enzymes at branch points.
Pathway Control Is Distributed Differently in Brain and

Liver—Metabolic control analysis was used to analyze the dis-
tribution of control in tryptophan metabolism in human liver
and brain (Fig. 3). The control of flux through the reaction
converting 5-hydroxytryptophan into serotonin, catalyzed by
DDC, was used as a measure for the control of the serotonin
pathway. Similarly, the control of the flux through the reaction
converting 3HAA into 2-amino-3-carboxymuconate semialde-
hyde, catalyzed byHAAOwas used as ameasure for the control
of the kynurenine pathway. In liver, the flux control for the
serotonin pathway seems to be shared betweenTPH, TDO, and
the transport of tryptophan with FCC of 0.99, �0.96, and 0.91,
respectively. Sensitivity analysis showed that these control
coefficients were rather robust as they varied little when chang-
ing kinetic or expression values. In brain, TPH was the major
control point for serotonin synthesis with an FCCof 0.98. In the
kynurenine pathway, KMO was a major control point in both
liver (0.88) and brain (0.99). Transport of tryptophan also had
control in liver (0.93), whereas TDO, IDO, transport of trypto-
phan, and transport of L-kynurenine had control in brain with
FCCs of 0.55, 0.33, 0.22, and �0.82, respectively. Additionally,
KATs exert some control in the brain (�0.35). In summary, the
analyses showed that the flux control was distributed differ-
ently in brain and liver. The flux through the kynurenine path-
way in liver is chiefly controlled by KMO, whereas in brain flux
control is shared among several enzymes.
Building a Multi-tissue Model—Simulations of tryptophan

metabolism in individual tissues have great value, for example,
to predict or understand pathological alterations. However,
several intermediates of tryptophan metabolism undergo
exchange between tissues and blood. Therefore, it is important
to consider the possibility that tryptophan metabolism in one
tissue can influence that in other tissues.
Our modeling approach permitted us to combine the simu-

lations for human liver and brain and to connect them via a
“blood compartment” mediating the exchange of metabolites
between these tissues (Fig. 4).We assumed tissue volumes to be
1.5 and 1.35 liters for liver and brain, respectively, and 6 liters
for blood. Tryptophan and L-kynurenine were the only metab-
olites that were allowed to be exchanged between these tissues
and blood. Other intermediates are known to be transported

TABLE 2
Comparison between calculated and experimentally measured concentrations of tryptophan pathway metabolites in human
The human liver and brain models were built using averaged tissue-specific gene expression data to scale enzyme specific activities. The calculated concentration ranges
were obtained by varying the amount of tryptophan used as input to the models. For the liver model, the tryptophan range was set to 4–16 �M (see Table I legend), and for
the brain model the reported concentration range of 0.9–2.6 �M measurements in CSF (37) was used. The human metabolome database (36) and the review by Chen and
Guillemin (37) each summarize several independent studies reportingmetabolitemeasurements. The total number of original articles is indicated in parentheses. Themost
comprehensive dataset comprises measurements from 94 healthy persons, and the range reported represents the 5th and 95th percentile (35).

Metabolite Units
Calculated Measured

ReferencesHuman liver Human brain Human blood plasma Human cerebrospinal fluid

Seretonin nM 0.1–0.2 0.6–6.4 0.6–12 (5) 36
L-Kyn �M 2.2–6.9 0.08–0.23 0.7–4.32 (19) 0.027–0.061 (9) 35–37
3HKyn nM 9.8–30.4 0.9–2.6 12.5–383 (2) 35, 37
3HAA nM 2.7–8.3 0.06–0.2 7.9–209 (3) 35, 37
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into the blood (22, 23), but it is uncertain whether they can
cross the blood brain barrier in significant amounts.
Themost notable change in calculated brainmetabolite con-

centrations, as a result of connecting the two tissues, was ele-
vated levels of kynurenine pathway metabolites (Figs. 4A). This
is caused by a decrease in the net outflow of L-kynurenine from
the brain, as liver maintains a high blood concentration of
L-kynurenine. These simulations thus indicate that liver tryp-
tophan metabolism contributes to the generation of both neu-
roprotective and neurotoxic intermediates in the brain. Inter-
estingly, Zwilling et al. (39) showed that pharmacological
inhibition of KMO in peripheral tissues with the pro-drug JM6
provided protection against neurodegeneration inmousemod-
els of Huntington andAlzheimer disease even though JM6 can-
not cross the blood-brain barrier. Although not statistically sig-
nificant, they also reported a small increase in 3HKyn andQuin.
We used our multi-tissue model to simulate these experiments
by limiting the activity of KMO in liver to 10% of its original
value. To allow calculation of meaningful metabolite steady
state concentrations for substrates and products of non-enzy-
matic reactions, includingQuin, themodel was scaled using the
F factor. The reported KMO activity measurements for control
mice (39) was used to calculate F and was found to be 7.29e-10
mM. Using this scaled model we can reproduce the slight
increase in 3HKyn and Quin concentrations observed in the
experiments, see Fig. 4, B and C. The largest change in treated
mice, however, was observed with Kyna. Unfortunately, our
model is unable to calculate steady state concentrations for

Kyna, as it is an external metabolite due to lacking information
about transport and excretion of Kyna. However, our simula-
tions showed a 14% increase in the Kyna production rate (KAT
flux), which qualitatively agrees with the experimental data. In
conclusion, our simulations resembled to a large extent the
experimental results reported by Zwilling et al. (39).
Simulation of Pathological Alterations of Tryptophan

Metabolism—Several cancers are known to up-regulate TDO
or IDO leading to elevated L-kynurenine and decreased Trp
concentrations. Opitz et al. (7) showed that L-kynurenine binds
to the aryl hydrocarbon receptor that suppresses anti-tumor
immune responses and promotes cancer survival. We simu-
lated a 2-fold up-regulation of TDO in our isolate brain model,
and our calculations showed an increase of L-kynurenine of
49.9%. Next, we usedmicroarray data from a brain cancer study
(Ref. 40; GEO accession GSE15824) to adjust the concentra-
tions of enzymes in the same brain model. The results are dis-
played in Fig. 5 and show a decrease in steady state concentra-
tion ofTrp and an increased of L-Kyn in secondary glioblastoma
compared with primary glioblastoma and healthy brain sam-
ples. The great variation within each group reflects the varia-
tions in gene expression data. Nevertheless, there was a clear
correlation between the calculated concentration of L-kynure-
nine and the gene expression levels of IDO and TDO (correla-
tion coefficients were 0.74 and 0.96, respectively) across all
healthy and cancer samples in the data set, confirming the
observations by Opitz et al. (7).
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Finally, we integrated gene expression data from a T. men-
ingitis profiling study of human brains (GEO accession
GSE23074) with the isolate brain model and calculated steady
state concentrations of the metabolic intermediates for brains
of both infected individuals (n� 5) andnormal controls (n� 4).
Our model simulations predicted a slight decrease in serotonin
concentrations as well as a slight increase in the intermediate
concentrations of the kynurenine pathway for infected individ-
uals (Table 3). Moreover, our simulations predict that the ratio

of mean fluxes through KAT/KMO decreased by 28.1% in
T. meningitis patients. O’Connor et al. (41) showed that induc-
tion of IDO by Bacille Calmette-Guerin (a pathogen widely
used as a vaccine against tuberculosis) is responsible for a
depressive-like behavior inmice. They proposed that a shift to a
less favorable ratio of neuroprotective and neurotoxic kynuren-
ine derivatives could contribute to a depressive phenotype. Our
analyses lend support to such a metabolic shift as a diminished
KAT/KMO ratio would, for example, lead to higher concentra-
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tions of neurotoxic quinolinic acid while diminishing protec-
tive kynurenate concentrations.

DISCUSSION

The present study provides the most comprehensive kinetic
model of tryptophan metabolism to date. It includes all
branches of this complex network, thereby enabling the detec-
tion of interdependencies between the individual pathways.
Moreover, inclusion of nearly all reactions of the network into
the calculations makes it possible for the first time to generate
realistic predictions for intermediate metabolite concentra-
tions and flux distributions of tryptophanmetabolism in differ-
ent tissues. This possibility has arisen from the successful
adjustment of individual enzyme activities according to tissue-
specific expression of the corresponding genes.
Intuitively, it would appear that using specific enzyme activ-

ities measured in tissue extracts would provide the most accu-
rate values. However, our results indicate that, at least in liver,
the application of these data to the generic model returns flux
distributions that do not reflect the physiological situation.
Inaccuracies of measurements (for example, due to enzyme
instabilities), even if only for a few enzymes, are likely to affect
the outcome of the simulations for such a complex metabolic
network. Indeed, our sensitivity analyses revealed that this
would be the case, particularly when it concerns enzymes at
branch points, such as TDO.
Even though we are well aware that gene expression (mRNA

levels) does not necessarily correlate with the amount of the
corresponding protein, we used such data to scale our kinetic
model to tissue-specific enzyme activities. Using this approach,
the calculations of tryptophan metabolism for both liver and
brain returned flux distributions and metabolite concentra-
tions that closely resemble physiological values (35–37). Our
mathematical approach also produced results for diseased tis-
sues, such as cancers or infections, that predict changes similar
to those reported (7, 39). According to these results, the possi-
bility exists that the ratio between corresponding mRNA and
protein levels, at least for the key enzymes, is similar within the
network of tryptophanmetabolism.Unfortunately, there are no
quantitative proteomics data available to verify this notion. In
fact, this is the reason why we needed to resort to gene expres-
sion data in the first place rather thanusing tissue protein levels.
Another interesting observation is the correspondence of

our predictions with measured values despite the absence of
any regulatory components, such as allosteric regulation and

product inhibition, in our model. Indeed, the concentrations
required to achieve known inhibitory effects of metabolites on
enzymes of tryptophan metabolism are far beyond physiologi-
cal values. Nevertheless, we cannot exclude the existence of
hitherto undiscovered regulatory mechanisms within this net-
work. However, expression of the genes encoding TPH1/2,
TDO, IDO, and IL4I1 are known to be regulated by melatonin
and Trp/L-Kyn and upon inflammation, respectively. Thus, it
appears as though tryptophan metabolism could be primarily
regulated through enzyme abundance rather than by allosteric
mechanisms or product inhibition. Thus, the inclusion of gene
expression data into ourmodel has the further advantage that it
would account for this type of regulation.
As for any metabolic model, an unequivocal verification

would, however, only be achieved if simultaneously metabolo-
mics quantitative proteomics, and expression analyses were
conducted in several organs from the same organism. There-
fore, it is important to note that comparison of values obtained
from the model with those from the literature has limitations
because measurements have been made in different samples
including blood, serum, or cell culture and may vary consider-
ably depending on the experimental conditions (37).
Integration of expression data with a kinetic model has been

successfully done for a model of the citric acid cycle in Esche-
richia coli and Mycobacterium tuberculosis (33). In this case,
-fold change values were calculated from gene expression data
and used to scale the Vmax values obtained from published lit-
erature to simulate different conditions. To our knowledge, our
approach to use turnover numbers and expression values has so
far not been used for kinetic modeling.
Gene expression data are also regularly used in flux balance

calculations to adjust the flux capacity of a reaction (see e.g.Ref.
42). In contrast to flux balance analysis, we apply additional
constraints that are the steady state requirement and the mea-
sured metabolite affinities. One problem of using gene expres-
sion data directly, as we have done inmost of ourmodels, is that
the calculated absolute flux values are arbitrary, and only rela-
tive fluxes can be meaningfully compared with experimental
data. However, as we have shown in simulations of KMO inhi-
bition experiments inmice, themodel can be scaled to produce
absolute flux values provided that experimentally measured
enzyme activities are available from a reference tissue. In addi-
tion to absolute fluxes, such a scaled model also permits the
calculation of steady state concentrations for substrates and
products of non-enzymatic reactions, such as quinolinic acid.
Themetabolic control analyses we conducted suggested that

TPH andKMOaremajor control points in both liver and brain,
along with TDO or IDO, depending on the tissue. This was not
surprising. Indeed, all these enzymes have emerged as promis-
ing drug targets based on biochemical studies of tryptophan
metabolism. TPH is targeted for irritable bowel syndrome (43),
and KMO is targeted for Huntington disease and may be a
promising target for several neurodegenerative diseases (44).
TDO inhibition is regarded as a strategy for cancer suppression
(45). Our analyses further demonstrated that the metabolite
transporters also have significant control over tryptophan
metabolism. Targeting the transporters, however, is likely to
have adverse effects because they are also required for the

TABLE 3
Calculation of tryptophan pathway metabolite concentrations in
T. meningitis patients
The model for healthy individuals and T. meningitis (TBM) patients was con-
structed using expression data (GEO accession GSE23074) to scale enzyme specific
activities. For each sample a separate model was generated, and the concentrations
were calculated with a fixed tryptophan concentration of 1.75 �M as input. This
concentration resembles the medium concentration for human CSF found in the
literature (37).

Metabolite Units Normal TBM

Seretonin nM 21 � 11 19 � 6
L-Kyn �M 0.13 � 0.08 0.19 � 0.05
3HKyn nM 3.4 � 2.4 4.8 � 3.2
3HAA nM 0.22 � 0.11 0.31 � 0.14
KAT/KMO 5.7 � 2.6 4.1 � 2.0

Scalable Model of Tryptophan Metabolism

34564 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 288 • NUMBER 48 • NOVEMBER 29, 2013



transport of other amino acids (11). All in all, the control ana-
lyses showed that there are several control points in tryptophan
metabolism, particularly in the brain. Therefore, mutations
that affect the activity of these enzymes to a small extent when
measured in isolation may still have considerable effects on the
network as a whole. That is, there could be seemingly harmless
variations in individual enzyme structures that could account
for tryptophan metabolism being involved in many different
diseases.
Another important outcome of the present study is the dem-

onstrated potential to scale the kinetic models of individual
organs into a comprehensive multi-tissue model. We have
tested this possibility by combining the models generated for
liver and brain and connecting them via blood as a metabolite
carrier for tryptophan and L-kynurenine. Even though this
model was based on relatively simple assumptions for tissue
volumes and constrained to only two permeable metabolites,
the calculations indicated that the tissues interactmetabolically
as indicated by modified fluxes (Fig. 4). This notion became
especially apparent when simulating liver KMO inhibition by
JM6, which was experimentally investigated recently (39). The
inhibitor was administered orally and showed positive effects in
Huntington disease despite the fact that the inhibitor is unable
to cross the blood-brain barrier. The protectionwas ascribed to
increased levels of kynurenate in the brain. Our simulations
showed elevated levels of L-kynurenine and increased kynure-
nate production rates, in line with the experimental results.
Moreover, the simulations also reproduced the experimentally
measured slight increased levels of the neurotoxic compounds
3HKyn and Quin. Despite the promising results of our simula-
tions, the development of an adequate multi-tissue model
would require inclusion of more peripheral tissues, more pre-
cise estimation of tissue volumes, and availability of data
regarding the presence and kinetics of transporters for other
metabolites of the network.
The flexibility and scalability of our approach opens upwide-

ranging possibilities for studying the dynamics of tryptophan
metabolism in different diseases. For example, increased levels
of L-kynurenine have been observed in cancers andmay be part
of the mechanism by which tumors evade immune responses
(7). As a case study we integrated gene expression data from
brain cancers with our kinetic model. The results indicated
great variability in the levels of this metabolite, which actually
fits well with measurements in glioblastomas (7). In our simu-
lations, the L-kynurenine concentration correlated with the
expression level of TDO, as would have been expected from the
experimental data.
In conclusion, a comprehensive and robust kinetic model of

mammalian tryptophan metabolism has emerged from the
present study. Based on comparison with reported biochemical
measurements, we conclude that the model provides unprece-
dented accuracy in describing the actual state of tryptophan
metabolism in tissues. Because it can be easily adjusted to
essentially any tissue using readily available gene expression
data, the model has the potential to become widely used as a
predictive and diagnostic tool, considering that tryptophan
metabolism is affected in a broad range of diseases.We envision
the possibility that, once it can be scaled to a reliable multi-

organ model, metabolite measurements in blood may provide
sufficient information to deduce organ-specific alterations in
tryptophan metabolites. Moreover, the principal approach of
integrating a kinetic model with mRNA levels of the corre-
sponding genes can be readily adopted for other metabolic
pathways as long as the kinetic data are available.
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5. Uyttenhove, C., Pilotte, L., Théate, I., Stroobant, V., Colau, D., Parmentier,
N., Boon, T., and Van den Eynde, B. J. (2003) Evidence for a tumoral
immune resistance mechanism based on tryptophan degradation by in-
doleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274

6. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., and
Prendergast, G. C. (2005) Inhibition of indoleamine 2,3-dioxygenase, an
immunoregulatory target of the cancer suppression gene Bin1, potentiates
cancer chemotherapy. Nat. Med. 11, 312–319

7. Opitz, C. A., Litzenburger, U. M., Sahm, F., Ott, M., Tritschler, I., Trump,
S., Schumacher, T., Jestaedt, L., Schrenk, D., Weller, M., Jugold, M., Guil-
lemin, G. J., Miller, C. L., Lutz, C., Radlwimmer, B., Lehmann, I., von
Deimling, A., Wick, W., and Platten, M. (2011) An endogenous tumour-
promoting ligand of the human aryl hydrocarbon receptor. Nature 478,
197–203

8. Munn, D. H., and Mellor, A. L. (2007) Indoleamine 2,3-dioxygenase and
tumor-induced tolerance. J. Clin. Invest. 117, 1147–1154

9. Schwarcz, R., Bruno, J. P.,Muchowski, P. J., andWu,H.-Q. (2012) Kynure-
nines in the mammalian brain. When physiology meets pathology. Nat.
Rev. Neurosci. 13, 465–477

10. Bender, D. A. (1983) Biochemistry of tryptophan in health and disease.
Mol. Aspects Med. 6, 101–197

11. Speciale, C., Hares, K., Schwarcz, R., and Brookes, N. (1989) High-affinity
uptake of L-kynurenine by a Na�-independent transporter of neutral
amino acids in astrocytes. J. Neurosci. 9, 2066–2072

12. Salter, M., Knowles, R. G., and Pogson, C. I. (1986) Quantification of the
importance of individual steps in the control of aromatic amino acid me-
tabolism. Biochem. J. 234, 635–647

13. Kacser, H., and Burns, J. A. (1973) The control of flux. Symp. Soc. Exp. Biol.
27, 65–104

14. Heinrich, R., and Rapoport, T. A. (1974) A linear steady-state treatment of
enzymatic chains. General properties, control, and effector strength. Eur.
J. Biochem. 42, 89–95

15. Schuster, S., and Heinrich, R. (1996) The Regulation Of Cellular Systems,
pp. 138–291, Chapman & Hall, New York

16. Vogt, A. M., Nef, H., Schaper, J., Poolman, M., Fell, D. A., Kübler, W., and
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