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The advent of state-of-the-art brain imaging technologies in recent years and the ability of such technologies
to provide high-resolution information at both structural and functional levels has spawned large efforts to
introduce novel non-invasive imaging biomarkers for early prediction and diagnosis of brain disorders;
however, their utility in both clinic and drug development at their best resolution remains limited to
visualizing and monitoring disease progression. Given the fact that efficient translation of valuable
information embedded in brain scans into clinical application is of paramount scientific and public health
importance, a strategy is needed to bridge the current gap between imaging and molecular biology,
particularly in neurodegenerative diseases. As an attempt to address this issue, we present a novel
computational method to link readouts of imaging biomarkers to their underlying molecular pathways with
the aim of guiding clinical diagnosis, prognosis and even target identification in drug discovery for
Alzheimer’s disease.

R
ecent advancements in structural and functional neuroimaging techniques offer unprecedented opportun-
ities to visualize the brain structure and function, to non-invasively monitor the progression of a disease
over time, or to track disease trajectories. Different types of imaging reveal different aspects of the brain

complexity: Magnetic Resonance Imaging (MRI), Computerized Tomography (CT) and Diffusion Tensor
Imaging (DTI) are designed to localize anatomical areas and structures (structural imaging techniques) whereas
functional Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET) are used to capture
neural activity at molecular level (functional imaging techniques)1,2. Such imaging technologies have been used to
identify structural and functional changes associated with different stages of progressive neurodegenerative
diseases such as Alzheimer’s disease (AD)3.

In AD patients, progressive loss of memory and cognitive abilities is attributed to the dysfunction and death of
nerve cells in specific regions of the brain4. Imaging techniques have established the existence of such link between
brain structural and functional changes by showing the spatio-temporal patterns of cell death across affected
brain regions. Differential patterns of brain atrophy observed in the brain of AD patients with the help of imaging
techniques indicate that distribution of particular structural changes in specific regions of the AD brain may
reflect the underlying pathology5.

Based on the above-mentioned capabilities of imaging technologies, increasing number of imaging studies has
been published on diagnosis and prognosis of AD but the reported applications are still limited to clinical
monitoring of anatomical lesions or injuries of brain in the course of the disease. On the other hand, still
assessment of persons with brain disorders and diagnostic decision-making process for such patients is highly
subjective to the skills of examiner and the patient’s abilities, which shows the current limitations of brain imaging
techniques for informing the diagnosis beyond the behavioral assessments6. Current automated methods for
diagnosis of neuropsychiatric disorders make use of classification algorithms to classify the brain scans of partici-
pants based on measurements of local variation in the morphological features of the brain7. Accordingly, the
diagnostic information derived from such imaging-based methods is often unspecific and the knowledge behind
the molecular mechanism underlying the measured imaging outcomes remains implicit or unknown. In fact, the
challenge of linking clinical outcomes to their underlying molecular events has been long of interest to the
scientific community and to the pharmaceutical industry as well. This is because it will help to obtain better
understanding of the disease mechanism at molecular level, particularly for personalized medicine applications.
The technique of molecular imaging using reporter molecules that provide information on particular molecular
or cellular events has been around for some while but it is not in clinical use yet and its diagnostic as well as
prognostic application will be limited to tracing of single cell or single cellular process8.
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To the best of our knowledge, there is no suggestion in the scient-
ific or patent literature preceding the present study how to facilitate
diagnosis and prognosis of brain diseases by translating information
from a plurality of brain scan images to underlying region-specific
disease pathways. Therefore, it would be desirable to provide a
method that is able to not only diagnose brain images more accur-
ately with higher specificity to the disease but improve prognosis by

prescribing efficient and personalized therapies based on medical
history of individual patients. Such a method could be potentially
upgraded to a clinical decision-support system that would adjoin
neuroimaging softwares. It could also support target identification
and biomarker discovery efforts as well.

The present work proposes a novel strategy using an integrative
computational approach, which incorporates the information of
imaging and potential protein biomarkers specific to disease into a
brain-specific protein interaction network. Enrichment analysis for
known pathways further validated the method and unveiled the high
impact of immune system on the pathology of AD.

Results
The core methodology for translation of imaging readouts to mole-
cular pathway maps consists of two steps:

Step 1 intends to integrate the information of both imaging and
molecular biomarkers into a brain-specific network model (so-called
brain interactome), which represents experimentally confirmed pro-
tein interactions (i.e. network edges) in 15 anatomical regions of the
human brain9. Since reports on brain imaging contain meta-
information about clinical specifications of patient subjects such as
stage of the disease and the affected region of the brain, the idea is to
ultimately generate specific disease subnetworks out of the brain
interactome that represent protein interactions in affected regions
of the diseased brain. This is achieved by mapping information of
imaging outcomes onto the region-specific brain interactome
(Figure 1). For validation purposes, we have used imaging informa-
tion reported in the literature on AD but the source of image-based
diagnosis could in essence be extended to the clinician’s medical
report or any other diagnostic annotation attached to images.

Step 2 involves extraction of identified subnetworks from the brain
interactome based on the affected regions that are diagnosed by
imaging and consequently their analysis for underlying pathways.
The pathway analysis is performed on both the entire subnetworks
and potential biomarkers mapped onto these subnetworks sepa-
rately. Afterwards, pathways that are derived from subnetworks
and pathways that are derived from mapped biomarkers are being
matched so that potential molecular biomarkers act as ‘‘pins’’ on the
disease map to guide the analysis to the core biological processes
deemed to drive the pathology of the disease (Figure 2).

Method validation using imaging readouts of Alzheimer’s patients.
Our semantic information retrieval system, SCAIView, retrieved 5698
PubMed abstracts reporting clinical application of imaging techni-
ques for diagnosis of AD (MRI: 3458, PET: 1989, DTI: 251) and
containing information on both AD and affected brain regions (see

Figure 1 | Generation of brain region-specific subnetwork models using
imaging readouts. The proposed methodology - in the first step -

incorporates information of diagnosed brain regions from imaging into

the brain interactome annotated with 15 brain regions.

Figure 2 | Enhancement of subnetwork models with the information of potential biomarkers. Enhanced subnetwork models are further subjected to

pathway analysis guided by biomarker pins.
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Methods). After manual inspection of these abstracts and information
extraction, it turned out that the reported brain regions injured in AD
could be assigned to three stages of the disease, namely early AD/mild
cognitive impairment (MCI), moderate Alzheimer’s, and advanced
Alzheimer’s. It was evident from the frequency of AD imaging
publications that majority of these studies reported the application
of imaging methods to diagnosis of the early stage Alzheimer’s
disease, reflecting the high priority of finding early diagnostics for
AD. Moreover, these efforts were heavily biased toward application
of MRI techniques amongst others (Supplementary Table 1).

Analysis of the diagnosed anatomical regions in AD brains
(Supplementary Table 1) indicated that both structural and func-
tional techniques report limbic system and its anatomical compo-
nents (i.e. temporal lobe, hippocampus, cingulate, thalamus and
corpus callosum) as the affected regions across disease stages.
Based on these readouts, a disease progression trend is observed so
that it appears with progression of the disease from early to advanced
stage, anatomical lesions extend from temporal lobe, entorhinal and
precuneus cortices to prefrontal and cerebral cortices. These read-
outs suggest that temporal lobe lesion and dysfunction is persistent
across disease stages. Therefore, we generated a temporal lobe sub-
network model out of the brain interactome and validated our pro-
posed method on this model. The temporal lobe model is represented
by a protein-protein interaction (PPI) subnetwork with 2323 nodes
and 3587 edges (Supplementary File 1).

Biomarker-pathway coupling for targeted enrichment analysis. In
order to spot pathways causally involved in the progression of AD in
the temporal lobe subnetwork model, we searched for molecular
indicators (potential biomarker candidates) of AD in the literature,
extracted a list of such hypothetical AD biomarkers (see Methods)
and mapped them onto the temporal lobe subnetwork. Biomarkers
are molecular alterations that can be measured in human tissue, cells
or fluids and represent direct steps in the causal pathways of a
disease10. As a result, 144 potential biomarkers, including inflamma-
tory and non-inflammatory biomarkers, mapped on the temporal
lobe subnetwork. Since these potential biomarkers indicate measu-
rable molecular activities under the AD condition, this strategy helps
us guide our analysis to those pathways that are more likely to be
involved in the disease mechanism at the molecular level. Moreover,
it overcomes the challenge of dealing with the large number of
significant pathways that are often resulted from pathway enrich-
ment analysis algorithms, particularly when a large number of
proteins participating in network models are submitted for analysis.

To this end, we performed separate pathway enrichment analyses
on both the subnetwork proteins and the list of mapped biomarkers.
Since the enrichment results from mapped biomarkers are used to
guide the analysis on the subnetwork model, enrichment analysis on
the biomarker list was performed using BioCarta, KEGG, and
Reactome separately. The same analyses were performed on the sub-
network proteins. In this way, the same set of pathway annotations

from each pathway database is used for pathway comparison and the
sensitivity of the pathway matching process between biomarker-
derived pathways and subnetwork-derived pathways is maximized.
The purpose is to find out which pathways are suggested by potential
biomarkers to be perturbed in the subnetwork model and which
pathways in the subnetwork model correctly represent the disease
mechanism.

Such a biomarker-guided pathway analysis showed that imaging
biomarkers point to involvement of six pathways in progression of
AD, namely HIV-NEF pathway, FAS signaling pathway, IL2RB path-
way, keratinocyte pathway, MAPK signaling pathway and immune
system signaling (Table I). Figure 3 illustrates HIV-NEF pathway
spotted on the temporal lobe subnetwork model. In this model, there
are two approved CNS drugs that target two proteins within the HIV-
NEF pathway: Triflusal, which targets NFKB1 and is used for treat-
ment of cerebral infarction and prevention of stroke; and Rasagiline,
which targets BCL2 and is applied for treatment of idiopathic
Parkinson’s disease. Such a drug-target-disease pathway landscape
informs which therapies already target a disease pathway in a par-
ticular brain region. The specificity of the translated model increased
even more when the expression information of mapped potential
biomarkers (i.e. overexpressed or underexpressed) under AD condi-
tions was also extracted from the literature and incorporated into the
subnetwork model (Figure 3 and Supplementary Table 2).

Extended algorithm for translation of personalized imaging infor-
mation. The presented methodology, if further optimized, is capable
of automating computer-aided translation of imaging information
for personalized diagnosis and prognosis. We show this capability by
extending the proposed methodology to an algorithm, which may be
used in conjunction with neuroimaging softwares and aid clinicians
in accurate diagnosis and prognosis of patients that undergo imaging
assessment (Figure 4).

Information on abnormal or damaged regions of the patient’s
brain are extracted from the output of the imaging device by clinician
and can be given as input to the imaging input unit, which in turn,
sends a signal to the translation processing unit for generation of a
disease map as a molecular interaction network. This network will be
enriched with patient’s medical history data and can be visualized
through the visualization unit and a graphical user interface contain-
ing information about detailed mechanistic diagnosis and prognosis
of the disease in a personalized manner.

Discussion
In spite of invaluable contribution of neuroimaging to the under-
standing of disease progression, its outcome can not be directly used
in the context of molecular systems analyses for translational pur-
poses. The presented methodology is a novel approach to integrating
brain imaging readouts into a network model of brain molecular
interactions, which was validated using the accumulated knowledge
on diagnostic neuroimaging of Alzheimer’s disease in the literature. In
this way, the pictorial information of brain scans that are not amen-
able to molecular analysis can be incorporated in a region-specific
brain interaction network to analyze the resultant mechanistic models
and to validate those models in the context of molecular pathways.
Consequently, application of this approach to identifying drug targets
can have important implications in CNS drug discovery by reducing
the risk of drug failure in clinical trials, given the fact that it uses
human imaging data instead of poorly disease-mimicking animal
data. Even at the level of sample data, a clear advantage of imaging
biomarkers over gene expression signatures in neurodegenerative dis-
ease research is that they refer to in-vivo observations of regions and
tissues in the diseased brain that are directly involved in the disease
initiation and progression whereas gene expression signatures only
provide a snapshot of perturbed genes, suffer from heterogeneity of
cell types and are limited to post-mortem sampling.

Table I | Matched results of pathway enrichment analysis on the
temporal lobe subnetwork model

Source
Enriched pathways resulted from
mapped biomarkers (FDR value)

Matched pathways in the
subnetwork (FDR value)

BioCarta HIV-I NEF pathway (0 e0) HIV-I NEF pathway (0 e0)
FAS signaling pathway

(2.41 e214)
FAS signaling pathway (0 e0)

IL2RB pathway (1.33 e213) IL2RB pathway (0 e0)
Keratinocyte pathway

(4.94 e211)
Keratinocyte pathway (0 e0)

KEGG MAPK signaling pathway
(1.03 e214)

MAPK signaling pathway
(0 e0)

Reactome Immune system (0 e0) Immune system (0 e0)
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Pathway enrichment analysis on the image-translated molecular
map of temporal lobe revealed several pathways that were not prev-
iously appreciated to be causally involved in the pathogenesis of AD.
The advantage of using pathway enrichment analysis is that the
collective effect of reported molecular biomarkers under the disease
condition is taken into account in the context of disease pathways.
When taken together, these pathways unveiled an important aspect
of the Alzheimer’s pathology: immune system-driven apoptosis.
Significant enrichment of temporal lobe subnetwork model and its
mapped biomarkers for HIV infection pathway might indicate that
signaling pathways to neuronal damage and apoptosis are elicited
from the very early stage of AD, which persist over the period of
advanced phase. The role of IL2RB and FAS signaling pathway in
immune system-mediated apoptosis complements accumulated
evidence that MAPK signaling pathways contribute to the pathogen-
esis of AD through regulation of neural apoptosis11–13.

Enhancing these translated models with drug-target and biomarker
information – as shown for HIV-NEF pathway model in Figure 3 –
can provide added value to physicians and researchers in several ways:

- it may support more accurate diagnosis based on molecular etiol-
ogy of the disease, particularly when measured biomarkers from

patient are available and can be mapped onto the model to spot
disease pathways. This has implications for mechanistic diagnosis
of diseases rather than conventional diagnosis solely based on
often overlapping symptoms and signs.

- it may improve prognostic tasks using the drug-target informa-
tion that is associated to disease pathways. Patient’s therapeutic
history can complement the model and support prognostic
decision-making through incorporation of individual risk factors
such as susceptibility background (e.g. APOE genotype) or envir-
onmental risk factors (e.g. aging).

- it may guide target identification through prediction of drug
mode of action in the context of affected tissue, disease stage
and perturbed pathway. Information of approved drugs and their
targets in disease pathways that are already incorporated in the
model can support the concept of polypharmacology for discov-
ery and development of next-generation multi-targeting drugs.

- it may be used for prediction of companion biomarkers that are
mechanistically linked to disease etiology, on one hand, and to mode
of action of approved or experimental drugs, on the other hand.

In summary, the novel integrative methodology presented here
provides insight into the underlying molecular mechanisms of disease

Figure 3 | Representation of recovered HIV-NEF pathway and its first neighbor proteins in the temporal lobe network model. The model has been

enhanced with drug-target and biomarker expression information. Circular nodes in yellow show membership to the HIV-NEF pathway; square nodes in

pink are approved drugs targeting the recovered pathway; triangle nodes represent potential biomarkers color coded for their expression

levels in AD brain (red: over-expression; green: under-expression).
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progression by linking the clinical readouts of imaging techniques to
their corresponding molecular events, but this approach has limita-
tions. The inherent issue of network biology is that completeness of
molecular network maps is limited to data availability and validity.
Therefore, the specificity and sensitivity of the translation process is a
function of the completeness of the brain interactome. Another lim-
iting factor is the low resolution of the protein-protein interaction
maps in terms of representing other molecular species than proteins
and also directionality of the interactions. However, these shortcom-
ings can be overcome through replacement of PPI networks with
causal computational models based on BEL (Biological Expression
Language; www.openbel.org). BEL-based mechanistic models not
only represent all molecular species such as ions or metabolites but
also preserve the directionality of interactions.

This method is generic and can be applied to modeling other brain
disorders. The authors foresee that the extended algorithm of this
methodology, when optimized and fully automated, has the potential
to be used as a clinical decision-support tool for personalized dia-
gnosis and prognosis of patients with brain disorders.

Methods
Information retrieval and extraction. With the help of state-of-the-art text mining
and knowledge discovery tools, ProMiner14 and SCAIView15 developed at Fraunhofer

Institute SCAI, PubMed abstracts were searched using a dedicated biomarker
terminology16. The queries were formulated and executed over entire PubMed
abstracts on 14.05.2013 in SCAIView search engine (accessible through http://bishop.
scai.fraunhofer.de/scaiview/). An example of query formulation is shown below:

(([MeSH Disease:"Alzheimer Disease"]) AND [BioMarker Terminology:"Diffusion
tensor imaging"]).

Similarly, with the help of SCAIView and the biomarker terminology, the following
query was performed to obtain a list of potential AD biomarkers:

(([MeSH Disease:"Alzheimer Disease"]) AND [BioMarker Terminology
Node:"Evidence Marker"]).

The long list of retrieved potential AD biomarkers was filtered for expression
evidence and was subjected to manual inspection of sentences.

Imaging abstracts were manually screened by one of the authors (EY) so that
context (relevance to both AD and imaging biomarker) as well as content
(information detailing the type of imaging biomarker and the affected brain region) of
retrieved documents were checked and the relevant information was extracted.

Reconstruction of the temporal lobe subnetwork. A brain-specific protein-protein
interaction (PPI) network representing 15 brain regions was reconstructed using the
global human protein interaction network9. These regions include amygdala,
cerebellum peduncles, cingulate cortex, hypothalamus, medulla oblongata, occipital
lobe, parietal lobe, pons, prefrontal cortex, subthalamic nucleus, temporal lobe,
thalamus, caudate nucleus, cerebellum, and globus pallidus. The PPI network was
then filtered for the affected brain regions to obtain region-specific subnetwork for
temporal lobe, based on the edge attributes using Cytoscape software17.

Pathway enrichment analysis. Since the affected region in the early stage was the
same in the advanced stage, we only analyzed one subnetwork representing temporal
lobe in this study. The subnetwork and corresponding mapped molecular biomarkers
were subjected to pathway enrichment analysis (GSEA) in MsigDB18. In order to
normalize the pathway matching process, GSEA was performed on both potential
biomarkers and subnetwork proteins using separate pathway annotation sets, namely
BioCarta (www.biocarta.com), KEGG (www.genome.jp/kegg), and Reactome (www.
reactome.org). In order to make the more specific enrichment results from the small
number of potential biomarkers comparable to the less specific but high dimensional
enrichment results from the large number of subnetwork proteins, we considered the
top 20 enrichment results for subnetwork proteins so that the sensitivity of the
pathway matching process is preserved.
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methodology can be further extended to an algorithm, which could be

potentially used for clinical decision-making support.
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