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Abstract: We have developed a non-redundant protein–RNA binding benchmark dataset derived

from the available protein–RNA structures in the Protein Database Bank. It consists of 73 com-

plexes with measured binding affinity. The experimental conditions (pH and temperature) for bind-
ing affinity measurements are also listed in our dataset. This binding affinity dataset can be used

to compare and develop protein–RNA scoring functions. The predicted binding free energy of the

73 complexes from three available scoring functions for protein–RNA docking has a low correlation
with the binding Gibbs free energy calculated from Kd. VC 2013 The Protein Society
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Introduction
RNA–protein interactions play key roles in all kinds

of biological processes. High resolution structures of

protein–RNA complexes are necessary for under-

standing mechanisms of protein–RNA interactions.

Unfortunately, it is difficult and slow to determine

the 3D structure of protein–RNA complexes by X-

ray crystallography and nuclear magnetic resonance

spectroscopy. Alternatively, computational protein–

RNA docking provides another way to build the 3D

structure of a protein–RNA complex if the unbound

protein and RNA structures are available.

In the past decade, a number of methods have

been developed to identify protein–RNA binding sites

experimentally1 and computationally.2–5 That bind-

ing site information could be used to improve pro-

tein–RNA docking. However, there are still very few

methods for protein–RNA docking and scoring. In

2011, Setny et al.6 developed a coarse-grained force

field for protein–RNA docking, which only predicted

one case in the top 100 from seven unbound protein–

RNA cases. Also in 2011, Tuszynska et al.7 published

two knowledge-based scoring functions, which were

tested on eight unbound-unbound protein–RNA dock-

ing decoys made by the GRAMM program. The

results showed that these potentials recognized near-

native structures for four out of eight cases. At the

same time, Li et al.8 proposed a residue-nucleotide

propensity potential, in which they found the second-

ary structure information for RNA is a key factor to

the predictive power of their pair potentials. It is

expected that more and more reliable docking and

scoring methods will be developed in the near future.
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In order to measure and compare the perform-

ance of different methods for predicting protein–

RNA complex structures, two protein–RNA docking

benchmarks were released recently.9,10 Although a

series of binding affinity benchmarks11,12 are used

for the development of the scoring functions in pro-

tein–ligand and protein–protein docking simulation,

binding affinity benchmark for protein–RNA scoring

functions is still lacking. Based on protein–protein

binding dataset, protein–protein kinetic rate con-

stants were well studied and a number of correla-

tions with logkon were identified.13 They found that

the most important correlated factor was the energy

difference between the unbound and bound confor-

mational state, which was calculated by some either

coarse grained or atomistic pair potentials. Since

lack of a binding affinity dataset of protein–RNA

has become a bottleneck for developing more accu-

rate scoring functions, we have decided to collect the

experimentally measured binding affinity data from

the scientific literature. Only protein–RNA com-

plexes with experimentally determined structures

were considered in this work. This RNA–protein

binding benchmark will benefit the research related

to protein–RNA docking and binding mechanism.

Results and Discussion

Binding affinities dataset and statistical
potentials

We have assembled a protein–RNA binding affinity

dataset that includes the experimentally character-

ized equilibrium dissociation constants (Kd) of 73

protein–RNA complexes along with the methods

used to determine them. It also includes the experi-

mental conditions (pH and temperature) at which

the Kd values were measured. The binding Gibbs

free energy calculated with the Kd. can provide us a

factor to access the scoring functions in protein-RNA

docking. Two medium-resolution knowledge-based

potentials (QUASI-RNP and DARS-RNP) for scoring

protein–RNA models have been proposed.7 Both sta-

tistical potentials comprise four terms: a distance-

dependent energy term, an angular-dependent

energy term, a site-dependent energy term, and a

penalty for steric clashes. Equal weights to all four

terms are assigned. We have tested the 73 protein–

RNA complexes native structures with DARS-RNP,

QUASI-RNP potentials and our group’s newly devel-

oped scoring function DECK-RP14 (Fig. 1). All corre-

lation coefficients between the score and observed

binding free energy (calculated for scatter plots from

Fig. 1) are low (DARS-RNP: R 5 0.20, QUASI: R 5

0.21, DECK-RP: R 5 20.12). The result shows the

scores were not directly correlated with observed

binding free energies; hence, we need to develop bet-

ter scoring function for protein–RNA docking. Based

on our protein–RNA binding dataset, these weights

may be optimized to improve the accuracy of the

scoring functions.

Bind or not bind?

Given a protein–RNA binding dataset, it is possible

to develop a model to predict protein–RNA binding

affinity by using a large set of molecular descriptors.

Similar approach has been successfully implemented

on protein–protein binding affinity prediction.15 If

protein–RNA binding free energy model is con-

structed, we would assess whether the protein could

bind RNA. It would open a new way to do structure-

based design of protein–RNA interactions by screen-

ing PDB database. Recently, two groups reported

that they successfully designed protein–RNA inter-

action16,17 for PUF proteins by using a yeast three-

hybrid system. Due to many potential biological and

medical applications, the design of protein–RNA

interaction by a computational method will be

explored in the future.

Binding affinities dataset and docking

benchmark

Three protein–RNA docking benchmarks were

released recently.9,10,18 Benchmark(I)9 includes 36

unbound-bound cases and 9 unbound-unbound cases.

Benchmark(II)10 is composed of 71 cases, which

includes an additional set of 35 cases by homology

modeling. These two benchmarks would contribute

to the better understanding and prediction of pro-

tein–RNA interactions. The third dataset18 of 72 tar-

gets consists of 52 unbound–unbound test

complexes, and 20 unbound–bound test complexes.

The dataset constructed by us is a binding affinity

dataset. Compared with benchmark (II), there are

10 cases in our dataset that are contained in the

experiment set, eight cases contained in the homol-

ogy modeling set. With the development of technol-

ogy, more binding affinity values for protein–RNA

complexes will become available. It will help

improve the veracity and reliability of protein–RNA

docking assessing.

Methods

Dataset of protein–RNA complexes
There were 1495 protein–RNA complex structures

that have been deposited into the Protein Database

Bank (PDB) on September 16, 2013. First, we built

a protein–RNA complex structure set. Those cases

that do not meet the following two conditions were

filtered out: (1) The RNA sequence has at least five

nucleotides, the protein sequence has at least twenty

amino acids; (2) The structure of protein–RNA com-

plexes are determined by X-ray crystallography or

NMR. And the three-dimensional structures solved

from X-ray crystallography should have a resolution

better than 3 Å. Larger Ribosome complex and virus

Yang et al. PROTEIN SCIENCE VOL 22:1808—1811 1809



structure were removed. This results in 554 protein–

RNA biological complexes in our structure dataset.

The protein sequences in these complexes with at

least 70% sequence identity were assigned into 261

clusters according to the weekly clustering of protein

chains in the PDB by BLASTClust (ftp://resour-

ces.rcsb.org/sequence/clusters/bc-70.out). One com-

plex in each cluster is kept. Second, we search the

scientific literature for binding affinity data for

those protein–RNA complexes selected above. There

is a primary reference, which can be retrieved from

the corresponding PDB file, associated with every

structure deposited in PDB. Therefore, we can scan

the reference to search for the complex’s binding

affinity. If its authors have measured the binding

affinity for the complex, it is expected that the bind-

ing affinity would be released in the original article.

The value appears in publications in the form of

either equilibrium constants (Kd or Ka 5 1/Kd), or as

the ratio Kd 5 kd/ka of rate constants measured from

surface plasmon resonance and other kinetic meas-

urements.12 We can also obtain the binding affinity

information through citations in the primary refer-

ence. If the binding affinity was not available in

these publications mentioned above, we search for

the values in Google Scholar with some key words

such as the component molecules of the complex,

“binding affinity/Kd” and one of the main methods

used to measure the protein–RNA binding affinity. If

one of the 261 complexes does not have available

binding affinity, in order to expand the dataset, we

would continue to search for binding affinity for

another complex which has at least 70% protein

sequence identity to replace this one. Finally, we col-

lected Kd values for 73 complexes (Supporting Infor-

mation Dataset) and compiled a binding affinity

dataset along with reference citations, molecules

description, as well as the experimental conditions

Figure 1. The correlation between score (respectively tested in three different scoring functions: DARS-RNP, QUASI-RNP,

DECK-RP) and observed binding free energy. Their correlation coefficients obtained with MATLAB are low (DARS-RNP:

R 5 0.20, QUASI: R 5 0.21, DECK-RP: R 5 20.12) [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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(pH and temperature). The dissociation Gibbs free

energy was calculated (some cases do not have a

stated temperature, we adopt room temperature in

the calculation) by the equation12:

DG�52RTlnKd

To maximize their reliability, we have double

checked the 73 values. The reference citations were

presented for the convenience of rechecking and

obtaining further details. With the development of

technology, more binding affinity values for protein–

RNA complex will become available. We are commit-

ted to update the database yearly so as to enhance

its usefulness to both improving and developing the

docking scoring functions.
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