
Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 9389-9392, September 1996
Applied Mathematics

An O(N log N) algorithm for shape modeling
(Hamilton-Jacobi equation/Eikonal equation/shape recovery/medical image analysis/level sets)

R. MALLADI AND J. A. SETHIAN
Lawrence Berkeley National Laboratory and Department of Mathematics, University of California, Berkeley, CA 94720

Communicated by Alexandre J. Chorin, University of California, Berkeley, CA, June 3, 1996 (received for review January 24, 1996)

ABSTRACT We present a shape-recovery technique in
two dimensions and three dimensions with specific applica-
tions in modeling anatomical shapes from medical images.
This algorithm models extremely corrugated structures like
the brain, is topologically adaptable, and runs in O(N log N)
time, whereN is the total number of points in the domain. Our
technique is based on a level set shape-recovery scheme
recently introduced by the authors and the fast marching
method for computing solutions to static Hamilton-Jacobi
equations.

In many medical applications such as cardiac boundary detec-
tion and tracking, tumor volume quantification, etc., accu-
rately extracting shapes in two dimensions and three dimen-
sions from medical images becomes an important task. These
shapes are implicitly present in noisy images and the idea is to
construct their boundary descriptions. Visualization and fur-
ther processing like volume computation is then possible. In
this paper, we present a fast shape modeling technique with
specific applications in medical image analysis.
One of the challenges in shape recovery is to account for

changes in topology as the shapes evolve. Malladi and col-
leagues (1, 2) have done this by modeling anatomical shapes as
propagating fronts moving under a curvature dependent speed
function (3). They adopted the level set formulation of inter-
face motion due to Osher and Sethian (4). The central idea
here is to represent a curve as the zero level set of a higher
dimensional function; the motion of the curve is then embed-
ded within the motion of the higher dimensional surface. As
shown in ref. 4, this approach offers several advantages. First,
although the higher dimensional function remains a function,
its zero level set can change topology and form sharp corners.
Second, a discrete grid can be used together with finite
differences to devise a numerical scheme to approximate the
solution. Third, intrinsic geometric quantities like normal and
curvature of the curve can be easily extracted from the higher
dimensional function. Finally, everything extends directly to
moving surfaces in three dimensions.
To isolate shapes from images, an artificial speed term has

been synthesized and applied to the front that causes it to stop
near object boundaries; see refs. 1 and 2 for details. Subse-
quently, this work has been extended to three dimensions in
ref. 5; see refs. 6-8 for related efforts. In this paper, we solve
the shape modeling problem by using the fast marching
methods devised recently by Sethian (9, 10) and extended to a
wide class of Hamilton-Jacobi equations in ref. 11. The
marching method is a numerical technique for solving the
Eikonal equation and results from combining upwind schemes
for viscosity solutions of Hamilton-Jacobi equations, narrow-
band level set methods, and a min-heap data structure.

THE FAST MARCHING METHOD
We now briefly discuss the marching algorithm introduced in
ref. 9. Let r be the initial position of a hypersurface and let

F be its speed in the normal direction. In the level set
perspective, one views F as the zero level set of a higher
dimensional function q(x, y, z). Then, by chain rule, an
evolution equation for the moving hypersurface can be
produced (4), namely

it + F(x, y, z)IV'PI = 0. [1]

Consider the special case of a surface moving with speed
F(x, y, z) > 0. Now, let T(x, y, z) be the time at which the
surface crosses a given point (x, y, z). The function T(x, y, z)
then satisfies the equation

|VTIF = 1; [2]
this simply says that the gradient of arrival time is inversely
proportional to the speed of the surface. Broadly speaking,
there are two ways of approximating the position of the moving
surface: (i) iteration toward the solution by numerically ap-
proximating the derivatives in Eq. 1 or (ii) explicit construction
of the solution function T(x, y, z) from Eq. 2. Our marching
algorithm relies on the latter approach.
For the following discussion, we limit ourselves to a two-

dimensional problem. Using the correct "entropy" satisfying
(3, 4) approximation to the gradient, we are therefore looking
for a solution in the domain to the following equation:

[max(DJxT,0)2 + min(D/JT,0)2 + max(D7,YT,0)2
+ min(D, jYT,0)2]112 =1/Fj,j, [3]

where D- and D + are backward and forward difference
operators, respectively. Since the above equation is in essence
a quadratic equation for the value at each grid point, we can
iterate until convergence by solving the equation at each grid
point and selecting the largest possible value as the solution.
This is in accordance with obtaining the correct viscosity
solution.
The Algorithm. The key to constructing the fast algorithm

is the observation that the upwind difference structure of Eq.
3 means that information propagates from smaller values of
T to larger values. Hence, our algorithm rests on building a
solution to Eq. 3 outward from the smallest T value. Moti-
vated by the methods in refs. 2 and 12, we confine the
"building zone" to a narrow band around the front. The idea
is to sweep the front ahead in an upwind fashion by
considering a set of points in the narrow band around the
current front, and to march this narrow band forward. We
explain this algorithmically:
To illustrate, we imagine that we want to solve the Eikonal

equation on an M byM grid on the unit box [0, 1] x [0, 1] with
right-hand-side Fj,J > 0; furthermore, we are given an initial
set T = 0 along the top of the box.

1. Initialize
(i) Alive points: LetAlive be the set of all grid points at

which the value of T is fixed. In our example, Alive
= {(i, j) : i E {1, . . , M}, j = M}.

(ii) Narrow band points: Let NarrowBand be the set of
all grid points in the narrow band. For our example,

9389

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement" in
accordance with 18 U.S.C. §1734 solely to indicate this fact.



9390 Applied Mathematics: Malladi and Sethian

NarrowBand= {(i,j):iE{1,..,M},j =M- 1},
also set Ti,m- 1 = dy/Fi,j.

(iii) Far away points: Let FarAway be the set of all the
rest of the grid points {(i, j): j < M - 1}, set Ti,
= co for all points in FarAway.

2. Marching forwards
(i) Begin loop: Let (Omin, mrin) be the point in Narrow-

Band with the smallest value for T.
(ii) Add the point (imin, mrin) to Alive; remove it from

NarrowBand.
(iii) Tag as neighbors any points (imin - 1, min), (imin +

1, min), (imin, imin - 1), (imin, imin + 1) that are not
Alive; if the neighbor is in FarAway, remove it from
that set and add it to the NarrowBand set.

(iv) Recompute the values of T at all neighbors accord-
ing to Eq. 3, solving the quadratic equation given by
our scheme.

(v) Return to top of loop.
For more general initial conditions and for a proof that the

above algorithm produces a viable solution, see ref. 11.
The Min-Heap Data Structure. An efficient version of the

above technique relies on a fast way of locating the grid point
in the narrow band with the smallest value for T. We use a
variation on a heap algorithm [see Segdewick (13)] with back
pointers to store the T values.

Specifically, we use a min-heap data structure. In an abstract
sense, a min-heap is a "complete binary tree" with a property
that the value at any given node is less than or equal to the

1.1 1 (X.zNa = 0.001 bIb')j 1 v..z) = 0.035)

Ic) II'X.%.zI= 0.07)1

l' )Ixs. .zl =0.15)I Ifl iT vIaj = 0.75)

FIG. 1. Evolutionary sequence showing the brain reconstruction.

values at its children. In practice, it is more efficient to
represent a heap sequentially as an array by storing a node at
location k and its children at locations 2k and 2k + 1. From
this definition, the parent of a given node at k is located at
Lk/2J. Therefore, the root that contains the smallest element is
stored at location k = 1 in the array. Finding the parent or
children of a given element are simple array accesses that take
0(1) time.
We store the values of T together with the indices that give

their location in the grid structure. Our marching algorithm
works by first looking for the smallest element in the
NarrowBand; this FindSmallest operation involves deleting
the root and one sweep of DownHeap to ensure that the
remaining elements satisfy the heap property. The algorithm
proceeds by tagging the neighboring points that are notAlive.
The FarAway neighbors are added to the heap using an Insert
operation and values at the remaining points are updated
using Eq. 3. Insert works by increasing the heap size by one
and trickling the new element upward to its correct location
using an UpHeap operation. Lastly, to ensure that the
updated T values do not violate the heap property, we need
to perform a UpHeap operation starting at that location and
proceeding up the tree.
The DownHeap and UpHeap operations (in the worst

case) carry an element all the way from root to bottom or vice
versa. Therefore, this takes 0(log M) time, assuming there
are M elements in the heap. It is important to note that the
heap that is a complete binary tree is always guaranteed to

(Ij)Viell # I (I 'ie" #2

ic) View #3 .cl Vie) # 4

(el Slice If) Superposition

FIG. 2. Cortical structure rendered from different perspectives. (e
and f ) A slice of the surface on the corresponding image.

Proc. Natl. Acad. Sci. USA 93 (1996)

(dcl I I' X.v.Z} = 1}. 1 2.9}



Proc. Natl. Acad. Sci. USA 93 (1996) 9391

remain balanced. This leaves us with the operation of
searching for the NarrowBand neighbors of the smallest
element in the heap. We make this 0(1) in time by main-
taining back pointers from the grid to the heap array.
Without the back pointers, the above search takes O(M) in
the worst case.

THREE-DIMENSIONAL SHAPE MODELING
Given a noisy image function I(x,y,z), the objective in shape
modeling is to extract mathematical descriptions of certain
anatomical shapes contained in it. This can be done by applying
a special image-based speed function k, > 0, which controls
the outward propagation of an initial surface (an interior point
in this case) such that the interface stops in the vicinity of shape
boundaries. Mathematically, this procedure corresponds to
solving a static Hamilton-Jacobi equation (see Eq. 1) that,
when recast in the arrival time framework, is

IVTI= . [4]

The speed function defined as

F(x, y, z) = k1(x, y, z) = e-a1vGa*I(,y,z)1 a > 0, [5]

has values very close to zero near high image gradients, i.e.,
possible edges. False gradients due to noise can be avoided
by applying a Gaussian smoothing filter or more sophisti-
cated edge-preserving smoothing schemes (see refs. 5 and
14-16). With this model, the surface does not stop at the
shape boundary unless the speed values are very close to
zero. The definition in Eq. 5 ensures that the speed F goes
to zero rapidly and minimizes the "over shoot" effect. To be
further accurate, we now follow the ideas in refs. 1, 2, and 5
and outline how additional constraints can be imposed on the
surface motion.

First, note that the shape model is represented implicitly as
the zero level set of a function qi(x,y,z) defined in the image
domain. Let the surface move under a simple speed law F =
1 - EH, £ > 0, where H is the mean curvature given by the
following expression:

Table 1. Timing for marching to T = 0.75; Sun SPARC 1000

Time to load Time to propagate
Grid size speed file surface Total time

256 x 256 x 124 8.61 sec 74.92 sec 83.53 sec

which is realized as the gradient of a potential field

P(x, y, z) = -IVG,*I(x, y, z)I,[
attracts the surface to the edges in the image; coefficient ,3
controls the strength of this attraction.

In this work, we adopt the following two stage approach
when necessary. We first construct the arrival time function
using our marching algorithm. If a more accurate recon-
struction is desired, we treat the final T(x, y, z) function as
an initial condition to our full model. In other words, we
solve Eq. 7 for a few time steps using explicit finite differ-
encing with t+(x, y, z; t = 0) = T(x, y, z). This too can be done
very efficiently in the narrow band framework. Finally,
the above initial condition is a valid one since the surface
of interest is a particular level set of the final time func-
tion T.

RESULTS

In this section, we consider the problem of reconstructing the
entire cortical structure of the human brain from a dense
MRI data set. The data is given as intensity values on a 256 x
256 x 124 grid. We start by defining "seed" points in the
domain. The value of T at these points is set to zero and the
initial heap is constructed from their neighbors. The fast
marching algorithm in three dimensions is then used to
march ahead to fill the grid with time values according to Eq.
2. We visualize various stages of our reconstruction by
rendering particular level surfaces of the final time function
T(x, y, z). These stages are shown in Fig. 1. The corrugated
structure shown in Fig. lf is our final shape. In Fig. 2 a-d,
we render the same { T(x, y, z) = 0.75 } surface from different
perspectives. Finally, in Fig. 2e, we slice the surface parallel
to thexy plane and superimpose the resulting contours on the
corresponding image (see Fig. 2f). The timings for various

H_lxx(q; + q,) + qltpx(+ qd) + Z+q,) - 2 - 2 - 2 [6]H-~~~~~~~~~~q2+ 2+4z)/

The driving force that molds the initial surface into desired
anatomical shapes comes from two image-based terms. The
first term is similar to Eq. 5 and the second term attracts the
surface towards the object boundaries; the latter term has a
stabilizing effect especially when there is a large variation in
the image gradient value. Specifically, the equation of motion
is

qt + k1(l - sH)I'VqIJ - PVP Vq = 0. [7]

where,

k= 1 + IVG,*I(x,y,z)l [8]

The second term VP V4 denotes the projection of an (attrac-
tive) force vector on the surface normal. This force

stages of calculation on a Sun SPARC 1000 machine are
shown in Table 1.

This work was supported in part by the Applied Mathematical
Sciences Subprogram of the Office of Energy Research, U.S. Depart-
ment of Energy under Contract DE-AC03-76SD00098 and by the
National Science Foundation Advanced Research Projects Agency
under Grant DMS-8919074.

1. Malladi, R., Sethian, J. A. & Vemuri, B. C. (1994) Lect. Notes
Comput. Sci. 800, 3-13.

2. Malladi, R., Sethian, J. A. & Vemuri, B. C. (1995) IEEE Trans.
Pattern Analysis Machine Intell. 17, 158-175.

3. Sethian, J. A. (1985) Commun. Math. Phys. 101, 487-499.
4. Osher, S. & Sethian, J. A. (1988) J. Comput. Phys. 79, 12-49.
5. Malladi, R. & Sethian, J. A. (1996) in Proceedings of the Inter-

national Conference on Mathematics and Visualization, ed. Pol-
thier, K. (Springer, Berlin), in press.

A-plied Mathematics: Malladi and Sethianr-VF

[9]



9392 Applied Mathematics: Malladi and Sethian

6. Caselles, V., Catte, F., Coll, T. & Dibos, F. (1993) Numer. Math.
66, 1-32.

7. Caselles, V., Kimmel, R. & Sapiro, G. (1995) Proceedings of the
International Conference on Computer Vision (MIT Press, Cam-
bridge, MA), pp. 694-699.

8. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A. &
Yezzi, A. (1995) Proceedings of the International Conference on
Computer Vision (MIT Press, Cambridge, MA), pp. 810-815.

9. Sethian, J. A. (1996) Proc. Natl. Acad. Sci. USA 93, 1591-1595.
10. Sethian, J. A. (1995) Acta Numer., in press.

Proc. Natl. Acad. Sci. USA 93 (1996)

11. Adalsteinsson, D., Kimmel, R., Malladi, R. & Sethian, J. A.
(1996) SIAM J. Numer. Anal., in press.

12. Adalsteinsson, D. & Sethian, J. A. (1995) J. Comp. Phys. 118,
269-277.

13. Sedgewick, R. (1988)Algorithms (Addison-Wesley, Reading, MA).
14. Malladi, R. & Sethian, J. A. (1995) Proc. Natl. Acad. Sci. USA 92,

7046-7050.
15. Malladi, R. & Sethian, J. A. (1996) Graphics Models Image

Processing 58, 127-141.
16. Malladi, R. & Sethian, J. A. (1996) IEEE Trans. Image Processing,

in press.


