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Purpose: Optimal treatment planning for fractionated external beam radiation therapy requires
inputs from radiobiology based on recent thinking about the “five Rs” (repopulation, radiosensitivity,
reoxygenation, redistribution, and repair). The need is especially acute for the newer, often individ-
ualized, protocols made feasible by progress in image guided radiation therapy and dose conformity.
Current stochastic tumor control probability (TCP) models incorporating tumor repopulation effects
consider “stem-like cancer cells” (SLCC) to be independent, but the authors here propose that
SLCC-SLCC interactions may be significant. The authors present a new stochastic TCP model for
repopulating SLCC interacting within microenvironmental niches. Our approach is meant mainly
for comparing similar protocols. It aims at practical generalizations of previous mathematical
models.
Methods: The authors consider protocols with complete sublethal damage repair between fractions.
The authors use customized open-source software and recent mathematical approaches from stochas-
tic process theory for calculating the time-dependent SLCC number and thereby estimating SLCC
eradication probabilities. As specific numerical examples, the authors consider predicted TCP results
for a 2 Gy per fraction, 60 Gy protocol compared to 64 Gy protocols involving early or late boosts in
a limited volume to some fractions.
Results: In sample calculations with linear quadratic parameters α = 0.3 per Gy, α/β = 10 Gy,
boosting is predicted to raise TCP from a dismal 14.5% observed in some older protocols for advanced
NSCLC to above 70%. This prediction is robust as regards: (a) the assumed values of parameters other
than α and (b) the choice of models for intraniche SLCC-SLCC interactions. However, α = 0.03 per
Gy leads to a prediction of almost no improvement when boosting.
Conclusions: The predicted efficacy of moderate boosts depends sensitively on α. Presumably, the
larger values of α are the ones appropriate for individualized treatment protocols, with the smaller val-
ues relevant only to protocols for a heterogeneous patient population. On that assumption, boosting is
predicted to be highly effective. Front boosting, apart from practical advantages and a possible advan-
tage as regards iatrogenic second cancers, also probably gives a slightly higher TCP than back boost-
ing. If the total number of SLCC at the start of treatment can be measured even roughly, it will provide
a highly sensitive way of discriminating between various models and parameter choices. Updated
mathematical methods for calculating repopulation allow credible generalizations of earlier results.
© 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1118/1.4829495]
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1. INTRODUCTION

1.A. Current treatment planning

Modern technological developments for fractionated exter-
nal beam radiotherapy include IMRT (intensity modulated
radiation therapy), IGRT (image guided radiation therapy),
and SBRT (stereotactic body radiation therapy).1 Such tech-
niques allow planning and efficient delivery of very conformal
treatments as well as escalated doses to appropriate volumes,

and therefore offer new versatility in treatment strategies.
Nonhomogeneous dose distributions and nonuniform dose
fractionations are becoming more common. Due to the wide
spectrum of emerging protocols and to the substantial time-
lag between treatment and the availability of data on out-
comes, radiotherapy treatment planning needs ongoing new
inputs from radiobiology. Inputs on tumor control probability
(TCP) are based on modern versions (reviewed in Ref. 2) of
the “five Rs” of radiobiology, including repopulation.
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1.B. TCP and stochastic tumor repopulation
during radiotherapy

It has been known since the seminal research of Tucker
and co-workers3–5 that tumor repopulation during treatment
must often be considered in quantitative estimates of TCP,
may have to be estimated stochastically, and should then
take into account non-Poisson statistics of malignant cell
numbers. Stochastic estimates can take eradication of cells
into account more systematically than can deterministic ones.
Prospective estimates of repopulation are especially important
for novel protocols. Reviews of the mathematical, computa-
tional, and translational aspects of stochastic and determinis-
tic TCP estimates taking into account repopulation include.6–8

Repopulation models indirectly incorporate some aspects of
reoxygenation (reviewed in Ref. 9).

Stochastic estimates involve a mathematical/
computational approach to repopulation that uses “stochastic
processes” (also known as “random processes”); roughly
speaking a stochastic process is a time-dependent variable
that is subject to random fluctuations;10 in stochastic TCP
analyses it can be specified by a time-dependent proba-
bility distribution function for malignant cell number. A
stochastic-exponential process applicable to proliferating,
noninteracting cells (the Feller-Arley birth-death process
with time dependent, state-independent per-cell rates, as char-
acterized, e.g., in Ref. 11, Example 4.1) has been studied for
more than 70 years.12 It has been applied, as an extension of
the previously standard deterministic-exponential equation,
to TCP estimates.3, 6 It leads to a front-loading theorem:13

other things being equal, giving dose earlier increases the
TCP.

1.C. Interactions of stem-like cancer cells (SLCC)

For TCP estimates the relevant repopulating tumor cells in
a heterogeneous tumor are those that can individually regrow
the entire tumor population when in the appropriate microen-
vironment. Such cells are sometimes called stem-like cancer
cells;14 we use SLCC for short in what follows. However, in
this context no additional “stem” properties are implied15 and
various other terms have been used (e.g., “clonogens”8, 16).

Previous stochastic TCP models have assumed indepen-
dent, i.e., noninteracting, SLCC. However, cell-cell interac-
tions are ubiquitous in vivo,17 and there is increasing evidence
that tumors include microenvironmental niches within which
important SLCC-SLCC interactions occur.18 A niche can be
an actual biological structure, such as a crypt in the case of
colon cancer;19 or be a locale for radio-resistant clones;20 or
it may merely approximate low cell mobility with dominant
cell-cell interactions localized.

1.D. Preview

This paper develops a new radiobiologically based
formalism for analyzing repopulation of interacting SLCC.
The formalism emphasizes subpopulations of SLCC, each
within its own niche,21 rather than individual SLCC. The

niche model neglects

inter-niche interactions

FIG. 1. Niches and intercellular interactions. SLCC are shown as small red
ellipses separated into two different niches (yellow circles).

niches are visualized as comparatively distant from each
other. Generalizing the stochastic-exponential model de-
scribed above and its deterministic counterpart, all kinds of
LSCC-LSCC interactions are allowed, though only among
SLCC within the same niche (Fig. 1).

Interactions within one niche are comparatively easy to
model because the number of SLCC per niche is compara-
tively small. Interactions among SLCC in different niches are
assumed negligible.

The following ten comments preview motivations, charac-
teristic aspects, and limitations of our approach.

1. The niche model is here illustrated with mathemati-
cal examples motivated by our recent and prospective
SBRT dose boosts to the gross tumor volume in stan-
dard NSCLC (non-small-cell lung cancer) treatments.
Such boosts were found to be feasible, in agreement
with Ref. 22.

2. The main example of the new formalism is summa-
rized in Table I. It tracks intraniche SLCC prolifera-
tion between dose-fractions using a stochastic-logistic
process, as defined and motivated in example 4.1 of
Ref. 11.

3. This process is a probabilistic version of the
deterministic-logistic equation. As reviewed, e.g., in
Ref. 23 the deterministic-logistic equation: (a) incor-
porates intercellular interactions such as competition
for limited microenvironmental resources by assum-
ing that per-cell net birth rate decreases with increas-
ing cell number; (b) implies sigmoid (“S-shaped”)
repopulation curves that approach a maximum value
(the “carrying capacity”) at large times; (c) has
simple explicit solutions; and (d) is very widely
applicable. Equation S1 of the supplementary mate-
rial reviews this and two other relevant deterministic
equations using a notation corresponding to that in our
main example.44

4. For reasons argued in Refs. 24 and 25 and to facil-
itate comparisons with standard results in the liter-
ature, the linear-quadratic (LQ) equation is used for
average SLCC survival at each dose fraction. General-
izations are discussed in Sec. S2 of the supplemental
material.44

5. The main example uses specific parameter values,
given in Table I and motivated below that table. To
check robustness of the resulting conclusions 14 aux-
iliary examples were considered. Ten of these merely
alter the parameters of the main example, e.g., use
α = 0.03 Gy−1 instead of α = 0.3 Gy−1, while four re-
late to robustness relative to change in model. Twelve
are stochastic and two are deterministic.
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TABLE I. Notation, descriptions, default values, and pointers to definitions or explanations.

Symbol Descriptive phrase Default value More details

dk, D Dose in the kth fraction, total dose D = �kdk dk = 2 Gy, D = 60 Gy Eqs. (1) and (2)
K Number of dose fractions 30 Fig. 2
Tk Time t of the kth fraction, with T1 = 0. 30 weekdays Fig. 2
t = 0− Time just before the first fraction Slightly less than 0 Fig. 2
t = TK

+ Time just after the last fraction 39 days Fig. 2
t = TK+1 End of recovery period 62 days Fig. 2
α Linear quadratic (LQ) parameters 0.3 Gy−1 Eqs. (1) and (2)
β α/(10 Gy) Eqs. (1) and (2)
S(k) Average clonogenic cell survival for the kth fraction Calculated with LQ Eqs. (1) and (2)
J(t) Number of SLCC per niche at time t, a stochastic process

with non-negative integer values
Stochastic-logistic with
default parameters

Eq. (3)

J(0−) J(t) just before treatment starts Binomially distributed Eq. (4)
J Average of J(0−) 10 SLCC per niche Below Eq. (4)
N(t) Number of nonempty SLCC niches, a stochastic process Calculated Above Eq. (5)
N Average of N(t) just before treatment starts Calculated Eq. (5) and below
n0 Average initial SLCC number: n0 = NJ Calculated Below Eq. (5)
C Carrying capacity (maximum number of SLCC per niche) 20 SLCC
b(j) Birth rate when a niche contains j SLCC Calculated from m, σ , and C Preliminary comments above,
d(j) “Endogenous” death ratea when a niche contains j SLCC
m b(1)-d(1) “Malthusian” rate ln(2)/(3 days)
σ d/b ratio 0.5

Subsection 1.E,

Eq. (4)

aApplies between fractions, and also after the last fraction before recovery ends.

6. The number of SLCC within one niche is not assumed
to follow a Poisson distribution, but the number of
SLCC-occupied niches per patient just before treat-
ment starts is. A corresponding mathematical tech-
nique is called “poissonization” (reviewed in Ref. 26)
and has become common in probability theory because
it simplifies many calculations and/or adds to the re-
alism. The Poisson assumption on initial niches per
patient is at least as reasonable as an alternative as-
sumption, often made (explicitly or implicitly) that,
after stratifying for age, gender, nationality, and can-
cer stage, all grouped patients have exactly the same
number of SLCC before treatment starts.

7. Niche time evolution obeys “IID” (independent, iden-
tically distributed) assumptions. For example, it is as-
sumed that the probability distribution function for the
number of SLCC per niche just before radiation starts
is the same for all niches. The IID assumption does not
imply that all the SLCC niches initially have the same
number of SLCC, just the same probabilities. Also,
two niches that happen to have the same number of
SLCC at some given time need not always continue to
have the same number, but the SLCC in both niches
have the same birth and death rates at that particular
time. The IID assumption for niches is more general
than the corresponding assumption usually made for
individual SLCC because SLCC within a niche need
not be independent.

8. When giving illustrative numerical results, we will,
as is often done, take TCP as the probability that all
SLCC have been eradicated (due to either radiation
or stochastic fluctuations) at a specified time; gener-

alizations are mentioned in item 10. For our stochastic
niche models we will take the time as 23 days (a week-
end plus 3 weeks) after the end of therapy. Here the
specific number 23 days is chosen for three main rea-
sons: (a) it is short enough that long-term processes8, 27

such as microscopic tumor dormancy28, 29 have not yet
had time to set in; (b) it is long enough that for our
stochastic sigmoid niche calculations it gives the same
numerical TCP (to within less than 0.1%) as does arti-
ficially extending the calculations to periods too long
to be within their domain of validity; and (c) it corre-
sponds roughly to an actual recovery period observed
clinically.

9. Our approach is meant mainly for comparing similar
but somewhat different protocols.

10. It uses a number of intentional oversimplifications and
has a number of limitations, though not, we would ar-
gue, more than similar approaches. Examples of limi-
tations include the following: (a) the TCP criterion just
described above glosses over various possibilities, e.g.,
complete remission without SLCC eradication, and it
circumvents modeling of long-term processes; (b) we
do not here attempt to give novel mathematical results
on the other four Rs, on early or late deterministic
normal tissue complications, or on iatrogenic second
cancers. These aspects will be briefly discussed, but
without quantifications.

1.E. Explanations of and motivations for the default
parameter values in Table I

The 60 Gy protocol is one that was used30, 31 in NSCLC
treatments that gave a (dismal) TCP of 14.5%. The LQ
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parameters are consensus values for an individual patient
(e.g., Ref. 32). Smaller values of α are used in calculations
intended to model the shape of the TCP vs dose curve near
TCP50 for a heterogeneous patient population33 so two of our
auxiliary examples will use α = 0.03 per Gy instead. The de-
fault value of the (one-cell) Malthusian rate m corresponds to
a commonly adopted minimum doubling time of 3 days (e.g.,
Ref. 34). The binomial distribution for J(t) before treatment
starts, the value J = 10, and the value C = 20 of the car-
rying capacity are merely illustrative; several auxiliary mod-
els will be used to estimate the sensitivity of the conclu-
sions to varying these values. Finally, the biological motiva-
tion for assuming a substantial default endogenous death rate
(σ = 0.5) is the observed high cell loss in pulmonary tumors
(e.g., Refs. 35 and 36).

The parameter σ is a quantity with no real analogue in de-
terministic models. It can be interpreted as follows:37 if net
endogenous birth rate b-d is fixed, σ = 1 corresponds to a
highly stochastic situation such as neutral drift for SLCC pop-
ulation number between fractions, while σ = 0 usually gives
results much closer to a corresponding deterministic model
with b-d as growth rate. Four of our auxiliary examples will
explore the effects of changing σ compared to its default
value 0.5.

2. METHODS

2.A. Fractionated radiotherapy

We consider throughout a multiweek protocol of K dose
fractions, administered at times T1 = 0, T2, . . . , TK so far apart
that complete sublethal damage repair occurs between frac-
tions. The respective doses, which can be different for differ-
ent fractions, are denoted by dk and the total dose is denoted
by D = ∑K

k=1 dk . For example, Fig. 2 shows a protocol with
front boosting of dose.

During therapy, SLCC are killed by radiation but also re-
populate. On average the SLCC number per niche decreases
markedly, as indicated. Most SLCC niches will be cleared
of SLCC during treatment, indicated here by omitting such
“eradicated” niches. If all niches are eradicated, the tumor
is controlled. Otherwise, remaining SLCC niches may die
out accidentally after therapy during a recovery period. Dur-

therapy long-term

T1=0    ...    Tk    ...   TK=39     ...     TK+1=62
recovery

Time in Days

?

FIG. 2. Therapy timing. Schematic figure shows developments in one pa-
tient’s tumor volume (large ellipses, five different snapshots shown). Before
therapy starts there are many SLCC (red dots), grouped into niches (yel-
low circles). Shown is a protocol where 30 weekday fractions are given: two
boosted fractions followed by 28 normal ones.

ing recovery there could also be an increase in the number
of SLCC per niche, as shown. If some SLCC remain, the
outcome during the following months and years (indicated as
“long term”) could be recurrence, but could also be differ-
ent, e.g., formation of tumors that are dormant, microscopic,
and thus asymptomatic.28, 29 Long-term processes are not
analyzed in this paper.

We define S(k) as the LQ cell survival probability for the
kth fraction:

S(k) = exp
[−αdk − βd2

k

]
, α > 0, β ≥ 0. (1)

If there are j SLCC present just before the kth fraction the
probability of having i SLCC present just after is thus

Binomial[j, i, S(k)] = j ! [S(k)]i [1 − S(k)]j−i

i!(j − i)!
,

(i, j = 0, 1, ..., C). (2)

We can and shall regard this expression as a square matrix
with rows labeled by i and columns labeled by j. It is a
“stochastic” and “triangular” matrix (i.e., each row sum is 1
and the (i,j) entry is 0 if i > j).

2.B. Customized computer programs

Subsection 2.C describes calculations for our main exam-
ple. Those for the 14 auxiliary examples were similar. Com-
puter calculations used the R language. Section S1 of the sup-
plementary material gives open source R scripts which can be
used to reproduce the main calculations.44

2.C. Time evolution of SLCC

For repopulation between fractions or after treatment
stops, the assumptions stated and motivated in the Introduc-
tion imply the following for the main example, i.e., for the
stochastic-logistic process with the default parameter values
in Table I.

(a) When j SLCC are present in a niche, the endogenous
birth b and death d rates are

b(j ) = m(C − j )j

(1 − σ )(C − 1)
and d(j ) = σb(j ). (3)

(b) The probability distribution of SLCC number in one
niche just before treatment starts is

p(j ) = Binomial(C, j, 0.5) = C!(0.5)C

(C − j )!j !

sothat J ≡
∑C

1
jp(j ) = C/2. (4)

(c) The specific numerical values are C = 20, m = ln(2)/3
per day, and σ = 0.5.

Using Eqs. (3) and (4) we integrated 20 ordinary differ-
ential equations (ODE) numerically 20 times to construct a
21 × 21 repopulation matrix, which in the jth row gives the
probability distribution for ending one interfraction day with
i SLCC (i = 0, 1, . . . , 20) given that the day started with j
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SLCC. We then used this repopulation matrix, the survival
matrix given by Eq. (2), and a day-by-day iteration to find
the probability P[J(62) = 0] that a niche has no SLCC at the
end of the recovery period (Fig. 2). This matrix approach was
spot-checked with Monte Carlo simulations.

These calculations and poissonization allowed calculation
of (a) the average initial number of SLCC per patient (n0 in
Table I) from data on the default protocol and (b) the TCP for
boosted protocols, given this calculated n0.

3. RESULTS

3.A. Results on examples

Recall the following: (a) our “default” protocol is 30
weekday doses of 2 Gy each and by adjusting parameters is
assigned the 14.5% TCP found in some NSCLC studies;30, 31

(b) our “illustrative TCP criterion” is that there are no SLCC
at day 62 (Fig. 2); and (c) our “main” example of niche
dynamics during periods of no radiation is a stochastic-
logistic process with the default parameters in Table I.

In our main example, the basic Poisson color theorem,10

that a random thinning of a Poisson process is a Poisson
process, implied that under our assumptions the number of
nonempty malignant niches N(t) per patient remains Poisson
distributed at all times, in contrast to the number of SLCC per
niche. The mean of N(t) is the initial mean N times the prob-
ability that J(t) �= 0. Using our criterion that TCP is given by
the Poisson zero class thus gave

TCP = exp[−Nq], (5)

where q is the probability that a niche has at least 1 SLCC at
time TK+1.

Equation (5) applied to the default protocol gave
N ∼ 5.2 × 105. Using this N in 64 Gy front or back loaded
protocols gave row 1 in Table II, where Front2 and Back2 de-

note two fractions each boosted from 2 to 4 Gy at the very
start or very end, respectively.

Calculations for 14 auxiliary examples were similar. The
results are shown in rows 2–15 of Table II. For all sigmoid
stochastic examples, (i.e., all rows except 2, 7, and 14):

(a) the extinction probability at day 62, here used to cal-
culate TCP, was not substantially different from the
nominal large-time limit;

(b) a majority of the nonempty niches were completely
full after the 23 day recovery period.

Section S1 of the supplementary material gives open-
source R scripts for, and intuitive interpretations of, Table II.44

3.B. More detailed results on time dependence

In all 13 stochastic examples, the probability distribu-
tion of SLCC per niche differed strongly from a binomial
or Poisson distribution even after <10 dose fractions—for
example, the surviving fraction was much smaller than for a
Poisson distribution of the same mean.

It was found that the niche model can give fully detailed
time-dependent results. As one specific example, consider the
following procedure for estimating with any of the stochas-
tic examples the probability that, say, a patient has exactly
M niches that contain exactly j SLCC at a particular time
<62 days. By the Poisson color theorem this probability is

(Np)M exp(−Np)/M!. (6)

Here p is the probability that a niche has exactly j SLCC at the
given time, calculated from the niche dynamics as described
in Sec. 2.

It was also found that the special case where each niche
starts out with exactly one cell and the niche-dynamics is
stochastic-exponential gives stochastic-exponential dynam-

TABLE II. Calculated TCP and calculated initial SLCC number n0.

Protocol or number

Model Default Front2 Back2 n0/1000

1 Main: default parameter values in Table I; stochastic-logistic 14.5% 72.8% 70.7% 5207a

2 Deterministic-exponentialb 14.5 75.3 75.3 566
3 Main but σ = 0.9 14.5 73.3 72.0 194 500
4 Main but σ = 0 14.5 72.7 70.3 1650
5 Main but σ state dependent: d(j)/b(j) = 0.5 ± 0.05× (j − 10) 14.5 71.2 70.6 2990
6 14.5 76.6 74.9 8 331 052
7 Main but deterministic 14.5 72.2 75.3 681
8 Main but C = 200, J = 100 14.5 72.3 69.6 2170
9 Main but J = 20 14.5 70.8 70.7 1475
10 Main but delayed repopulation 14.5 75.3 70.7 18 461
11 Main but m = ln(2)/(10 days) 14.5 74.7 74.0 687 739
12 Main but α = 0.03, β = α 14.5 15.2 14.9 0.034
13 Main but α = 0.03, β = α/10 14.5 15.2 14.8 0.020
14 Stochastic-exponentialb 14.5 75.3 69.4 1500
15 Stochastic-Gompertzb 14.5 71.3 71.7 20 600

aThat is, n0 = JN = 10N ∼ 5 207 000.
bDefault parameters used.
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ics, corresponding to noninteracting SLCC, for the SLCC
population as whole. Section S3 of the supplementary ma-
terials analyzes some previously known TCP results3, 6, 13 ob-
tained assuming such dynamics, thereby supplying some ad-
ditional mathematical and intuitive explanations of the results
shown in Table II.

4. DISCUSSION

4.A. Review

We argued that biologically based prospective TCP
estimates, though difficult, are needed. A mathematical niche
model was given for estimating TCP. The calculations empha-
sized: (a) intercellular interactions during tumor repopulation,
(b) stochastic effects, (c) comparing similar individualized
protocols, and (d) illustrative numerical examples.

4.B. Effectiveness of moderate boosting

For α = 0.3 per Gy, Table II shows that modest boosts are
predicted to be very effective, with an extra 4 Gy improving
TCP from 14.5% to >70% irrespective of the particular model
or the other parameters. We suggest that the contrary result
predicted by assuming α = 0.03 per Gy (rows 12 and 13 in
Table II) is not applicable to individually designed protocols
for two reasons. First, these small values of α are estimated
not from the average of heterogeneous patient α values but as
a formal consequence of the effect of heterogeneity in flatten-
ing the observed TCP50 slope.33 Second, the small values of
initial SLCC number predicted, 20 for row 12 and 34 for row
13, are not plausible. For example, if, as has been suggested,38

>1% of all NSCLC cells are SLCC, then the initial number
of SLCC must be >1 000 000, rather than 34.

4.C. Additional comments on Table II

Table II shows that if n0 can be estimated from separate,
biological data it becomes a highly sensitive way to select
preferred models and/or appropriate parameters; for example,
when the assumed value of α is decreased by one log as above,
the resulting estimate of initial SLCC number decreases by
more than five logs. In the present context, n0 in Table II
serves as an indicator of how effectively SLCC are eradicated:
higher effectiveness means more initial SLCC must be present
to lead to 14.5% survival for the default protocol. Prolifera-
tion is predicted to have a marked effect on loss of control, as
exemplified, e.g., by the greater n0 in row 11 vs row 1. Thus
unplanned interruptions are, as usual, deprecated.

Front boosting is slightly favored over back boosting
in most models. A different consideration that favors front
boosting is that often treatment is preceded by a positron
emission tomography scan and the location of the gross tumor
volume is more accurately known at the start of the treatment
than during later fractions.

4.D. Parsimony

Equations (1), (3) and (4), and (5) imply that our main
model uses the following adjustable parameters: α, β, m,

σ , C, and n0 = JN. For comparison, the only previously
used stochastic model, the stochastic-exponential (Feller-
Arley) model, uses all of these except C. The deterministic-
exponential equation for the time evolution of the average
SLCC number, which has long been the mainstay of TCP
estimates, uses all but C and σ . Thus this paper introduces
one new parameter, C, to take intercellular interactions into
account, and, as in previous stochastic calculations, uses σ .
In some cases, such as colon cancer,39, 40 niches are identifi-
able and independent estimates for C are then available; σ is
observable, e.g., by observing net endogenous birth rate and
cell death. In Table II the TCP estimates change by ∼5% or
less when σ or C are varied, in contrast to the more sensitive
dependence of TCP on α and n0.

The insensitivity of our conclusion about boost
effectiveness to many parameter alterations (Table II,
rows 3–6 and 8–11) means that for this purpose the niche
model is no less parsimonious than the earlier models that
assume no SLCC-SLCC interactions. In one way it may
actually be more parsimonious. The calculations that showed
almost all surviving niches in the sigmoid models have been
filled up to the carrying capacity by the end of a 23 day
recovery period indicate that perhaps long-term primarily the
TCP and the carrying capacity are relevant, not additional
details on the SLCC per niche probabilities.

4.E. Some further limitations of the present approach

Results on TCP must always be considered in the context
of other relevant factors, such as the probability of late normal
tissue complications and the influence of other “Rs.” In this
paper this broader context was not quantified. For example,
redistribution, radiosensitivity, and especially reoxygenation
might be modified by radiation and therefore affect TCP de-
pendence on front vs back boosting. Such factors can depend
in a complex manner on dose timing, tumor type, and stage.
Scenarios increasing TCP and scenarios decreasing TCP can
both be envisaged.

In the related problem of radiogenic second cancers,27

increasing attention is now being paid to the long-term tumor
dynamics.21, 41 For TCP the corresponding question concerns
events during the years after treatment (Fig. 2), which deter-
mine whether surviving SLCC, if any, lead to recurrence or
remain controlled at sub-clinical levels, and also determine
the timing of any recurrences that do recur.8 The assump-
tion made here (and in most other TCP analyses) that every
SLCC must be eradicated by the end of the recovery period for
control to occur is an oversimplification;8, 21, 41 this particular
assumption tends to underestimate TCP. We did not attempt
postrecovery period analyses here because finding parsimo-
nious, well-motivated models for the long-time behavior is,
in our opinion, a difficult, separate task.27 For example, some
long-term processes increase niche number21 and then the ba-
sic Poisson color theorem cannot be used in corresponding
long-term calculations.

Another complication is that, apart from deterministic late
normal tissue effects, early boosts might modify the proba-
bility of radiation-induced, independent secondary cancers,
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where malignant or premalignant cell repopulation during
treatment can be important.27, 42 Stochastic calculations sug-
gest that early boosts are less dangerous in this respect than
late boosts.21, 43 The intuitive reason is that new malignant
clones initiated by early boosts can be eradicated by later frac-
tions, whereas those initiated by late boosts are more likely to
survive the entire treatment.

Finally, we here considered only individualized protocols,
not protocols designed for a cohort, where interpatient vari-
ations in basic radiobiological parameters are known to be
important to the TCP. For the latter the predictions of drasti-
cally improved TCP for moderate boosts are overoptimistic,
as discussed above.

5. CONCLUSIONS

The application of our results to full treatment planning
protocols, which attempt to consider all relevant major effects,
thus remains problematical. But we would argue:

� Prospective, biologically motivated calculations that
produce numerical TCP estimates are important, es-
pecially for designing model-assisted, physician con-
trolled, individualized protocols.

� The niche model can give such estimates using a more
general, at least equally practical, and at least equally
credible approach compared to older models.
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