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Purpose: Performing lobe-based quantitative analysis of the lung in computed tomography (CT)
scans can assist in efforts to better characterize complex diseases such as chronic obstructive pul-
monary disease (COPD). While airways and vessels can help to indicate the location of lobe bound-
aries, segmentations of these structures are not always available, so methods to define the lobes in the
absence of these structures are desirable.
Methods: The authors present a fully automatic lung lobe segmentation algorithm that is effective in
volumetric inspiratory and expiratory computed tomography (CT) datasets. The authors rely on ridge
surface image features indicating fissure locations and a novel approach to modeling shape variation
in the surfaces defining the lobe boundaries. The authors employ a particle system that efficiently
samples ridge surfaces in the image domain and provides a set of candidate fissure locations based on
the Hessian matrix. Following this, lobe boundary shape models generated from principal component
analysis (PCA) are fit to the particles data to discriminate between fissure and nonfissure candidates.
The resulting set of particle points are used to fit thin plate spline (TPS) interpolating surfaces to form
the final boundaries between the lung lobes.
Results: The authors tested algorithm performance on 50 inspiratory and 50 expiratory CT scans
taken from the COPDGene study. Results indicate that the authors’ algorithm performs comparably
to pulmonologist-generated lung lobe segmentations and can produce good results in cases with ac-
cessory fissures, incomplete fissures, advanced emphysema, and low dose acquisition protocols. Dice
scores indicate that only 29 out of 500 (5.85%) lobes showed Dice scores lower than 0.9. Two dif-
ferent approaches for evaluating lobe boundary surface discrepancies were applied and indicate that
algorithm boundary identification is most accurate in the vicinity of fissures detectable on CT.
Conclusions: The proposed algorithm is effective for lung lobe segmentation in absence of auxiliary
structures such as vessels and airways. The most challenging cases are those with mostly incomplete,
absent, or near-absent fissures and in cases with poorly revealed fissures due to high image noise.
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However, the authors observe good performance even in the majority of these cases. © 2013 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4828782]
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1. INTRODUCTION

Anatomically, the lungs consist of distinct lobes: the left lung
is divided into upper and lower lobes, while the right lung is
divided into upper, middle, and lower lobes. Each lobe has
airway, vascular, and lymphatic supplies that are more or less
independent of those supplies to other lobes. Fissures (left
oblique, right oblique, and right horizontal) define the most
salient boundary cues between the lobes and present as 3D
surfaces that have greater attenuation (i.e., are brighter) than
the surrounding lung parenchyma in CT datasets. However,
advanced emphysema and certain imaging protocols (low-
dose, and acquisitions at relaxed exhalation) can make it dif-
ficult to detect fissures, and so-called incomplete fissures are
not uncommon.1 In such instances, it is also possible to im-
plicitly define lobe boundaries by considering surfaces maxi-
mally distant from the dedicated airway and vessel trees sup-
plying each lobe.

Emphysema is a main component of chronic obstruc-
tive pulmonary disease (COPD), a disease with a worldwide
prevalence of 10% in adults,2 and is characterized by the de-
struction of the lung parenchyma. There are ongoing efforts
to produce clinically relevant disease subtypes for better di-
agnosis and patient management based on regional quanti-
tative measures of emphysema and other radiographic phe-
notypes and clinical manifestations. Performing lobe-based
quantitative analysis can assist such efforts, especially in the
context of epidemiological and genetic studies.3 Lobe spe-
cific measurements can also help determine whether patients
are good candidates for procedures such as lung volume re-
duction surgery based on the their emphysema distribution.4

These issues motivate the need for automatic and reliable lobe
segmentation algorithms.

A variety of lung lobe segmentation approaches have
been proposed that use auxiliary structures (airway and ves-
sel trees) to assist with lobe boundary identification.5–10 In
Ref. 5, the authors address the issue of missing fissures. They
use contextual information drawn from segmentations of the
lung, fissure, and bronchial tree in conjunction with a mul-
tiatlas selection mechanism to segment datasets that exhibit
incomplete fissures. They state that their algorithm can fail
in cases with lobe boundaries not well represented in their
atlases. We propose a lobe boundary modeling approach that
we believe provides a more flexible alternative for capturing
and using shape information. Furthermore, they report that
their fissure segmentation routine has a typical run time of
90 min on a single core, 2.4 GHz processor. The method we
will describe effectively samples the image space for fissure
locations in about 4.5 min, and the complete run time is about
15 min on average.

The method proposed in Ref. 6 does not rely on the pres-
ence of fissures but instead relies on the absence of vessels

in the vicinity of the fissures (leveraging the dedicated blood
supplies to each lobe). This work was later extended to in-
corporate fissure image features for improved results11,7 uses
vascular and airway tree segmentations to provide contextual
clues for fissure locations. They present results on normal sub-
jects and subjects with mild to moderate emphysema (where
the latter datasets were acquired at total lung capacity). Ad-
ditionally, they report that manual interaction was needed to
produce satisfactory results in 25% of the cases.10 combined
vessel and airway tree segmentations with Voronoi analysis to
identify the most likely location for lobar fissures.

Fissure detection and enhancement methods as well as lobe
segmentation algorithms designed without recourse to auxil-
iary structures have also been proposed.12 present a 2D shape-
based curve growing model for the purpose of fissure seg-
mentation. Results were given on ten datasets for the oblique
fissures only, and manual correction was needed on a small
number of CT regions. In Ref. 13, the authors use Hessian
and structure-tensor based filters to enhance the fissures14

and present a lung lobe segmentation method that only re-
lies on the detection of fissures, but they only perform de-
tection for the oblique fissures; the right horizontal fissure is
not detected automatically. Also, results are reported for 22
datasets: 17 normals and 5 with conditions (peripheral nod-
ules, mediastinal lymph nodes, and airway obstruction) un-
likely to adversely affect the appearance of fissures in HRCT
images. They suggest that deformable models are a natural
extension to their work but state that the effectiveness of ap-
proaches based on such models are sensitive to initialization.
However, we show that our lobe boundary (deformable) mod-
els are capable of attracting to and defining particles that in-
dicate lobe boundaries. The method described in Ref. 15 in-
volves fitting an average geometrical mesh model to a fissure
feature image. Results are reported on a total of 23 scans, and
total execution time was reported to be approximately 90 s on
a 1.4 GHz Intel Pentium CPU. However, the authors do not
describe how the labeled data to which they compare were
created, nor do they describe the CT datasets on which they
tested (in terms of fissure completeness, presence of disease,
scanning protocol, etc.), so it is difficult to fully evaluate their
proposed approach.

In our earlier work, we described the use of thin plate
splines (TPS) to interpolate fissure surfaces given a sparse
set of sample points.16 In a similar vein,17 use implicit ra-
dial basis functions to extend incomplete fissures to the lung
boundaries. They demonstrated their approach on 65 datasets,
with all images acquired from patients with relatively healthy
or mildly diseased lungs. Results were evaluated by visual in-
spection using a five point scale, and about half of the datasets
were rated as good or excellent. The authors use the fissure
detection method described in Ref. 18 and state that large ac-
cessory fissures can lead to segmentation failures. The lobe
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boundary surface model that we propose is capable of distin-
guishing between accessory fissures and those that truly iden-
tify lobe boundaries.

We previously showed that a small set of points (approx-
imately 10–20) along each of the three fissures is sufficient
to accurately delineate the major lobes.16 However, the points
in that study were manually selected. We build on this work
and automatically identify fissure locations by fitting a shape
model to fissure locations detected by means of a parti-
cle system for ridge surface sampling previously described
by Ref. 19. Other fissure identification and enhancement
schemes have been proposed, namely.18, 29 We choose the par-
ticle approach because it is a fast and flexible way in which
to sample likely fissure locations from the image data without
prior knowledge about the fissure location, and it fits seam-
lessly into the TPS surface fitting stage.

The particle system detects locally planar structures; these
include fissures as well as supernumerary (accessory) fissures
and nonfissure (noise) structures. In order to identify fissure
particles, we apply a novel approach to incorporating lobe
boundary shape information: by fitting these boundaries to
particle data we are able to reliably identify image features
representing true fissure surfaces.

In our earlier work, we describe a proof of concept study
to investigate the efficacy of fitting thin plate spline surfaces
to particles data using a maximum a posteriori (MAP) esti-
mation formulation.20 In that approach, ten control points are
used to describe each of the three lobe boundaries, and their
values are optimized to achieve a fit to the particles data. After
surface fitting, a postprocessing stage is performed to further
remove nonfissure particles. We reported algorithm execution
times of 30–45 min, with the most time consuming stage be-
ing the surface fitting. The lengthy surface fitting stage is a
direct result of the size of search space (ten dimensional for
each of the three lobe boundaries). Reducing the dimension-
ality would speed fitting, but by eliminating control points the
ability to capture surface variation diminishes.

In this paper, we describe an alternative formulation in
which we represent a population of training surfaces using
principal component analysis (PCA) and fit surfaces by ad-
justing modes of variation, not individual control points. This
also allows us to use many more than ten points to represent
each of the three boundary surfaces. Note that in both our pre-
vious papers and the approach proposed here we use essen-
tially the same ridge surface sampling scheme. Although here
we describe a study justifying parameters used for ridge sur-
face sampling, and we illustrate the effect of these parameters
on the ability to detect features of interest (namely, pulmonary
fissures).

As in Ref. 20, we apply a filtering stage after surface
model fitting to further reduce the number of noise parti-
cles. Here we elaborate on a more sophisticated and princi-
pled approach using Fischer’s linear discriminant to perform
classification on the particles using the fit surfaces. We will
show that performing postprocessing in this way yields a sin-
gle parameter that can be set to generate good performance
across a wide range of cases. The methodology described in
Ref. 16 is then used to acquire the final lung lobe segmenta-

tion by fitting thin plate spine surfaces through the remaining
particles.

The use of shape models to identify lobe boundaries in
both inspiratory and expiratory scans based on ridge fea-
ture samples is the major contribution of this work. We
show results in a validation set from the COPDGene study
using 100 cases from both inspiratory and expiratory ac-
quisitions that illustrate the utility of our approach. The
paper is outlined as follows. In Sec. 2, we describe the
steps in our approach: particles-based ridge surface sampling
(Sec. 2.A), lobe boundary model construction (Sec. 2.B),
boundary model fitting (Sec. 2.C), particle classification
(Sec. 2.D), postprocessing and lobe voxel labeling (Sec. 2.E).
We provide the necessary mathematical detail for implement-
ing our proposed approach. Our experimental design is given
in Sec. 3 and includes a description of the test and training
data used in our study, parameter selection schemes, and eval-
uation methods. Quantitative and qualitative results are pre-
sented in Sec. 4; Sec. 5 provides a discussion of our method
and the reported results.

2. METHODS

In this section, we describe our approach to lobe boundary
shape modeling, ridge surface sampling, and lobe segmenta-
tion. A brief overview of the algorithm is given, and we elab-
orate in Subsections 2.A–2.E. At a very high level, the goal of
our algorithm is to detect a set of points that lie on the three
lobe boundaries of interest and to fit TPS surfaces through
those points to define the lobe boundaries. We assume that a
lung segmentation is available so that the search can be con-
fined within the lung region. Lung segmentation algorithms
have been described in Ref. 21, so we do not elaborate on this
step here. However, we do note that lung segmentation can be
a very challenging task in more general circumstances. The
method we have adopted performs quite well on cases in the
COPDGene cohort.

The main steps of our method are depicted in Fig. 1. The
first step is ridge surface feature sampling and is an adapta-
tion of the particle system described in Ref. 19. Particles eas-
ily identifiable as noise are removed using simple connected
components filtering. Details are provided in Sec. 2.A.

Particles-based sampling can detect existing fissure re-
gions in the CT image. However, nonfissure ridge features
(hereafter denoted as noise) and accessory fissures are de-
tected as well. The second step of our approach is shape
model fitting and is needed to identify ridge surface parti-
cles that actually represent fissures. In Sec. 2.B, we discuss
the creation of the training data and the method used to build
lobe boundary surface models using PCA. The PCA-based
lobe boundary models are fit to the particles data by adjusting
mode weights to minimize an objective function. This opti-
mization procedure is described in detail in Sec. 2.C. After op-
timizer convergence, we perform classification using Fisher’s
linear discriminant (described in Sec. 2.D). This results in a
set of particles highly likely to correspond to fissures. Finally,
we segment the lung lobes using the approach described in
Ref. 16, substituting the manually determined particle points
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FIG. 1. Overview of the method steps for fissure detection and lobe segmentation.

with the particle points remaining after classification. The fi-
nal lobe segmentation extraction is discussed in Sec. 2.E.

2.A. Ridge surface sampling

We adopt a particle system for feature extraction described
by Ref. 19. As the fissure surface between lung lobes has
higher radio-opacity than the lobes themselves, the fissure
can be isolated as a ridge surface, defined by Ref. 22 as the
loci of points where the gradient of the image is orthogonal
to the minor eigenvector of the Hessian. The particles sam-
pling algorithm repositions points according to an image fea-
ture strength term, in our case defined as the third eigenvalue
of the Hessian, and a potential energy that is a function of the
distance between neighboring particles. Upon convergence,
the system achieves a dense and uniform feature sampling in
physical space.

The particle system results are affected by four key pa-
rameters: σgauss, λthresh, γthresh, and N. σgauss indicates the size
of the Gaussian smoothing kernel used before sampling, and
λthresh is a threshold on the ridge surface strength. γthresh is
an upper threshold on the third standardized moment of the
three Hessian eigenvalues (a perfect ridge surface might have
Hessian eigenvalues {0, 0, −1}, with the third standardized
moment being −1). Finally, N is the number of seed particles.
We have conducted a study to determine the optimal set of
parameters for the particle system, discussed in Appendix 1.
For the remainder of the paper, we designate the number of
particles after convergence as Np, the set of particles after con-
vergence as P, and a single particle in P as ρ.

Although the particles sampling does a good job of iden-
tifying fissures, ridge surfaces that do not correspond to fis-
sures are also sampled. However, the large majority of these
false positives are easily eliminated with a simple connected-
components filter as described in Ref. 20. Briefly, if two par-
ticles are sufficiently close to one another (specified with the
threshold dthresh), and if the angles formed between each of
their minor eigenvectors and the vector connecting the two
particles are both greater than a specified angle threshold
(θthresh), the particles are grouped into the same component.
Intuitively, this operation will connect particles that are spa-
tially close to each other and that lie on a surface that is ap-
proximately locally planar. After connected components are
formed, we discard those that are not sufficiently large. Per-

formance of the prefiltering operation on a typical case is il-
lustrated by the first two columns of Fig. 3. The selection
of θthresh, nthresh, and dthresh (indicating minimum component
size) is described in detail in Appendix 2.

2.B. Lobe boundary model construction

Particles sampling tends to be sensitive but not specific:
fissure regions are captured, but a great deal of other struc-
tures that are locally planar are also detected. A key compo-
nent to our approach involves using lobe boundary models to
identify ridge surface particles that are highly likely to rep-
resent fissures (lobe boundaries). In this section, we describe
the boundary modeling process, which is based on PCA per-
formed on a set of training data that are mapped to the input
image’s coordinate frame.

2.B.1. Definitions

Let us define Ctrain = {1, . . . , Ntrain} as the index set of im-
ages constituting our training set. For each case in the training
set, the lobe boundary is defined as the point collection

Ptrains,c
= {p ∈ R3 |(p selected on boundary s)

∧ (c ∈ Ctrain)}, (1)

where s ∈ {l, h, o} letting l, h, o represent the left oblique,
right horizontal, and right oblique, respectively. The ∧ symbol
represents logical conjunction.

Let Ctest = {1, . . . , Ntest} be the index set referring to the
collection of test cases. Both Ctrain and Ctest are described in
Sec. 3.A. Let i ∈ Ctest indicate the input image, and note that
the sets of cases to which Ctest and Ctrain refer are disjoint.

Let Tc �→cref represent the affine transform that results from
registering each lung mask in the training set to a reference
image’s lung mask, cref ∈ Ctrain, arbitrarily selected from Ctrain.
Tc �→cref is used to map the manually selected fissure points
from c’s coordinate frame to cref’s coordinate frame. This new
collection of point sets is designated as

P ′
trains,c

= {Tc �→cref (p) | p ∈ Ptrains,c
}. (2)

The reference image’s lung mask in conjunction with the set
P ′

train = {P ′
trains,c

| s ∈ {l, h, o} ∧ c ∈ Ctrain} constitutes the
data from which the PCA-based surface models are built. This
process is described next.
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2.B.2. Case-specific fissure model construction

We use PCA to model the surface variation across the train-
ing set for each fissure. PCA is performed in the coordinate
system of the input image in the following manner.

The reference image’s lung mask is registered to the in-
put image’s lung mask by means of an affine transformation
Tcref �→i . Tcref �→i is applied to the points in P ′

train in order to map
them to the input image’s coordinate frame. The resulting col-
lection of point sets is then P ′′

train = {P ′′
trains,c

| s ∈ {l, h, o}
∧ c ∈ Ctrain}, where P ′′

trains,c
= {Tcref �→i(p) | p ∈ P ′

trains,c
}.

Next, TPS surface representations are computed from these
points for each of the three lobe boundaries across all 20 data
sets. TPS interpolating surfaces are minimally curved surfaces
that pass through all selected points. The TPS equation is
given by

ts,c(x, y) = a1
s,c + a2

s,cx + a3
s,cy +

Ns,c∑
j=1

wj
s,cU (r), (3)

r =
√(

x − x
j
s,c

)2 + (
y − y

j
s,c

)2
, (4)

where U(r) = r2 log r is the radial basis function, and
pj

s,c = [xj
s,c, y

j
s,c, z

j
s,c] is the j th point in P ′′

trains,c
. The coef-

ficient vector, as,c = (a1
s,c, a

2
s,c, a

3
s,c) and the weight vector,

ws,c = (w1
s,c, . . . , w

Ns,c

s,c ) are determined from the Ns, c iden-
tified fissure points in P ′′

trains,c
such that the height function’s

bending energy is minimized.23

In order to create the PCA-based surface representation for
a given fissure, s, we compute the TPS z-values for each of the
20 training data sets

ts,1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ts,1
(
x1

s , y
1
s

)
ts,1

(
x2

s , y
2
s

)
...

ts,1
(
xNs

s , yNs
s

)

⎤
⎥⎥⎥⎥⎥⎥⎦

. . . ts,Ntrain
=

⎡
⎢⎢⎢⎢⎢⎢⎣

ts,Ntrain

(
x1

s , y
1
s

)
ts,Ntrain

(
x2

s , y
2
s

)
...

ts,Ntrain
(xNs

s , yNs
s )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(5)

where Ns = ∑Ntrain
j=1 Ns,j is the number of points in the

set P ′′
trains

= {p ∈ R3 |∀c ∈ Ctrain(T −1
cref �→i(p) ∈ P ′′

trains,c
)}, and pj

s

= [xj
s , y

j
s , z

j
s ] is the j th point in P ′′

trains
. In other words, sur-

face “height vectors” are created in the input image’s coordi-
nate system for each case in our training set, and the z-values
(“heights”) are computed for the (x, y) location of every point
that is mapped to the input image (for a given fissure). Con-
structing the height vectors in this way uses the same set of
domain points for a given boundary model across all train-
ing datasets. PCA is performed on the training set of z-value
vectors [Eq. (5)] by computing the covariance matrix

C = XXT , (6)

where XT = [ts,1 − μs , · · · , ts,Ntrain − μs] and μs is the mean
shape vector. The eigenvectors and eigenvalues of C are
represented as �s = [φ1

s , · · · ,φNtrain
s ], and λs =

[λ1
s , · · · , λNtrain

s ], respectively. The projected z-value vec-

FIG. 2. Mean right horizontal (subscript h) and right oblique (subscript o)
boundaries for a typical case (center rendering) together with changes in the
first mode of variation.

tor is then defined as uj
s = XT φ

j
s . This follows the standard

approach for applying PCA when the number of data in-
stances is less than the dimensionality of the data space.24

The mean vector, the projected z-value vectors and the
eigenvalues together with the (x, y) coordinates of the points
in P ′′

trains
are saved for use in subsequent filtering stages. Note

that the PCA modeling is performed independently for each
of three boundary surfaces. Figure 2 illustrates the effect of
adjusting the first mode of variation for the right horizontal
and right oblique boundary surface models.

The number of modes used in the PCA model is a param-
eter that has to be selected. We have conducted a study in
Appendix 3 to find the optimal value based on the variability
encountered in our shape space.

2.C. Lobe boundary model fitting

The model fitting stage that we introduce here is needed to
isolate true fissure particles from large groups of nonfissure
particles that can persist after the sampling stage described in
Sec. 2.A. Such particle groups can often be seen in scans of
patients with bullae. After surface fitting, we perform classi-
fication to isolate likely fissure particles; this will be detailed
in Sec. 2.D.

Note that we can represent a general TPS fissure surface
using the PCA representation described in Sec. 2.B as ts(x, y),
where the z-values used to construct the coefficient vector as

and the weight vector ws are computed using

zs = μs +
Nm∑
j=1

mj

√
λ

j
s uj

s , (7)

where Nm ≤ Ntrain (the number of training cases in our study)
is the number of modes selected to represent the variations in
the training set population, and m = [m1, · · · ,mNm

] are the
mode weights we adjust to achieve different fissure shapes.

Our task is to adjust the mode weights, mj, in order to find
the fissure surface that best fits the particles data. We accom-
plish this using Nelder-Mead optimization. For each iteration
of the optimization, we need to determine the nearest surface
point and corresponding distance for every particle. For this
we use a Newton optimizer. The details of these optimization
schemes are presented in Secs. 2.C.1 and 2.C.2.
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2.C.1. Determining particle to TPS surface distance:
Newton’s method

In order to determine how well a given surface fits a col-
lection of particles, it is necessary to compute the distance be-
tween a given particle and the surface. The objective function
for this task is given by

fp(x, y) = (xp − x)2 + (yp − y)2 + (zp − ts(x, y))2, (8)

where (xp, yp, zp) designates the particle coordinates, and ts(x,
y) is the TPS surface representation for fissure, s. Note that
this objective function is just the square of the distance be-
tween (xp, yp, zp) and (x, y, ts(x, y)); taking the square ensures
that the objective function is differentiable for all points in the
domain.

We use the Newton step, pN
k = −∇2f −1

p ∇fp, at iteration
k within a line search optimization scheme. Explicit expres-
sions for the gradient and Hessian of the objection function
are given in Appendix B. To ensure positive definiteness of
the Hessian matrix, we examine the eigenvalues of ∇2fp, and
if there are negative entries we reconstruct the Hessian as
follows:

Bk =
2∑

j=1

|λj |qT
j qj , (9)

where Bk is the Hessian approximation at iteration k, and
λj and qj are the j th Hessian eigenvalue and eigenvector,
respectively.

2.C.2. Fitting TPS surface model to particles data:
Nelder-Mead simplex-reflection method

The fissure surface model is fit to the particles data by op-
timizing the weights of the Nm modes, m = [m1 m2 · · · mNm

].
The objective function that is minimized during this process
is given by

fs(m) = −1

2πσθσd

Np∑
j=1

ωje
− 1

2

(
dj (m)

σd

)2

e
− 1

2

(
θj (m)

σθ

)2

, (10)

where Np is the number of particles, ωj is the weight as-
signed to particle j (discussed below), dj (m) is the dis-
tance between the j th particle and the TPS surface, and
θj (m) is the angle formed between the surface normal
(n = [nx(x, y) ny(x, y) 1]) and the j th particle’s Hessian mi-
nor eigenvector, e3. The angle between these vectors is then

θj (m) = arccos

(
n · e3

‖ n ‖
)

. (11)

The parameters σ d and σ θ are set by the user (we used val-
ues 7mm and 20◦ in our experiments). Note that both dj (m)
and θj (m) are computed via the Newton method described in
Sec. 2.C.1: dj (m) is determined directly as the square root
of the optimal value of fp(x, y), and θj (m) is determined by
computing the surface normal at the optimal parameter val-
ues, (x, y). In other words, for each of the Np particles in our
dataset, Newton’s method is used to determine the particle’s
contribution to the objective, fs, for a given choice of mode

weights, m. The intuitive description of this objective func-
tion is that it penalizes particles that are far from the current
surface and oriented perpendicular to it. Conversely, particles
that are close to the surface and oriented parallel to the normal
are rewarded.

The optimization of fs is carried out using the Nelder-Mead
simplex-reflection method.25 The choice of this method is par-
tially motivated from the intractability of closed form gradient
and Hessian expressions. To initialize the simplex we used the
mean of the surface model (all mode weights set to zero). The
various vertices of the initial simplex were then constructed
around this location in parameter space using a specified ini-
tial simplex edge length. For this quantity, we chose a value
of 3 standard deviations from the mean along the shape pa-
rameter, which is large enough to capture significant variation
around the mean, but not so large that the simplex takes too
long to converge.

The fitting process for the left oblique fissure is carried
out in a straightforward manner according to the description
above, with particle weights [ωj in Eq. (10)] all set to 1. The
right oblique and right horizontal models are fit iteratively.
Before either is fit, the particle weights, ωs, j, are computed
separately according to

ωs,j = e
− 1
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2 , (12)

where d
j
s and θ

j
s are as defined above for the j th particle and

with respect to surface model s having mode weights ms . The
mode weights are initially all set to 0 (i.e., the mean surface is
used). Optimization then proceeds by fitting the right oblique
model for 50 iterations, after which the particle weights are
recomputed (with the updated mode weights for the right
oblique). The right horizontal surface model is then fit for
50 iterations, after which the particle weights are again up-
dated. This process repeats once more: 50 iterations for the
right oblique, particle re-weighting, and then 50 iterations for
the right horizontal. In this way, the particles more likely to
represent a given fissure are given more weight; this prevents
the right oblique model from latching on to the right horizon-
tal particles and vice versa.

The use of PCA shape modeling provides a convenient way
to detect severely distorted shape models during the fitting
process. Namely, if the modes used during fitting are weighted
too heavily, in indicates that the shape is being deformed in a
highly irregular way. We exploit this fact to mitigate errors
introduced by poor model fits to the right horizontal fissure,
the most difficult of the three fissures to detect in general. We
performed an experiment with the cases in our training set in
which we eliminated the right horizontal particles from the
particles dataset and then performed model fitting. With no
right horizontal fissure particles to attract the right horizontal
boundary model, it tended to gravitate to the particles defin-
ing the right oblique fissure. This leads to large right horizon-
tal shape distortions, and we observed that in all cases one or
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FIG. 3. Rendering of fissure particles resulting from each step of the proposed method. Particles are rendered with plate-like glyphs, and lungs are rendered
semitransparently for context (sagittal view). From left to right: ridge particles sampling result and initial connected components (Subsection 2.A), particles data
after classification (Subsection 2.D), and particles before lobe labeling (Subsection 2.E). (Top) left lung; (bottom) right lung.

more of the shape modes was weighted with a value of >2.0.
On the other hand, when a sufficient number of right hori-
zontal particles are present and the model is fit well, mode
weights tended to be <2.0. Therefore, during the testing phase
of our experiments (described below) we used the mean right
horizontal boundary model in the final segmentation stage if
we detected large right horizontal model distortions, as mea-
sured by mode weights exceeding 2.0. We do not apply the
same approach to the other two boundary surfaces as it is rare
that insufficient particles data exist for these fissures. Instead,
we prefer to let the model deform in order to attract to the
available signal.

2.D. Classification using Fisher’s linear discriminant

After each of the three shape models has been fit to the
particles data, we can use a given particle’s relationship to the
fit surface to further discriminate between fissure and noise.
Intuitively, a particle that is close to the fit surface and has a
minor eigenvector roughly parallel to the local surface nor-
mal is more likely to be a fissure particle. We can represent
these two quantities for the ith particle with the feature vec-
tor xi = [di(m
), θi(m
)], where m
 represents the vector of
mode weights at convergence of the Nelder-Mead simplex-
reflection optimization, and θi(m
) and di(m
) are as defined
above.

Fisher’s linear discriminant provides a convenient way for
projecting this two-dimensional feature vector onto a one-
dimensional subspace such that the means of the two classes
(noise particles and fissure particles) are well separated while

also minimizing the variance of each of the classes in the pro-
jected one-dimensional space.24 Once in the projected one-
dimensional space, we can use a single parameter to control
the amount of noise filtering. The discriminant is given by the
two-dimensional vector w,

w ∝ S−1
W (μs − μnoise), (13)

where

SW =
∑

i∈{fissure particles}
(xi − μs)(xi − μs)

T

+
∑

i∈{noise particles}
(xi − μnoise)(xi − μnoise)T (14)

and the means μs and μnoise are given by

μs = 1

Ns

∑
i∈{fissure particles}

xi , (15)

μnoise = 1

Nnoise

∑
i∈{noise particles}

xi , (16)

where we have used the noise subscript to indicate noise par-
ticles and the s subscript to indicate the set of fissure particles.

Comparing columns two and three of Fig. 3 illustrate
the benefit gained from this step. The selection of the
discriminant, w, and the optimal threshold in the one-
dimensional space that separate noise and fissure particles is
described in Appendix 4.
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2.E. Lobe labeling

The classification stage described above successfully elim-
inates most of noise particles while retaining the vast major-
ity of the fissure particles. However, as can be seen in the
third column of Fig. 3, some noise particles still persist. We
perform a connected components final filtering step, as de-
scribed in Ref. 20, to eliminate potential spurious particles
given that the connected components formed by the particles
remain largely intact after the classification stage, while the
noise connected components tend to be “broken up” by clas-
sification. The final set of particles for a typical test case can
be seen in the fourth column of Fig. 3.

The remaining particle points are then used to perform
lung lobe voxel labeling according to the method described
in Refs. 16 and 20. Briefly, this is accomplished by fitting
TPS surfaces to each of the three particle sets that survive the
noise reduction stages described above (recall that the classifi-
cation stage assigns unique labels to each of the particles: left
oblique, right oblique, or right horizontal). We do not enforce
the TPS surfaces to pass directly through the particle points.
Instead, we relax the interpolation with a regularization pa-
rameter value of 0.5.26 This mitigates the effect of spurious
particles. The final voxel labeling is obtained by considering
the original lung segmentation mask. For the left lung, all
voxel locations falling below the TPS boundary surface are
labeled as left lower lobe, while voxels above the boundary
surface are labeled as left upper lobe. For the right lung, all
voxels falling below the TPS boundary surface correspond-
ing to the right oblique fissure are labeled as right lower lobe.
All voxels beneath the TPS surface corresponding to the right
horizontal fissure but above the right oblique boundary sur-
face are labeled as right middle lobe. All remaining voxels in
the right lung are labeled as right upper lobe.

3. MATERIALS AND EXPERIMENTAL DESIGN

In this section, we describe the test and training data and
the evaluation methodology used in our study.

3.A. Testing data

We selected Ntest = 100 volumetric CT datasets from the
COPDGene study,3 a multicenter investigation focused on ex-
amining the genetic and epidemiological basis of COPD and
other smoking related lung diseases. Each subject enrolled in
the study undergoes CT examination, with one scan acquired
at full inspiration (INSP) and one scan acquired at relaxed ex-
halation (EXP). We randomly chose 50 inspiratory scans and
50 expiratory scans with the constraint that no inspiration-
expiration pair could correspond to the same individual.

The CT examinations were performed either with GE scan-
ners (LightSpeed 16 and LigthSpeed VCT) using the STAN-
DARD reconstruction kernel or Siemens scanners (Sensation
64, Definition, DefinitionAS+, and Somaton) using the B31f
reconstruction kernel. Slice thickness ranged from 0.625 mm
to 1.25 mm. Tube current for the expiratory scans was either
100 mA or 110 mA, and for inspiratory scans it was either

FIG. 4. Amount of emphysema as measured by the fraction of the lung re-
gion falling below the −950 HU threshold for the cases used in this study.
Reported amounts for the expiratory cases were taken from the cases’ corre-
sponding inspiratory scans.

400 mA or 440 mA. Tube voltage for all scans was 120 kV. In-
plane pixel spacing ranged from 0.54 mm to 0.85 mm across
all scans.

An experienced chest radiologist visually inspected all
cases and detected a number of supernumerary fissures (13 in
the right lower lobe, 13 in the left upper lobe, one in the left
lower lobe, two in the right middle lobe, and one in the right
upper lobe). Noticeable distortion due to emphysema was also
observed for the right oblique (five cases), right horizontal
(five cases), and left oblique (one case) fissures. The lower
tube current prescribed for the expiratory protocol results in
noisier images. This leads to more poorly defined fissures on
these images (perceived as high attenuating regions near fis-
sures on visual inspection). Other factors obscuring the vi-
sual clarity of the fissures (artifacts, blebs, nodules) were also
observed in some cases. The amount of emphysema (as mea-
sured by the fraction of the lung region falling below the −950
HU threshold) for the cases used in this study is summarized
in Fig. 4.

The chest radiologist was also asked to record the level
of fissure completeness in each scan by ranking complete-
ness on a five-point scale: complete/near complete (>87.5%
complete), mostly complete (62.5%–87.5% complete), par-
tially complete (37.5%–62.5% complete), mostly incomplete
(12.5%–37.5% complete), absent/near absent (<12.5% com-
plete). Fissure completeness for the cases used in this study is
summarized in Table I.

We should mention that in 2011, there was a workshop
held in conjunction with the Medical Image Computing and
Computer Assisted Intervention (MICCAI) conference in
2011 that hosted a lobe segmentation challenge called Lobe
and Lung Analysis (LOLA, www.lola11.org). Although the
test dataset in this challenge covered various pathologies of
the lungs, expiratory scans were not included. Because analy-
sis of expiratory scans is an integral part of COPD analysis in
general, we decided to build our own validation cohort.
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TABLE I. Fissure completeness breakdown for the left oblique (LO), right
oblique (RO), and right horizontal (RH) fissures. Tallies are given for the
inspiration (INSP) and expiration (EXP) cases. Descriptions of categories are
provided in the text.

Complete/near
complete

Mostly
complete

Partially
complete

Mostly
incomplete

Absent/near
absent

LO (INSP) 32 13 3 2 0
RO (INSP) 23 22 5 0 0
RH (INSP) 13 12 9 11 5

LO (EXP) 33 14 3 0 0
RO (EXP) 24 23 3 0 0
RH (EXP) 10 11 16 8 5

3.B. Training datasets

We selected 20 datasets, Ntrain = 20, from the COPDGene
cohort as our training set for fissure surface model construc-
tion. Eleven cases were acquired at relaxed exhalation, and
nine cases were acquired at full inspiration (none of the cases
in test set appear in the training set). The cases in the training
set included normal subjects as well as those with a range of
disease states (mild to severe emphysema and interstitial ab-
normalities). For each case in the training set, a pulmonologist
used the interactive tool described in Ref. 16 to select points
along each of the three main lobe boundaries until a satisfac-
tory lobe segmentation was achieved. Note that with this tool,
the user can place points both along the fissures and at lo-
cations where the user infers a boundary based on additional
anatomical cues in locations where no fissure is visible. Those
points defined the collection Ptrains,c

.

3.C. Registration

The transformations Tc �→cref and Tcref �→i were obtained by
registering the lung masks to the corresponding target image
using the Insight Toolkit27 with an affine transform, regular
step gradient descent optimizer, and kappa statistic metric.

3.D. Evaluation

In this section, we describe the method we use for evalu-
ating our algorithm’s performance. We first note some of the
evaluation approaches taken by other groups so that our re-
sults can be understood in the proper context. The gold stan-
dard used in Ref. 7 consists of manual tracings along visi-
ble fissures for every fifth CT slice; no manual tracings were
drawn in incomplete fissure regions. To evaluate segmenta-
tion performance, in-plane distance measures were computed
from each point along the manual tracing to the nearest point
on the segmentation boundary. To address cases with incom-
plete fissures, the authors used a five-point, visual assessment
scale. The authors in Ref. 5 used a similar system: compar-
ison to manual tracings in visible fissure regions and a five
point scale for visually evaluating cases with incomplete fis-
sures. However, the scale used in Ref. 5 is more quantitative
than that used in Ref. 7: the highest score (5) was assigned to

results judged to be within 3 mm of the true boundary, a score
of 4 was given results judged to be within 6 mm of the true
boundary, etc. The authors in Ref. 17 used a five-point scale
(ranging from “excellent” to “unacceptable”) to qualitatively
evaluate whether the algorithm output was complete and suit-
able for lobe-based quantitative analysis, but no quantitative
evaluation was performed.

In our study, we compute distance measures between the
TPS surfaces determined by our algorithm and those pro-
duced by manual interaction. To produce the manual segmen-
tations a pulmonologist used the interactive segmentation tool
described in Ref. 16 to generate complete lung lobe segmen-
tations for all datasets in our study. The tool enables users to
select a sparse set of points along each of the three bound-
aries between the lung lobes. Once selected, TPS interpola-
tion is used to fit surfaces through the points thus defining the
boundaries between the lobes. After surface fitting, the user
can inspect the result and add additional points in areas of
misalignment. As reported in Ref. 16, this process only takes
approximately 5−7 min of user time per case. The selected
points for each lobe boundary are saved to file and subse-
quently used to produce TPS surfaces for quantitative eval-
uation, as described next.

In keeping with the evaluation methods described above,
we also determine lobe boundary discrepancies specifically
in regions with detectable fissures. We followed the same ap-
proach described in Ref. 5: a pulmonologist manually traced
the visible fissures in every fourth coronal slice.

As discussed above authors have previously used visual
scoring systems to evaluate algorithm accuracy in regions
with missing fissure information. In these regions, human ex-
perts rely on other anatomical clues and their knowledge of
fissure shape to infer the location of lobe boundaries. The ex-
tent to which lobe segmentation accuracy is affected by dis-
crepancies in surface boundaries based on human inferences
and TPS interpolation can also be gauged using the Dice co-
efficient

2|A ∩ B|
|A| + |B| , (17)

where A represents the set of voxels in the ground-truth seg-
mentation and B represents the set of voxels in the algorithm’s
segmentation. This measure more directly indicates the suit-
ability of our algorithm’s segmentation output for the purpose
of lobe-based disease quantification, the importance of which
was discussed in the introduction. A Dice coefficient value of
1.0 indicates perfect overlap of the two sets, and value of 0.0
indicates no overlap.

4. RESULTS

Qualitative segmentation results for typical inspiratory
cases are given in Fig. 5, and results for expiratory cases are
shown in Fig. 6. The algorithm performs well on these cases;
as such, the boundaries indicated by the overlays accurately
coincides with the reference standard boundaries. Tables II–
IV and Fig. 7 summarize the quantitative results for our study.
Table II shows distance statistics computed with respect to

Medical Physics, Vol. 40, No. 12, December 2013



121903-10 Ross et al.: Pulmonary lobe segmentation 121903-10

FIG. 5. Sagittal, axial, and coronal views illustrating segmentation results for two INSP test set cases. Note the severe emphysema and the resulting fissure
distortion in the topmost case.

algorithm output and the manually traced fissure regions.
Table III shows total surface discrepancies computed with re-
spect to algorithm output and the manual segmentations gen-
erated using the tool described in Ref. 16. Descriptions of
several cases on which the segmentation algorithm performed
poorly are elaborated on in Table V.

Because our algorithm uses particles detected at fissure
locations, results tend to be most accurate in those regions.
Table II, which shows accuracies at user-defined fissure lo-
cations (tracings) reflects this. Table III indicates surface dis-
crepancies across the entire lobe boundaries, even at locations
where there are no discernible fissures. The difference be-
tween results reported in Tables II and III reflects discrepan-
cies in manually determined and algorithm-determined lobe
boundaries in regions that tend not to show visible fissures.
The algorithm uses interpolation through detected fissures to
define lobe boundaries in these regions, while humans use
additional anatomical cues. The differences in results reflect
differences in these approaches in those regions.

For the results reported in Table II, we performed Welch’s
t-test to evaluated the statistical significance between “Com-
plete/Near Complete” results and “Mostly Complete” results
for all six categories (INSP and EXP for LO, RO, and RH).
Of these six categories no difference was statistically signifi-
cant at the p = 0.05 confidence level except for the RH INSP

group. While this particular result seems counter-intuitive, in
the context of statistical results for the other five categories, it
could be due to chance.

We did a similar analysis for the results reported in
Table III and found a statistically significant decrease in per-
formance from the “Complete/Near Complete” group to the
“Mostly Complete” group for all three of the INSP categories
(although no significant difference for the EXP categories).
Taken together the statistics from Table II and the statistics
from Table III tend to suggest that the algorithm’s perfor-
mance in the vicinity of fissure locations is independent of
fissure completeness, whereas the performance in areas where
no fissure is detectable does depend on fissure completeness,
which agrees with intuition. Statistical comparisons between
other groups begin to lose meaning given underpowered tests
due to small sample sizes. It is therefore difficult to conclu-
sively say that performance degrades with fissure complete-
ness, although such a conclusion certainly makes sense and is
suggested by the data.

We also see that the algorithm generally performs better on
the inspiratory cases owing to the higher dose used for these
scans, resulting in less noise and more clearly defined fissures.

The ability of the algorithm to generate good results even
in the presence of incomplete fissures (and in some cases in
the presence of nearly absent fissures) indicates the ability of

FIG. 6. Sagittal, axial, and coronal views illustrating segmentation results for two EXP test set cases.
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TABLE II. Mean, RMS, and max distances between manually traced fissure locations and automatically determined lobe boundaries for LO, RO, and RH
fissures. Total results are reported for INSP and EXP datasets and are also given with respect to fissure completeness.

Compete/ Mostly Partially Mostly Absent/
near complete complete complete incomplete near absent Total

Mean (mm) 0.92 ± 0.53 0.77 ± 0.18 0.91 ± 0.34 0.75 ± 0.12 . . . 0.87 ± 0.39
LO (INSP) RMS (mm) 1.64 ± 1.29 1.11 ± 0.39 1.38 ± 0.51 1.33 ± 0.19 . . . 1.45 ± 1.04

Max (mm) 10.28 ± 9.65 7.86 ± 6.54 6.72 ± 1.43 14.43 ± 6.87 . . . 10.09 ± 7.61

Mean (mm) 1.08 ± 0.47 0.93 ± 0.83 0.76 ± 0.17 . . . . . . 0.98 ± 0.67
RO (INSP) RMS (mm) 1.82 ± 1.00 1.57 ± 2.17 1.22 ± 0.35 . . . . . . 1.60 ± 1.51

Max (mm) 11.47 ± 5.20 8.15 ± 8.18 7.58 ± 3.26 . . . . . . 9.55 ± 7.00

Mean (mm) 1.29 ± 0.13 0.54 ± 0.12 0.68 ± 0.12 1.83 ± 0.72 2.73 ± 2.11 1.90 ± 1.86
RH (INSP) RMS (mm) 2.99 ± 0.83 0.79 ± 0.21 0.92 ± 0.29 5.60 ± 3.12 4.32 ± 3.47 3.47 ± 2.06

Max (mm) 10.70 ± 2.69 3.68 ± 1.05 4.25 ± 0.88 14.37 ± 17.24 9.10 ± 6.88 9.84 ± 4.01

Mean (mm) 2.52 ± 6.56 1.29 ± 0.73 1.37 ± 1.06 . . . . . . 2.01 ± 5.10
LO (EXP) RMS (mm) 3.41 ± 6.88 1.97 ± 1.46 2.11 ± 1.46 . . . . . . 2.88 ± 5.23

Max (mm) 10.93 ± 11.77 9.97 ± 6.12 10.90 ± 5.43 . . . . . . 10.05 ± 9.34

Mean (mm) 1.56 ± 2.32 1.03 ± 0.65 2.30 ± 2.64 . . . . . . 1.39 ± 1.51
RO (EXP) RMS (mm) 2.63 ± 3.31 1.82 ± 1.06 3.46 ± 3.88 . . . . . . 2.25 ± 2.85

Max (mm) 11.51 ± 8.70 9.28 ± 5.50 11.16 ± 11.68 . . . . . . 10.64 ± 7.64

Mean (mm) 1.16 ± 0.97 0.77 ± 0.17 1.21 ± 0.62 0.55 ± 0.03 10.90 ± 9.70 3.31 ± 12.89
RH (EXP) RMS (mm) 2.10 ± 1.95 1.31 ± 0.16 2.67 ± 1.11 0.81 ± 0.29 16.58 ± 9.50 5.29 ± 16.32

Max (mm) 7.89 ± 5.90 6.33 ± 1.19 12.72 ± 1.72 3.90 ± 3.04 23.63 ± 4.93 12.87 ± 24.77

TPS interpolation to accurately define lobe boundaries across
the lung region. However, interpolation fails to provide satis-
factory results in some cases, as we highlight below. We also
note that the ability of the surface model to completely capture
the fissure typically decreases somewhat with greater bound-
ary complexity. A poorer model fit in some areas leads to a
portion of fissure particles being eliminated in the classifica-

tion stage with a consequent poorer lobe boundary in the final
segmentation in that region. The case shown in Fig. 9 illus-
trates this phenomenon (open arrows).

Dice scores shown in Table IV indicate the suitability of
the segmentation algorithm for tasks such as lobe-based dis-
ease quantification. Only 29 out of 500 (5.8%) lobes showed
Dice scores lower than 0.9 (see Fig. 7), with the right upper

TABLE III. Mean, RMS, and max distances between manually and automatically determined lobe boundaries for LO, RO, and RH fissures. Total results are
reported for INSP and EXP datasets and are also given with respect to fissure completeness.

Compete/ Mostly Partially Mostly Absent/
near complete complete complete incomplete near absent Total

Mean (mm) 5.67 ± 0.37 7.07 ± 1.84 10.05 ± 4.92 10.36 ± 5.02 . . . 9.89 ± 4.84
LO (INSP) RMS (mm) 6.39 ± 0.23 8.64 ± 1.96 11.79 ± 5.16 12.16 ± 5.53 . . . 11.62 ± 5.28

Max (mm) 11.42 ± 1.48 18.77 ± 5.04 22.84 ± 9.28 25.74 ± 11.66 . . . 23.99 ± 10.89

Mean (mm) 5.44 ± 1.65 8.18 ± 4.24 8.13 ± 4.34 . . . . . . 8.00 ± 4.18
RO (INSP) RMS (mm) 6.50 ± 1.49 9.65 ± 4.64 9.36 ± 4.58 . . . . . . 9.32 ± 4.49

Max (mm) 14.11 ± 1.57 19.31 ± 8.24 19.49 ± 7.59 . . . . . . 19.08 ± 7.70

Mean (mm) 6.79 ± 3.63 7.93 ± 2.41 8.39 ± 7.04 9.68 ± 7.28 9.77 ± 8.70 8.85 ± 6.48
RH (INSP) RMS (mm) 7.36 ± 3.69 9.31 ± 2.73 9.16 ± 6.94 10.44 ± 7.20 10.60 ± 8.84 9.74 ± 6.49

Max (mm) 12.81 ± 5.47 19.10 ± 6.03 14.37 ± 8.81 16.32 ± 8.21 17.20 ± 12.21 16.41 ± 8.65

Mean (mm) 8.50 ± 4.86 9.00 ± 3.04 10.25 ± 7.68 . . . . . . 9.68 ± 6.77
LO (EXP) RMS (mm) 9.75 ± 5.04 10.57 ± 3.97 12.1111 ± 8.55 . . . . . . 11.36 ± 7.50

Max (mm) 19.27 ± 7.90 21.63 ± 10.43 27.9511 ± 26.41 . . . . . . 25.14 ± 22.19

Mean (mm) 8.62 ± 3.97 9.28 ± 4.37 9.61 ± 2.37 . . . . . . 9.02 ± 3.95
RO (EXP) RMS (mm) 10.05 ± 4.38 11.05 ± 4.94 11.61 ± 2.50 . . . . . . 10.66 ± 4.42

Max (mm) 20.95 ± 7.58 23.79 ± 10.23 23.78 ± 5.12 . . . . . . 22.48 ± 8.56

Mean (mm) 10.37 ± 5.88 10.55 ± 4.82 11.29 ± 6.72 13.37 ± 10.92 13.89 ± 7.46 11.81 ± 7.32
RH (EXP) RMS (mm) 11.75 ± 5.73 11.93 ± 5.15 12.23 ± 6.45 14.16 ± 11.20 15.63 ± 9.10 13.08 ± 7.69

Max (mm) 22.17 ± 6.77 21.21 ± 8.29 18.96 ± 8.18 20.45 ± 14.97 25.52 ± 16.99 21.80 ± 11.36
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TABLE IV. Dice score statistics for the INSP and EXP cases evaluated in our study.

LUL LLL RUL RML RLL

Mean (INSP) 0.99 ± 0.01 0.99 ± 0.01 0.97 ± 0.04 0.91 ± 0.13 0.98 ± 0.03
Min (INSP) 0.94 0.96 0.65 0.37 0.80
Max (INSP) 0.99 0.99 0.99 0.99 0.99
Median (INSP) 0.99 0.99 0.98 0.95 0.99

Mean (EXP) 0.97 ± 0.08 0.97 ± 0.06 0.97 ± 0.03 0.91 ± 0.10 0.97 ± 0.04
Min (EXP) 0.78 0.81 0.75 0.31 0.79
Max (EXP) 0.99 0.99 0.99 0.98 0.99
Median (EXP) 0.99 0.98 0.98 0.94 0.98

and right middle lobes proving most problematic given the
relative difficulty of defining the right horizontal boundary.
We should emphasize that Dice scores reflect lobe boundary
discrepancies only as we used the same lung segmentation
mask as input to the automatic segmentation algorithm and
the manual segmentation tool used to generate the reference
standards.

Figure 8 illustrates a segmentation failure in the left lung.
The particles sampling stage adequately detected the left
oblique fissure, but it also picked up the high attenuating
boundaries of the emphysema regions in the lower lung. The
relatively unusual fissure location in combination with the
large number of particles in the emphysema region prevented
the left oblique boundary model from fitting properly, as the
shape model was initialized closer to the emphysema region
than to the fissure particles. Therefore, subsequent classifica-
tion and filtering stages failed as well. This was the only com-
plete failure (no fissure particles were correctly identified) in
the left lung. This case can be compared to the topmost case
in Fig. 5, which also presents with advanced emphysema but
for which the segmentation algorithm performs well.

For several of the test cases we noticed that the right hor-
izontal shape model became heavily distorted given the rela-
tive lack of right horizontal fissure particles. The mean right
horizontal boundary surface was used in the segmentation

stage for these cases, mitigating the effect of the poorly fit sur-
face. However, large errors can still occur with this approach
as illustrated in Fig. 9. This case also demonstrates a scenario
leading to a large maximum distance between the automatic
and manually determined right oblique lobe boundary (open
arrows). In this region the fissure “curls” downward, and the
right oblique model did not deform to the fissure in this re-
gion. As a result, the subsequent classification stage did not
designate particles in this region as fissure particles, so they
were not used for fitting the final TPS surface used for seg-
mentation.

Figure 10 shows a tough expiratory case on which the
segmentation algorithm performs relatively poorly. The faint
fissure and high degree of noise proved problematic for the
particles sampling stage. Nevertheless, some fissure regions
were correctly identified (arrows, left), and this is reflected in
the automatic segmentation result (middle). Regions under-
sampled by particles are indicated in the rightmost image, and
the poor automatic segmentation in these areas is evident.

Table VI provides timing results for the most intensive
stages of the overall segmentation method (other stages con-
tribute negligibly to the overall computational expense). The
ridge surface sampling and shape model generation stages
can be performed in parallel, resulting a total average time of
277 s for these two stages. Model fitting can be performed

FIG. 7. Dice scores for the left upper lobe (LUL), left lower lobe (LLL), right upper lobe (RUL), right middle lobe (RML), and right lower lobe (RLL) reported
for the expiratory (top) and inspiratory (bottom) datasets. (No Dice scores equaling 1.0 were observed).
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TABLE V. Elaboration on selected cases for which the segmentation algorithm performed poorly. Surface dis-
crepancy measures are computed considering the total surface, not just in regions with clearly visible fissures.

Quantitative results Comments

Case 1 (INSP) RH Mean: 24.75 mm RH absent/near absent
Case 2 (EXP) RML Dice: 0.68 RH mostly incomplete
Case 3 (INSP) RH Mean: 43.44 mm, RUL Dice: 0.75, RML

Dice: 0.66
Mean RH surface used

Case 4 (EXP) RH Mean: 20.92 mm Mean RH surface used
Case 5 (INSP) RML Dice: 0.31 RH can not be evaluated due to RML

atelectasis
Case 6 (EXP) RO Mean: 17.31 mm; RO Max: 48.20 mm Poor RO particles sampling
Case 7 (EXP) – LO failure; model fit heavily distorted
Case 8 (INSP) RH Mean: 26.12 mm RH mostly incomplete; Mean RH surface

used
Case 9 (EXP) RML Dice: 0.76 RH absent/near absent; Mean RH surface

used

separately for the left lung and the right lung (the right oblique
and right horizontal models must be fit together); this yields
a total time of 366 s for this stage (2 × 183 for the right
lung). Therefore, total average computation time for our lobe
segmentation algorithm is approximately 15 min. The mem-
ory footprint for the cases that we were processing was less
than 1 GB. The processing time is competitive with or su-
perior to previously published timing results,5, 7, 17 although
we acknowledge the inherent difficulty in directly comparing
timing results given different experimental datasets, hardware
platforms, etc.

5. DISCUSSION AND CONCLUSION

We have presented a fully automatic lung lobe segmenta-
tion algorithm that uses particles sampling and a novel fis-
sure shape modeling scheme and have demonstrated the ef-
ficacy of our approach on challenging cases, including those
with incomplete fissures and advanced emphysema. The most
challenging cases we tested were those with mostly incom-

plete or near absent right horizontal fissures, consistent with
what other groups have found. In our approach, we fit lobe
boundary models to particle data and then use these mod-
els to discriminate between particles representing fissures and
particles representing nonfissure structures or supernumerary
fissures. If there are no particles defining one of the fissures
or if the particle signal is extremely weak, our approach can
fail, but we have observed good results even in cases with
mostly incomplete and absent/near absent fissures, illustrating
the ability of TPS interpolation to reliably define lobe bound-
aries even with a small number of points.

We tested our approach on CT datasets acquired with
“smooth” CT reconstruction kernels. However, in our explo-
ration of particles parameters we have seen that comparable
sampling results can be achieved on CT datasets acquired with
“sharp” kernels (provided that σgauss is lowered to a value of
1.0). Therefore, we expect similar segmentation performance
for these scans, as the down-stream components (prefiltering,
model fitting, classification, postfiltering, and lobe segmenta-
tion) depend only on the particles sampling.

FIG. 8. Left lung failure case (left: sagittal CT slice, middle: automatic segmentation result, right: reference standard). The severe lower lobe emphysema in
combination with the relatively unusual fissure location caused the model fitting stage to fail. Therefore, subsequent classification, filtering, and segmentation
stages failed as well.
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FIG. 9. Case for which the right horizontal fissure model was initialized too
far from the true fissure location and became heavily distorted as it latched on
to nonhorizontal fissure particles. The mean right horizontal fissure boundary
was therefore used, but this still results in an unsatisfactory segmentation.
Solid arrows indicate the true fissure location. Open arrows indicate a region
of the right oblique that curls downward and was not properly captured with
the automatic segmentation.

The PCA-based surface model representation we propose
provides a convenient way to capture variation across a pop-
ulation. We have observed good model fitting results despite
our relatively small training set of 20 cases. The data stor-
age requirements for our shape models are negligible: the in-
formation necessary to represent a case in the training set is
stored in a file that is on the order of 20 KB. Also, our PCA
approach could handle a very large number of training cases
(hundreds or thousands) without appreciably affecting execu-
tion time (with the caveat being that as the number of training
cases increases, the number of modes necessary to represent
a very large percentage of the variance would likely also in-
crease somewhat). In comparison, the atlas-based approach
described in Ref. 5 incurs and additional “fast” registration
stage (as described in their paper) as well as an additional im-
age storage requirement with each new member of the train-
ing set. This could potentially become prohibitive with a very
large atlas set.

We would like to emphasize that ridge feature samples
could be derived in a number of ways. In the present work,
our samples are derived from CT image features indicating
lobe fissures. Another approach would be to sample ridge fea-
tures computed from airway or vessel distance maps, leverag-
ing those important anatomical clues for defining lobe bound-

TABLE VI. Average execution time for each stage of the overall segmenta-
tion algorithm using a 2.4 GHz Intel Xeon CPU with 128 GBs RAM.

Stage Average time (s)

Particles sampling 277
Shape model generation 185
Model fitting (per fissure) 183
Voxel labeling 272

aries. An example of such a ridge surface image can be seen in
Ref. 11. Particles sampling can be applied to identify ridges in
such images, and our shape model fitting could then be used
to isolate those ridge features most likely to represent lobe
boundaries. This is an area for further research.

APPENDIX A: PARAMETER SELECTION

Here we describe the parameter selection to define the op-
timal set of parameters for the particle sampling, the filtering
stage that precedes the model fitting, the number of modes
in the PCA model and the Fisher discriminant classification
stage.

1. Particle system parameters

The particle system results are affected by four key param-
eters: σgauss, λthresh, γthresh, and N. A set of four images from
our training set that showed complete fissures (two inspiratory
and two expiratory scans each with “smooth” and “sharp” re-
constructions) was selected. The goal of this study was to find
a parameter setting making fissure detection very sensitive at
the price of specificity. That is, we attempt to find a dense
sampling of true fissure locations and permit nonfissure struc-
tures that locally behave like ridge surfaces to be detected.
The number of true positive (TP) and false positive (FP) par-
ticles were computed after each run of the particle system for
each parameter setting. TP and FP particles were determined
by considering particle alignment and proximity to manually
determined lobe boundary surfaces. Parameters were studied
one at a time within a reasonable range of values. Optimal
values were selected by considering both the number of TPs
as well as the ratio TPs/FPs, which serves as a measure of

FIG. 10. A difficult expiratory case (left: sagittal CT slice, middle: automatic segmentation result, right: reference standard). The right horizontal fissure is
mostly incomplete, and the particles sampling were not able to adequately capture the right oblique fissure. The final automatic segmentation reflects good lobe
boundary detection near well-sampled areas (arrows, left), but the reference standard segmentation indicates poorly captured regions (arrows, right).

Medical Physics, Vol. 40, No. 12, December 2013



121903-15 Ross et al.: Pulmonary lobe segmentation 121903-15

signal to noise ratio (SNR). Parameter values were selected
so as to maximize TPs but adjusted to minimize the TP/FP
ratio for the maximized TP level.

The selected parameter set from this study were: σgauss

= 1.2 mm, λthresh = −20, γthresh = −0.1, N = 6000. It is
worth noting that the selected parameter set live in a very sta-
ble regime for both the inspiratory and the expiratory scans.
The difference in reconstruction kernel only affected σgauss,
with an optimal value for sharp reconstruction equal to 1 mm.
A lower σgauss value for the sharp reconstruction kernel is ex-
pected given that it corresponds to a more narrow point spread
function with respect to the smooth kernel. Initializing the
particle system with more than 6000 did not appreciably im-
prove the sampling of the fissure but increased the number of
FPs, thus reducing the total system SNR. Due to the popula-
tion control mechanism, the final number of particles ranges
from 15 000 to 20 000 depending on the case.

2. Particle filtering parameters

The particle filtering stage relies on three parameters:
dthresh, θthresh, and nthresh (the minimum number of particles
that must exist in a component to be considered for further
processing). An optimal set of values for those parameters
was defined using our training set (Ctrain). First, we performed
particles sampling on each training set case. dthresh was deter-
mined by measuring the spread of distances between nearby
particles within training set cases. We observed that the mean
distance was approximately 2.6 mm with a standard deviation
of 0.16 mm. Therefore, we set dthresh to a value of 3 mm –
two standard deviations from the mean – in order for 95%
of a given particle’s closest neighbors to be considered for
connectedness on average. Given that we have user-defined
lobe boundary surfaces for each of these cases, we next iso-
lated the particles lying on those surfaces (identified by close
spatial proximity and parallel orientation with respect to the
local surface normals). This results in a set of ground-truth
particles for each case, and the remaining particles are con-
sidered noise. Figure 11 illustrates particles sampling for one
of the training set cases and the corresponding ground truth
particles.

Given both noise and ground truth particles for each case,
we then investigated the effect of various θthresh and nthresh set-
tings by computing true positive and false positive rates across
all training cases. We considered a wide range of size thresh-
olds and four values for θthresh: 70◦, 75◦, 80◦, and 85◦. The
results are summarized by the ROC curves shown in Fig. 12.
Given this analysis we choose to operate the connected com-
ponent filter at a 0.95 true positive rate along the 70◦ θthresh

curve. This corresponds to a false positive rate of approxi-
mately 0.13 and a nthresh value of 110.

3. Number of modes for PCA model

Typically in PCA-based methods, one selects a number of
modes which describe most of the population variation (say
90%). However, the greater the number of modes, the larger
the simplex for our application. On the other hand, incorpo-

FIG. 11. (Top) Left and right lung particles sampling result for one of the
training set cases (sagittal view). Particles are rendered with plate-like glyphs,
and lungs are rendered semitransparently for context. (Bottom) correspond-
ing ground truth particles.

FIG. 12. ROC analysis of prefiltering parameter settings. Four θthresh values
are considered (70◦, 75◦, 80◦, and 85◦) across a wide range of nthresh values.
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FIG. 13. Convergence rate of model fitting to a typical fissure for various
numbers of variation modes.

ration of more modes potentially enables a better TPS sur-
face fit to the particles. Figure 13 shows the convergence rate
and metric values of the optimizer for different numbers of
modes. As expected, the model fit to the particle data im-
proves as a greater number of modes is used, and convergence
is reached after approximately 100 iterations. In our experi-
ments we choose to use 100 iterations for each of the three
fitting operations, and we use enough modes to account for
99% of the variation. We observed in our test set that no more
than 11 modes were ever used for a given fitting operation,
and usually 99% of the variation could be explained by about
five modes and sometimes as few as three.

4. Fisher’s discriminant parameters

The discriminant, w, and the threshold in the one-
dimensional space that well separates noise and fissure parti-
cles was determined using the training cases, Ctrain, for which

we have established noise and ground truth particles. For
each of the Ntrain = 20 training set cases, we fit surface mod-
els constructed from the remaining 19 cases. We then com-
puted the two-dimensional feature vectors for both the noise
and s classes. Collecting noise and s feature vectors com-
puted across all 20 training set cases, we applied Eq. (13)
to determine the vector w, which was found to be [−0.4677,
−0.8839]. The histograms of the data in the projected one-
dimensional space and the corresponding ROC curve are
shown in Fig. 14. We choose to operate at a true positive rate
of 0.95 which corresponds to a false positive rate of roughly
0.1 and a threshold value of −30.

Therefore, by computing feature vectors (x) after the fit-
ting process, projecting into a one-dimensional space (wT x),
and then thresholding, we can effectively leverage the shape
information encoded in our fit surface and further eliminate
noise. For the right lung, feature vectors are computed with
respect to both the right horizontal and right oblique surface
fits. If both feature vectors project above the threshold value,
the one that is farthest from the threshold value gets the clas-
sification label. As we know whether particles fall within the
left or right lung (given our starting lung segmentation mask),
particles in the left lung with projected feature vector values
falling above the threshold clearly get the left oblique fissure
label. Note that this operation is performed on the prefiltered
particles data.

APPENDIX B: NEWTON’S METHOD GRADIENT
AND HESSIAN

Here we give expressions for the gradient and Hessian used
in Newton’s method described in Sec. 2.C.1.

The gradient of fp(x, y) (∇fp = [∂fp/∂x ∂fp/∂y]T) is given by

∂fp

∂x
= 2(x − xp − nx(x, y)(ts(x, y) − zp)), (B1)

∂fp

∂y
= 2(y − yp − ny(x, y)(ts(x, y) − zp)), (B2)

FIG. 14. Left: Scatter plot of the 2D features space. The grouping in the lower left represents true fissure particles; the grouping towards the middle represents
noise particles. (Middle) histograms of projected noise particles (left-most distribution), and fissure particles (right-most distribution). The x axis is unitless.
(Right) corresponding ROC curve representing the distributions of the projected data.
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where the (non-normalized) components of the TPS surface
normal are

nx(x, y) = −a2
s −

Ns∑
j=1

wj
s

(
2r log r + r

ln 10

) (
x − x

j
s

r

)
,

(B3)

ny(x, y) = −a3
s −

Ns∑
j=1

wj
s

(
2r log r + r

ln 10

) (
y − y

j
s

r

)
,

(B4)

and where r is analogous to Eq. (4). The components of the
Hessian, ∇2fp (here using the notation convention for the Hes-
sian common in optimization literature28), are

∂2fp

∂x2
= 2(1 + n2

x − (ts(x, y) − zp)(∂nx/∂x)), (B5)

∂2fp

∂y2
= 2(1 + n2

y − (ts(x, y) − zp)(∂ny/∂y)), (B6)

∂2fp

∂y∂x
= 2(nxny − (ts(x, y) − zp)(∂nx/∂y)), (B7)

where

∂nx

∂x
= −

Ns∑
j=1

wj
s

[
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r ln 10
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∂r
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)2
]

, (B8)

∂ny

∂y
= −
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wj
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g(r) + 2

r ln 10
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∂y

)2
]
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and

g(r) = 2 log r + 1

ln 10
, (B11)

∂r
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=
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r
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. (B13)
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