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1. Summary
The HIV-1 viral infectivity factor (Vif) neutralizes cell-encoded antiviral

APOBEC3 proteins by recruiting a cellular ElonginB (EloB)/ElonginC (EloC)/

Cullin5-containing ubiquitin ligase complex, resulting in APOBEC3 ubiqui-

tination and proteolysis. The suppressors-of-cytokine-signalling-like domain

(SOCS-box) of HIV-1 Vif is essential for E3 ligase engagement, and contains a

BC box as well as an unusual proline-rich motif. Here, we report the NMR sol-

ution structure of the Vif SOCS–ElonginBC (EloBC) complex. In contrast to

SOCS-boxes described in other proteins, the HIV-1 Vif SOCS-box contains only

one a-helical domain followed by a b-sheet fold. The SOCS-box of Vif binds pri-

marily to EloC by hydrophobic interactions. The functionally essential proline-

rich motif mediates a direct but weak interaction with residues 101–104 of EloB,

inducing a conformational change from an unstructured state to a structured

state. The structure of the complex and biophysical studies provide detailed insight

into the function of Vif’s proline-rich motif and reveal novel dynamic information

on the Vif–EloBC interaction.

2. Introduction
The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3

(APOBEC3, A3) family of cytidine deaminases contains seven members named

from A to H [1] that are constitutively present in cells and exhibit diverse physio-

logical functions [2–4]. APOBEC3G (A3G) appears to have the most active

antiviral phenotype for HIV-1, as recently described in several reviews [5–8].

The viral infectivity factor (Vif ) protein of HIV-1 is an accessory protein

required for virus replication in natural targets of infection [5]. Vif functions

by counteracting the APOBEC3-mediated pathway of intrinsic antiviral defence

by inducing the proteasomal degradation of APOBEC3 proteins, including

A3DE [9], A3F [10–12], A3G [13–17] and some A3H proteins [18–20]. Degra-

dation is achieved through the formation of an E3 ubiquitin ligase core complex

composed of ElonginB (EloB), ElonginC (EloC), Cullin5 (Cul5) and RING-box

protein 2 [21–25] in the presence of Vif. The core binding factor b (CBFb), a
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Figure 1. 15N relaxation rate constants at 500 MHz (red lines) and 700 MHz (black lines) magnetic fields (a) T1, (b) T2, (c) T1/T2 and (d ) hnNOE plotted against
residue number.
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newly discovered chaperone, is crucial for the folding

and stabilizing Vif [26–28], the Vif–APOBEC3G interaction,

[29,30] and regulation of host gene expression [28]. The

formation of this E3 ligase complex results in ubiquitination

of APOBEC3 proteins, and therefore neutralization of

APOBEC-mediated antiviral activity. The interface afforded

by the interaction of Vif with the cellular factors mentio-

ned above is widely viewed as a potential target for the

development of new anti-HIV drugs [5,6].

Vif possesses various motifs that bind these cellular factors

that have been linked to direct interactions with the proteins

mentioned above. The N-terminal half of Vif mediates the inter-

action with members of the APOBEC3 family [31,32]. Recent

work from John Gross’s group shows that the N-terminal

residues 1–140 also interact with CBFb [28]. In the middle of

the Vif sequence, a zinc-binding HCCH motif has been proposed

to interact with Cul5 [33–35]. C-terminal to this HCCH domain,

the suppressors-of-cytokine-signalling-like domain (SOCS-box)

of Vif binds to the EloB–EloC heterodimer (EloBC) along with

Cul5 [22,36–38]. The SOCS-box contains a conserved SLQYLA

motif (residues 144–149), called the BC-box, which interacts

with EloBC. Mutation of this motif leads to the inactivation

of Vif, indicating an essential role for this domain [14,22,36,

39,40]. The SOCS-box also has a critical proline-rich motif

(161PPLPS165, PPLPS motif) [41,42] downstream of the BC-box,

whose molecular mechanism of action remains unclear. For

instance, some reports suggest a role in Vif homo-multimerization

[43], whereas biophysical studies indicate that the proline-rich

motif interacts with the flexible C-terminus of EloB and is not

required for the oligomerization [37,44].

Owing to the difficulty in overexpressing, purifying and

crystallizing full-length folded soluble Vif and APOBEC3G

[45,46], it remains unclear from a structural biological
perspective how Vif recruits cellular factors and interacts with

APOBEC3G in order to stimulate ubiquitination. Currently,

the crystal structure of BC-box has been solved, but not that of

the entire SOCS domain [38]. We have therefore employed a

range of NMR techniques to dissect the structure and dynamics

of the Vif SOCS–EloBC complex. In particular, Vif SOCS-box,

EloC and EloB all experience structural changes during the

SOCS–EloBC interaction, as proposed previously [37]. The sol-

ution structure of EloBC was solved by NMR in 2008 [47] in

complex with the BC-box of SOCS3. Here, we present a solution

structure of the Vif SOCS–EloB–EloC heterotrimer. The struc-

ture of the complex is calculated by HADDOCK combined

with long-distance restraints from paramagnetic relaxation

enhancement (PRE) experiments and NMR chemical shift per-

turbations. We find that the van der Waals surface calculated

around the PPLPS motif of SOCS-box touches the van der

Waals surface calculated about the EloB C-terminus, thereby

supplementing the tight binding interface between the BC-box

and EloC. Upon binding, the C-terminal tail of EloB experiences

a structural change from a flexible state to a partially folded

state. Consistent with earlier structure–function analyses, the

leucine, the third proline and the adjacent serine are the most

important residues in this motif [40].
3. Material and methods
3.1. Protein expression and purification
The SOCS–EloBC complex for NMR spectroscopy was

prepared as described previously [37]. Essentially, EloBC

dimer and SOCS-box peptide were expressed individually in

the Escherichia coli BL21 (DE3) Rosetta strain in LB media or
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Figure 2. 1H – 15N HSQC spectra of Vif SOCS-box protein, with the sequence
of the SOCS-box peptide shown on top. The 56-residue SET-tag is simplified
with a rectangle, followed by the SOCS-domain peptide. The BC-box is
highlighted in orange. (a) The overlay of two spectra recorded on the
SOCS-box peptide in the free state (blue) and in the complex with EloBC
(red). (b) Details of the spectrum recorded on the bound SOCS-box peptide.
The peaks assigned to residues corresponding to the Vif SOCS-box are indi-
cated. The rest of the peaks distributing in the spectrum are from the SET-
tag. (c) The Rosetta score versus RMSD plot from CS-Rosetta structural calcu-
lation protocol. A total of 10 000 structures were generated. (a,b) are
reproduced with permission from [37].

Table 1. Structural statistics for the bound SOCS-box peptide from CS-Rosetta.

NOE restraints comprised in calculations

short range 59

medium range 11

long range 8

average RMSDs from the mean structure

backbone average (Å) 0.54+ 0.19

heavy atom average (Å) 0.65+ 0.22

Ramachandran plot

most favoured region (%) 96.7

allowed region (%) 3.3

generously allowed region (%) 0

disallowed region (%) 0
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M9 minimal media supplemented with different isotopes (13C,
15N, 2H), depending on the experiments. EloBC was purified

in 20 mM Tris buffer pH 7.0, 50 mM NaCl and solubility-

enhancement-tagged SOCS-box peptide was purified in

20 mM Tris buffer pH 8.0, 500 mM NaCl. They were mixed at

a 1 : 1 ratio after elution from the Ni-NTA column and loaded

onto a Superdex 75 gel filtration column to remove unbound

components. EloBC-labelled sample or SOCS-labelled sample

was then used in NMR spectroscopy experiments.
3.2. NMR spectroscopy
NMR spectra were acquired at 258C on Varian NMR 800 MHz

and Bruker Avance 700 MHz spectrometers equipped with

5 mm triple-resonance z-axis gradient cryogenic probes. A

0.2 mM sample (550 ml) was prepared in 50 mM phosphate

buffer pH 7.0, 10% D2O, 0.05% sodium azide with protease

inhibitors (Roche) tablet. HNCO, CBCA(CO)NH, HNCA,

HNCACB, HN(CA)CO, HN(CA)HA, HCCH-TOCSY, 1H-15N

TROSY-HSQC and 13C-edited NOESY-HSQC were recorded

on EloBC, and HNCO, HN(CA)CO, HNCA, HNCACB,

CBCA(CO)NH, HN(CA)HA, HCCH-COSY, HCCH-TOCSY,
15N-edited NOESY-HSQC, 13C-edited NOESY-HSQC, 1H-15N

HSQC and 1H-13C HSQC spectra were used for the SOCS-

box peptide backbone and side-chain assignment. All the

spectra were processed with NMRPipe [48] and analysed

with CcpNmr suite [49,50]. As for the perturbation studies,

each EloBC mutant sample was prepared in the same way as

wild-type and divided into two aliquots. Purified SOCS-box

peptide was added to one aliquot at a 1.2 : 1 ratio and the

other was made up to the same volume as the first aliquot

with NMR buffer. Relaxation experiments were recorded on

the unbound SOCS-box peptide at 258C at 500 and 700 MHz

magnetic field, respectively.

3.3. Paramagnetic relaxation enhancement experiments
Residues G143, Q158 and R167 on SOCS-box peptide were

mutated to Cys, for use in paramagnetic labelling studies.

Mutant protein was mixed with an approximately fivefold

excess of dithiothreitol (DTT) for 2 h after elution from the

Ni-NTA column. This was followed by separation of excess

DTT by gel filtration chromatography. The SOCS-box mono-

mer sample from the size exclusion column was collected and

incubated with either the diamagnetic (1-acetyl-2,2,5,5-

tetramethyl-D3-pyrroline-3-methyl) methanethiosulfonate or

the paramagnetic (1-oxyl-2,2,5,5-tetramethyl-D3-pyrroline-

methyl) methanethiosulfonate (Toronto Research Chemicals)

overnight at 48C. Each modified SOCS-box sample was

dialysed against NMR buffer and mixed with 15N-labelled

EloBC in NMR buffer at a 1.1 : 1 ratio. The mixed sample was

then used for NMR spectral acquisition. A 1H-15N HSQC

spectrum was recorded for each 50 mM sample with a 3-h acqui-

sition. Intensity ratios were converted to distances according to
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Figure 3. The structures of the HIV-1 Vif SOCS peptide and the SOCS – EloBC complex. (a) SOCS peptide alignment. Overlap of ten backbone structures for the SOCS-
box after Rosetta refinement. (b) Structural comparison with the SOCS-box crystal structure (3DCG, chain E). Peptide structure is aligned against the crystal structure
in green. The 165PLS167 sequence is highlighted in yellow. (c) 20 structures of the SOCS – EloBC complex with the lowest energy are aligned after HADDOCK
refinement. (d ) Ribbon representation of the complex. The Vif SOCS peptide is coloured in red. EloB and EloC are in blue and grey, respectively. The
165PLS167 region of SOCS is highlighted in yellow.

rsob.royalsocietypublishing.org
Open

Biol3:130100

4

an established method [51] by using the Solomon–Bloember-

gen equation [52]. Because of the dynamics of the labels, the

diameter of the paramagnetic molecule was added to or sub-

tracted from the calculated distance, thus obtaining the upper

or the lower limitation distance between the Cys and observed
15N-labelled EloBC residues.
3.4. Structure determination
SOCS-box peptide structures in the bound state were generated

by Chemical Shift ROSETTA (CS-ROSETTA) [53] by inputt-

ing NOE data and chemical shift values into the BMRB

CS-ROSETTA server (condor.bmrb.wisc.edu/bbee/rosetta/).

Structures were further refined according to the Rosetta refine-

ment protocol [54]. EloB and EloC structures were generated

de novo as well as on the server. Using NMR perturbation studies

based on 1H-15N HSQC spectra and PRE data that provide

semi-quantitative long-distance constraints, the HADDOCK

approach was adopted for the structure calculation of the com-

plex [55]. In our previous work, it has been proved by various

biophysical assays that the EloB DVMK stretch interacts with

the proline-rich motif [37], so in the calculation on the WeNMR
web server [56], five residues in SOCS-box (Q146, A149, L163,

P164 and S165), four residues in EloB (D101, V102, M103 and

K104) and two residues in EloC (A82 and L86) were selected as

active residues. The interfacial residues sitting between the

SOCS-box proline-rich motif and the C-terminus of EloB were

allowed to fully move at all stages. A file with distance restraints

that are always enforced was provided. Two thousand initial

complex structures were generated and the best 200 structures

were chosen for explicit solvent refinement. The clustering cut-

off is set to 5 Å, four structures per cluster. Default parameters

excluding the settings above were always applied. The assign-

ments and structures have been deposited to BMRB (ID 19333)

and PDB (ID 2MA9), respectively.
3.5. ITC binding assays
EloBC dimer sample and SOCS-box peptide were concen-

trated to 0.2 and 0.02 mM, respectively. All samples were

dialysed against binding buffer with 20 mM Tris pH 7.5,

250 mM NaCl and 0.05% sodium azide. ITC was performed

on an ITC200 calorimeter (MicroCal, Northampton, MA).

Titrations were conducted by injecting 20 aliquots of 2 ml of

condor.bmrb.wisc.edu/bbee/rosetta/
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EloBC sample into cells containing SOCS-box peptide sample

at 258C. Fresh samples were prepared thrice in order to

record ITC experiments in triplicate, and one typical set of

results is presented.
4. Results
4.1. The flexibility of the unbound SOCS-box domain
In order to address the challenges associated with Vif insolubi-

lity, we N-terminally fused the Vif SOCS-box to a solubility-

enhancement tag that does not increase the molecular weight

substantially and therefore is suitable for NMR studies [57].

In previous work, it was found that the unbound SOCS-box

lacks secondary structure [37]. Here, the NMR relaxation
experiments were recorded at two magnetic field strengths

(11.75 and 16.4 T, 500 and 700 MHz at 1H frequency) in order

to observe the flexibility of the SOCS-box peptide. The T1, T2,

T1/T2 ratio and 15N heteronuclear nuclear Overhauser effect

(hnNOE) are plotted against the residue numbers (figure 1).

The fact that the T1 values of BC-box are consistently the

same over the span of residues 144–154 indicates that this

region is less dynamic and tumbles isotropically compared

with the rest residues of the SOCS-box. However, it is of note

that the N-terminal-fused tag attached to this region may also

contribute to its limited motion. T2 values suggest the existence

of fast motion. In addition, the variable low values of hnNOE

reveal that the SOCS-box peptide possesses considerable

internal motion, especially the region following the BC-box.

These relaxation results show that the SOCS-box has a

random coil conformation before binding to EloBC.
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Table 2. Structural statistics for the SOCS – EloBC complex.

HADDOCK cluster number produced 1

average RMSDs from the mean structure

backbone average (Å) 0.26+0.03

heavy atom average (Å) 0.52+0.04

HADDOCK statistics

van der Waals energy (kcal mol-1) – 63.5+2.4

electrostatic energy (kcal mol21) – 574.5+15.9

desolvation energy (kcal mol21) 3.1+3.3

restraints violation energy (kcal mol21) 0.3+0.16

buried surface area (Å2) 2438.6+46.0

experimental PRE distance restraints

number 58

distance violation (Å) 2.76+1.90

Ramachandran plot

most favoured region (%) 82.3

allowed region (%) 15.2

generously allowed region (%) 1.4

disallowed region (%) 1.1

deviations from ideal geometry

angles (degree) 0.6

bonds (Å) 0.003
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4.2. The structure of SOCS-box domain
In order to solve the structure of SOCS-box, the NMR spectra

(figure 2a,b) [37] were recorded on the labelled peptide
produced from E. coli in the unbound state and in the com-

plex with unlabelled EloBC heterodimer, for which the two

components were co-expressed and co-purified. Although

comprehensive NOE data are not available for the entire

SOCS-box a-helical region, the 32-amino-acid peptide in the

complex adopts a well-defined structure based on chemical

shift analysis using CS-Rosetta combined with a limited set

of NOE measurements (figure 2c and table 1). The RMSD

between the lowest energy structure and the helical BC-box

crystal structure (PDB ID: 3DCG, chain E) [38] is 0.43 Å

after refinement by the Rosetta protocol. The final structure

has an abb structure in which the two b-strand-like elements

are connected by the proline-rich motif loop (figure 3a,b),

resulting in an exposed loop that projects into solution and

is accessible for interaction with other molecules. The

second b-strand appears to be flexible compared with the

other regions.

4.3. The solution structural determination of the
SOCS-box – Elongin BC complex

The binding of the HIV-1 Vif SOCS-box domain to EloBC

forms a stable heterotrimer with a 1 : 1 : 1 stoichiometric

ratio determined by gel filtration analysis [37]. In order to

acquire additional intermolecular restraints among the three

components, PRE experiments were performed [52]. As no

cysteines are present in the SET-tag-fused SOCS-box peptide,

single-point cysteine mutations could be generated in this

peptide at selected locations to measure PREs within the

other components of the complex, namely EloBC. In each

molecule of the complex, a mutated SOCS-box peptide was

engineered with a single cysteine substitution enabling the

observed relaxation enhancements to be assigned to the para-

magnetic moiety conjugated to the amino acid residue. Point
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residues at the C-terminus of EloB.

Table 3. Thermodynamic characterization of SOCS – EloBC interaction.

Kd (mM) Ka (mM21) DHobs (kcal mol – 1) DG (kcal mol – 1) – TDS (kcal mol – 1)

WT 1.225 0.82+0.06 210.2+1.6 27.9 2.3

SPLPS 2.14 0.52+0.18 28.3+2.3 27.6 0.7

PSLPS 1.24 0.86+0.24 28.8+2.0 27.9 0.9

PPLSS 1.36 0.77+0.19 210.7+2.8 27.8 2.9

PPLPA 1.18 0.89+0.24 28.6+0.3 27.9 0.7

APLAS 1.10 0.97+0.28 28.8+0.2 28.0 0.8

AAAPS 1.50 0.68+0.11 29.8+1.7 27.9 1.9
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mutations (G143C, Q158C and R167C) were placed at three

widely separated sites in the SOCS peptide in order to increase

the number and spread of intermolecular measurements

(figure 4a). The binding of all mutants was checked by isother-

mal titration calorimetry (ITC) to verify that the mutation did

not interfere with the binding affinity of SOCS–EloBC (see

electronic supplementary material, figure S1). As the portion

of the SOCS-box binding to EloBC dimer has been localized

to the BC-box and the PPLPS motif, mutations were made

outside these functional domains to minimize any artefactual

interactions. In PRE experiments, the peak-intensity ratios

measured in the EloB carboxyl terminus provide a clear indi-

cation that the DVMK stretch at the C-terminus of EloB is

close in space to the labelled cysteines of the Vif SOCS-box

(figure 4b,c), especially the R167C residue (figure 4d,e). The

overlay of a 20-solution-structure alignment from the clus-

ter is shown in figure 3. Structural statistics for the cluster of

structures are listed in table 2.

The structural model provides confirmation that the SOCS-

box crosses the EloC carboxyl a-helix and binds to the flexible

EloB carboxyl terminus. Residues L145, A149, L150 of the Vif
SOCS-box and A99, L103 of EloC bind to each other (figure 5a)

by forming hydrophobic interfaces that drive the SOCS–EloC

interactions (figure 5b,c) typical of a high-affinity protein com-

plex [58,59]. Hydrophobic interaction is the major force driving

the formation of biological complexes [22,39]. The structure of

this portion of the complex very closely matches that of the

crystal structure (PDB ID: 3DCG) [38]. The studies on the

PPLPS motif show that 164PS165 plus V166 interacts with

the EloB DVMK stretch rather than the entire PPLPS motif

(figure 5d,e). This proline–serine loop is stabilized by an antipar-

allel b-sheet-like structure. Within EloB, the C-terminus is

flexible in solution, as shown by the narrow NMR line widths

for this region [37], whereas in the presence of SOCS-box, the

DVMK stretch experiences a conformational change and

becomes partially helical (figure 5e). The interface between

164PS165 and the DVMK stretch is formed by close spatial posi-

tioning of the residues and are bound by weak van der Waals

forces (figure 5f), implying that this interaction may not be a

strong interaction although it was observed from the NMR per-

turbation experiments and ITC studies of SOCS-box and its

mutants [37].



PPLPS

PPLPS

Cul5

EloC

EloB

EloB

?

EloC

EloB

EloC

EloC

EloB

BC-box

C

C

C

Figure 7. Schematic of the proposed induced-folding mechanism. The SOCS-box peptide includes an a-helix domain (represented as SLQ) and a proline-rich domain
(represented as PPLP). The formation of the Vif SOCS – EloBC complex is mainly driven by hydrophobic interactions between Vif BC-box and EloC C-terminus via a
conformational change process. Then, the proline-rich motif induces the EloB C-terminal tail to fold, forming a common interface to recruit cellular factors, perhaps
Cul5. The various interaction events are presented in succession. The C-terminus of each subunit is indicated.

rsob.royalsocietypublishing.org
Open

Biol3:130100

8

4.4. The interaction between the PPLPS motif and the
DVMK stretch

In order to define further the SOCS–EloB interface, we sub-

sequently mutated the four residues at the C-terminus of

EloB, respectively, and measured NMR perturbations to the

line widths of distal amino acids. Interestingly, peaks from

this domain follow a distinct decrease in intensity irrespective

of which residue is mutated (figure 6). As for the EloB-D101A

mutant, A101 is still perturbed upon binding, although residues

M103 and K104 are not impacted. The NMR spectrum recorded

for this mutant displayed peak shifts for residues 103–118,

suggesting a conformational disruption by this mutation

(data not shown). Profiles from the other three mutants match

the same profile as for wild-type [37], indicating that the inter-

action between the PPLPS motif and the C-terminus of EloB

is not specifically driven by these side-chains within the

DVMK stretch.

We then asked the question whether individual residues

in the PPLPS motif contribute more to the interaction with

EloB. Several single-point mutants in the motif were made

and ITC was used to quantify the thermodynamics of the

interaction. Although sequence analysis of Vif and EloB

amino acids indicates that the PPLPS motif of HIV-1 Vif

and residues 101–104 (DVMK stretch) of EloB are both

highly conserved (see electronic supplementary material,

figure S2 and table S1), results from ITC reveal that the

mutation of any residue within the PPLPS motif does not

affect the binding affinity regardless of the entropy change

(table 3; electronic supplementary material, figure S3),

which is thought to be caused by internal conformational

changes owing to the single-site mutations [60]. It can there-

fore be concluded that the second interface between the

PPLPS motif and the DVMK stretch is driven by weak van

der Waals forces.
5. Discussion
Here, we present the first structure of the HIV-1 Vif SOCS–

EloBC complex including the conserved proline-rich motif

of Vif. Interestingly, the side-chains of P161, L163 and P164

are exposed in the solution, whereas the side-chain of the

second proline (P162) is buried within the protein, suggesting

that this proline is less important compared with the other

residues. This result agrees with previous work showing

that mutations at the first and third proline decrease Vif

function in cells and result in a lack of formation of the ubi-

quitination complex [37,40]. In our previous study [37], we

reported that in the absence of SOCS-box the carboxyl termi-

nus of EloB is flexible in solution and that the binding to

SOCS-box induces structural changes in the disordered

DVMK stretch according to the T1/T2 relaxation ratio [37].

This small helix in the EloB C-terminus is also observed in

the SOCS2–EloBC complex [61]. Therefore, it can be con-

cluded that the DVMK stretch forms a helix upon binding

to SOCS-box. Considering the weak binding between the

PPLPS motif and the DVMK stretch, which is not essential

for SOCS–EloBC binding, though it is required for HIV-1

Vif function in cells, we further suggest that it is the a-helix

of EloC that first drives the induced folding of Vif, followed

by the interaction between the PPLPS motif and EloB. The

final interface formed by the PPLPS motif and the induced

folding of the DVMK stretch may be required to form an

E3 ubiquitin ligase complex, perhaps specifically to recruit

Cul5 (figure 7).

As we have demonstrated here, the interaction between

Vif’s PPLPS motif and EloB’s DVMK has low affinity and

is mainly a weak van der Waals interaction. We also show

that it is coupled with significant structural rearrangements

in both Vif and EloB. Yet it is a critical interaction for the

recruitment of a functional E3 ubiquitin ligase, CBFb binding
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Figure 8. Structures of SOCS family proteins. Close-up of the SOCS domains from published structures of different SOCS families. The C-terminus of each SOCS
a-helical domain is labelled. (a) SOCS2 domain (2C9W). (b) SOCS4 domain (2IZV). (c) SOCS6 domain (2VIF). (d ) SOCS3 domain (3DCG). The unobserved downstream
sequence of SOCS3 is presented by a dotted line. The SOCS domain on each structure is shown in brown.
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[62] and degradation of A3G in vivo [63]. It is therefore tempt-

ing to speculate that this interaction could be targeted by

small molecule inhibitors for the design of a new class of

anti-HIV drugs. Furthermore, the NMR spectra reported

here could form the basis for an assay to screen small mol-

ecules libraries. Yet, as the interaction is based on flexible

regions of these proteins, there is presumably no obvious

binding pocket for a small molecule to bind to. In that

regard, a small peptide inhibitor, mimicking the PPLPS

motif engaging EloB upon Vif binding, would be a more

likely candidate for interrupting this interaction.

The SOCS family (SOCS1–7) proteins are indispensable

regulators, functioning in many pathways, including ubiqui-

tination and transcription, and have high sequence similarity.

Published structures show that they all share a common a-

helical structure. It is of note, however, that the downstream

sequences have a different spatial portfolio depending on the

structural family. Domains from SOCS2 and SOCS4 (PDB ID:

2C9W, 2IZV) contain three small a-helixes that are also

known to interact with the EloB C-terminus (figure 8a,b)

[61,64], whereas SOCS6 (PDB ID: 2VIF) adopts a partially

folded structure (figure 8c), and the SOCS3 (PDB ID:

3DCG) downstream sequence cannot be identified in the

X-ray crystallographic analysis (figure 8d ) [38,65], which

suggests that the downstream structure is flexible in solution
and can be only observed by NMR. Interestingly, the SOCS-

boxes of Vif proteins from other retroviruses, such as HIV-2,

simian immunodeficiency virus from mandrill (SIVMND) or

bovine immunodeficiency virus (BIV), contain the BC-box,

but not a proline-rich motif [63,66,67]. Our results report,

for the first time, structural insight into the whole HIV-1

Vif SOCS domain, including a BC-box and the proline-rich

motif in the presence of EloBC, and its dynamic behaviour

in the SOCS–EloBC interaction.
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