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Interspecific brood parasitism represents a prime example of the coevolution-

ary arms race where each party has evolved strategies in response to the other.

Here, we investigated whether common cuckoos (Cuculus canorus) actively

select nests within a host population to match the egg appearance of a particu-

lar host clutch. To achieve this goal, we quantified the degree of egg matching

using the avian vision modelling approach. Randomization tests revealed that

cuckoo eggs in naturally parasitized nests showed lower chromatic contrast to

host eggs than those assigned randomly to other nests with egg-laying date

similar to naturally parasitized clutches. Moreover, egg matching in terms of

chromaticity was better in naturally parasitized nests than it would be in the

nests of the nearest active non-parasitized neighbour. However, there was

no indication of matching in achromatic spectral characteristics whatsoever.

Thus, our results clearly indicate that cuckoos select certain host nests to

increase matching of their own eggs with host clutches, but only in chromatic

characteristics. Our results suggest that the ability of cuckoos to actively choose

host nests based on the eggshell appearance imposes a strong selection

pressure on host egg recognition.
1. Introduction
Mutual interactions among various animal taxa can be considered as an impor-

tant selective force affecting evolutionary diversity [1]. Such reciprocity in

relations is typical also of obligate brood parasitism, a life strategy used by

some arachnids, insects, fishes and birds [2–5]. Obligate brood parasites are

notorious for abandoning their parental duties to other species, the hosts. Because

of the costs incurred on the side of the hosts, the brood parasitic breeding strategy

has led to the evolution of host defences, which, in turn, have selected for more

intricate counteradaptations in the brood parasite. Such an escalating arms race

between brood parasites and their hosts thus represents an outstanding textbook

example of coevolution [6]. This reciprocal relationship can fundamentally shape

life histories, morphologies, physiologies and behaviours of both brood parasites

and their hosts and influence trajectories and outcomes of their subsequent coe-

volutionary interactions [7]. In birds, about 1% of species have adopted the

brood parasitic lifestyle [5]. The most striking adaptations by which avian

brood parasites attempt to evade host defences are those related to the resem-

blance of host eggs, i.e. mimicry—the phenomenon that has fascinated

researchers since Baldamus [8].

From the adaptive perspective, it should be beneficial for an individual

brood parasite to produce progeny that will tend to exploit the same host

species and evolve better tuned egg mimicry. This may consequently lead to

the evolution of host-specific lineages, also called gentes [9–11], where females

often lay eggs of a certain type to mimic the eggs of a particular host species

[12,13]. In this respect, there is a wide variety of host specificity across different

brood parasitic systems, ranging from an opportunistic host use in a majority of
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parasitic Molothrus cowbirds [14] to strict host specificity associ-

ated with host–parasite co-speciation in African indigobirds

(Vidua spp.) [15].

Brood parasitism by the common cuckoo (Cuculus canorus,

hereafter cuckoo) is a system where the parasite interacts with

its hosts via egg phenotype matching [16]. This is especially

apparent in the evolution of various cuckoo host-specific

races, which have highly polymorphic eggs that resemble the

egg appearance of the preferred host species [12,17–19]. How-

ever, a considerable potential for egg phenotype matching also

exists within each cuckoo gens. While cuckoo eggs sometimes

closely match the appearance of the host clutch, on other

occasions, they often show rather imperfect mimicry [20].

Nonetheless, the degree of egg matching is crucial for the

breeding success of the brood parasite, as a good mimicry

impedes effective egg discrimination by the hosts [21–24].

The cuckoo female searches for suitable nests by observing

host nest-building activity from a close vantage point [5]. Then,

she follows the status of several host nests to correctly time her

egg laying (for details, see [25]). During the host egg-laying

period, the parasitic female often visits the nests before the

parasitism act [26–29], which gives her the possibility of choos-

ing a fitting host clutch. Indeed, tracking of radio-tagged

cuckoo females showed that they are capable of finding

almost all nests in their territories, but eventually choose only

some of them for parasitism [29]. Hence, the brood parasite

could adopt the strategy of fine-tuned egg matching and

select preferentially those host nests with eggs more similar

to their own. This interesting hypothesis was investigated

only recently, but with ambiguous results. Avilés et al. [30]

and Cherry et al. [31] showed that cuckoo eggs were more

similar to host clutches in naturally parasitized nests than in

non-parasitized nests. However, these studies characterized

the degree of egg matching by principal component analysis

(PCA) based on reflectance spectrophotometry data with no

respect to avian colour vision. However, Antonov et al. [32]

used an avian vision physiological model [33,34], but did not

confirm this hypothesis. In this study [32], however, the

authors only compared cuckoo egg mimicry in naturally para-

sitized clutches and the nearest non-parasitized conspecific

neighbour despite the fact that cuckoo females may find

many nests in the broader neighbourhood, but parasitize

only some of them [28,29]. The last two studies [24,35] com-

pared matching of different egg morphs assessed by human

evaluation and reported equivocal results.

In our study, we compensated for the methodological arte-

facts of the previous studies. To quantify egg mimicry more

objectively, we used the method of physiological modelling of

avian colour vision implemented in the program AVICOL [36],

which calculates chromatic and achromatic contrasts between

two colours (see §2). We did not only compare the mimicry of

cuckoo eggs in naturally parasitized great reed warbler nests

and their nearest non-parasitized conspecific neighbours, but

we assessed cuckoo egg matching also in other host clutches

that were suitable for parasitism in terms of timing. Moreover,

we used a randomization approach [37] for statistical analysis,

which is a very appropriate tool for the simulation of host nest

choice by the brood parasite, providing intuitively interpretable

results. By using these methods, we investigated whether cuckoo

females target nests non-randomly within a population of a

major host, the great reed warbler (Acrocephalus arundinaceus),
to better match host clutches enhancing thereby the probability

of egg acceptance. More specifically, our prediction was
that cuckoo eggs in naturally parasitized nests will match the

appearance of host eggs better than they would do by chance.
2. Material and methods
(a) Study area and field measurements
The study was carried out in two fishpond systems between

Mutěnice (488540 N, 178020 E) and Hodonı́n (488510 N, 178070 E),

Czech Republic, from 5 May to 23 June 2009. We systematically

searched for great reed warbler nests in littoral vegetation sur-

rounding the fishponds. A majority of them were found during

nest building, and were checked daily until clutch completion.

During these checks, each newly laid egg was numbered using

a felt tip pen to allow its identification in the laying sequence.

If a cuckoo egg was found in a nest, then the nest was considered

as parasitized. The total sample used in analyses comprised

61 clutches (39 non-parasitized, 19 parasitized and three of

uncertain parasitism status).

Each parasitized clutch included in the analyses was spectro-

photometrically measured immediately after a cuckoo egg was

detected. The remaining eggs from these clutches, as well as the

non-parasitized clutches and those with uncertain status, were

measured on the day after clutch completion. If the nest was para-

sitized twice, then we used only the first cuckoo egg in our analyses

(n ¼ 4). We measured spectral reflectance of each egg in the range of

300–700 nm using a spectrophotometer (USB2000, Ocean Optics)

under standard light conditions. To prevent nest desertion during

the measurements, we temporarily exchanged host clutch with

four to five great reed warbler eggs from abandoned nests. For

measurements, we divided each egg into three regions across the

longitudinal axis and took three measurements from each region

(each covering ca 1 mm2). We avoided the egg poles to eliminate

a possible measurement error owing to marked curvature of egg-

shell surface. We also avoided extremely dark spots because they

had very low reflectance and their measurements could influence

mean reflectance values calculated per the whole egg surface.

During the measurements, the illuminant was a deuterium

and halogen light source (DT-Mini-GS, Ocean Optics). The light

was transferred to the eggshells through a quartz optic fibre

(QR400-7-UV/VIS-BX, Ocean Optics), and was reflected at an

angle of 458 to the surface. Data from the spectrophotometer

were loaded into OOIBase 32 (Ocean Optics) software. The

measurements were relative and referred to a standard white refer-

ence (WS-2, Ocean Optics) and to darkness. Reference and dark

calibration were made prior to the measurement of each clutch.

(b) Quantification of egg mimicry
As the shape of a reflectance curve need not necessarily correspond

to how the signal is processed by the receiver, we analysed the reflec-

tance data using models of avian vision [24,38]. Specifically, we

used physiological models [33,34] implemented in AVICOL v. 6 [36]

that reproduce bird retinal functioning and that account for nest

luminosity and bird sensitivity to estimate chromatic and achroma-

tic contrasts between the parasitic and host eggs. These models

integrated information about ambient light conditions, the reflec-

tance spectra of cuckoo and great reed warbler eggs, published

information for single- and double-cone photoreceptor spectral

sensitivities, photoreceptor noise and the transmission properties

of avian eyes to get biologically reliable colour-matching estimates

[39]. Ambient light values at nests of a typical open nester such as

the great reed warbler were taken from Avilés et al. [40]. Sensitivity

of single-cone photoreceptors was used to calculate chromatic con-

trasts and sensitivity of double cones to calculate achromatic

contrasts [41]. Spectral sensitivity has never been measured in the

cuckoo, but most bird species belong to one of two main groups dif-

fering particularly in spectral sensitivity of UV cones—UVS
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(ultraviolet-sensitive) and VS (violet sensitive) group [42]. Therefore,

we used data published in TetraColourSpace [43] for two repre-

sentatives of each group, the blue tit (Cyanistes caeruleus) for UVS

[44] and the Indian peafowl (Pavo cristatus) for VS type of colour

vision [45] and conducted all statistical analyses for both types

of colour vision separately. We determined the relative propor-

tions of the different single-cone types in the retina according to

available data (blue tit: ultraviolet-sensitive (UVS) single cones ¼ 1,

short-wavelength-sensitive (SWS) single cones¼ 1.92, medium-

wavelength-sensitive (MWS) single cones ¼ 2.68 and long-

wavelength-sensitive (LWS) single cones ¼ 2.70, derived from [44];

peafowl: UVS¼ 1, SWS ¼ 1.9, MWS¼ 2.2 and LWS¼ 2.1, derived

from [46]). For the high-intensity noise, we used a Weber fraction

value of 0.05 in both models.

The Vorobyev–Osorio model calculates chromatic (difference

in hue) and achromatic (difference in brightness) contrasts

between cuckoo and great reed warbler eggs in just noticeable

differences. Essentially, cuckoo eggs that appear similar to a

host clutch have smaller values of both contrasts than those

with poor mimicry. For further details of contrasts calculations,

see [33,34,36].
65
(c) Statistical analyses
Cuckoos frequently parasitize nests at the beginning of host egg

laying [5] and eat up one to three host eggs before or during the

parasitism event [28]. Therefore, earlier-laid host eggs may be

removed preferentially in comparison with the later-laid eggs,

which are usually paler [47,48]. Moreover, cuckoos could non-

randomly predate on host eggs of a particular type. This could

make the parasitized clutches distinct from the non-parasitized

ones and influence our results. Therefore, we tested whether

the naturally parasitized (n ¼ 19) and non-parasitized (n ¼ 39)

host clutches differ in various characteristics of colour, such as

hue, brightness and saturation. Specifically, we defined hue as rela-

tive photon catches of all four blue tit cone types involved in

chromatic discrimination and brightness as blue tit double-cone

photon catches [41,49]. Saturation was estimated as the distance

of the point from the achromatic centre of blue tit colour space

[43]. For analysis of spectral data, we used R package PAVO

[50,51]. All comparisons were conducted using Wilcoxon tests,

because the data did not comply with normality.

To test the egg-matching hypothesis, we used a randomization

test [37]. Because the evidence for exclusive territory defence of

cuckoo females is equivocal [52–56] and because home-range

sizes of female cuckoos vary widely between 33 and 217 ha in

our study area [57], we randomized the occurrence of parasitic

eggs in host clutches across the whole host population while

accounting for similar timing of egg laying. Accordingly, we

assigned to each cuckoo egg the host clutches that were in the

laying phase on the day when the focal cuckoo egg was laid,

including the naturally parasitized clutches. The laying phase

was defined as a 6-day interval from the day when the first host

egg was laid, because cuckoos in our population parasitize host

nests most frequently during this period. As a result, between

four to sixteen host clutches were assigned to each cuckoo egg,

and each measured host clutch (n ¼ 61) was used at least once.

We then calculated both chromatic and achromatic contrasts

between each parasitic egg (n ¼ 19) and all the assigned host

clutches, whereby we obtained a total of 203 chromatic and achro-

matic contrasts. Further, we randomly selected one contrast

belonging to each cuckoo egg and calculated a mean value of

these 19 contrasts. This procedure was repeated 9999 times.

Finally, we sorted these 9999 mean contrasts by their values and

also included the mean contrast from 19 naturally parasitized

nests. According to the egg-matching hypothesis, cuckoo eggs

should exhibit lower contrasts to host eggs in the naturally parasi-

tized clutches than cuckoo eggs in randomly assigned host
clutches. To explore this scenario, we calculated the proportion

of all simulated mean contrasts that were lower than the mean con-

trast of naturally parasitized nests. This proportion represents the

significance level of the randomization test [37].

Additionally, we conducted pair-wise comparisons (t-tests)

of both chromatic and achromatic contrasts of the naturally para-

sitized clutches with the nearest active non-parasitized clutches

available for the cuckoo on the day of parasitism on the focal

nest (n ¼ 15). The mean distance between the nearest neighbour

nests was 438.9+343.4 m (range: 20–1068 m). All statistical

calculations were performed in R v. 2.15 [51].
3. Results
There were no differences in parasitized and non-parasitized

host clutches in terms of eggshell colour characteristics, such

as hue, brightness and saturation (all p-values . 0.19 for UVS

and VS types of colour vision), and thus these differences

could not influence the results of our randomization analyses.

Randomization tests revealed that cuckoos did not lay

their eggs into host nests haphazardly, but matched host

clutches in chromatic spectral characteristics (figure 1). Sig-

nificant p-values ( p ¼ 0.0032 for UVS, p ¼ 0.0142 for VS)

showed that only in 32 and 142 cases of 9999 runs, respect-

ively, was the mean chromatic contrast from 19 randomly

simulated clutches lower than the mean chromatic contrast

calculated from the naturally parasitized clutches. On the

other hand, there was no indication of achromatic matching

(randomization tests: p ¼ 0.703 for UVS and p ¼ 0.666 for

VS). Similarly, the comparisons between the naturally parasi-

tized nests and their nearest non-parasitized neighbours with

similar timing showed a significant difference in chromatic

contrast (t ¼ 23.24, p ¼ 0.006 for UVS; t ¼ 22.40, p ¼ 0.030

for VS), but not in achromatic contrast (t ¼ 20.21, p ¼ 0.83

for UVS; t ¼ 20.24, p ¼ 0.82 for VS; figure 2). Both types

of analyses give compelling evidence that the cuckoos

actively select host nests for parasitism in order to match

the appearance of host clutches in chromatic characteristics.
4. Discussion
Similar to Avilés et al. [30] and Cherry et al. [31], we found that

cuckoo females probably use egg appearance as an important

cue to select host nests. Although our methodological

approach was different from that used in these two studies

(see §2), it is interesting that we obtained quite similar results.

Within a host population, cuckoo females parasitized clutches

with lower chromatic contrast than their own eggs but did not

use the information about the differences in achromatic egg-

shell characteristics. Low importance of the achromatic

contrast in the great reed warbler could be explained by the

nest light environment hypothesis [58–60]. This hypothesis

proposes that visual signals perceived by the receiver are

significantly affected by the amount of ambient light. Dim

light conditions allow only scotopic or mesopic vision, and

perception of colour signals is therefore strongly limited [61].

In these situations, discrimination based on achromatic con-

trast may be favoured [40,62,63]. However, the great reed

warbler is a typical open nester, and the amount of light

inside its nests most likely allows photopic vision and good

discrimination of colours [61]. In such conditions, chromatic

differences between two spectra are more perceptible than



600
(a) (b)

p = 0.0032 p = 0.7034

500

fr
eq

ue
nc

y

400

300

200

100

0

4 6 8 8
chromatic contrast achromatic contrast

10 12 14 10 12 14 16 18

400

300

200

100

0

Figure 1. Histograms of 9999 averaged (a) chromatic and (b) achromatic contrasts between cuckoo eggs (n ¼ 19) and all host clutches (n ¼ 61) with a similar
egg-laying date obtained from the randomization procedure. Arrows denote positions of values of mean contrasts between cuckoo eggs and host clutches in natu-
rally parasitized nests ( p-values given). Only results for UVS bird colour vision presented. (Online version in colour.)

15
25

20

15

10

5

10

5

(a) (b)
p = 0.006 p = 0.833

ch
ro

m
at

ic
 c

on
tr

as
t

ac
hr

om
at

ic
 c

on
tr

as
t

parasitized non-parasitized parasitized non-parasitized

Figure 2. (a) Chromatic and (b) achromatic contrasts between cuckoo and host eggs in naturally parasitized nests and nearest non-parasitized active nests with a
similar egg-laying date (n ¼ 15, p-values given). Only results for UVS bird colour vision presented. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132665

4

under poor light conditions [64]. Therefore, egg discrimi-

nation under such light conditions may favour chromatic

rather than achromatic visual signals [33,39]. Indeed, some

studies confirmed that egg-rejection behaviour in bright light

conditions depends primarily on chromatic rather than on

achromatic contrast [23,24,60]. Such host behaviour may

create a selection pressure on the cuckoo, which can gain an

advantage if it chooses the correct host clutches on the basis

of the chromatic signal. And this is what we found in our

study population—cuckoo females selected host clutches simi-

lar to their own eggs in chromatic features.

In contrast to the results of Avilés et al. [30], Cherry et al. [31]

and the present study, Antonov et al. [32] did not support the

egg-matching hypothesis in the closely related marsh warbler

(Acrocephalus palustris). The authors argued that selection of

better matching host egg phenotypes probably cannot exist

in a host–parasite system where host inter-clutch variation is

continuous, overall low or moderate. However, these traits

also partly apply to great reed warbler eggs [65–67]. The dis-

crepancy in results could be explained by different light

conditions in the nesting habitats of these two warbler species.

The vegetation surrounding marsh warbler nests is generally

denser than in the pure reed beds used by the great reed

warblers [68,69] and probably provides a different light

environment, not only in terms of the quantity but also the

quality of the light [70]. However, it is not apparent whether
this difference in nest light environment is sufficient to explain

the differing results of the cited studies. In addition, it is also

possible that the denser nesting vegetation of the marsh war-

bler makes the nest search more difficult for the cuckoos and

prevents them from finding enough nests from which to

make their selection, and the differences in nest availability

between the two warbler species at the two study sites could

also play a role. While Antonov et al. [32] claimed that the

marsh warbler shows a secretive nesting behaviour and low

nest density, our data on the great reed warbler demonstrate

that during the peak breeding season the cuckoos have

ample opportunities to choose [71].

It is interesting that our results were consistent for both

main types of avian colour vision. These two groups differ

primarily in the spectral sensitivity of their ultra-short-wave-

length cones (UVS or VS type). The other three types of cones

are relatively conservative in all bird species with certain

variability in SWS cones [42,72]. Unfortunately, it is not yet

known for certain whether the common cuckoo belongs to

the UVS or the VS group (although some indirect evidence

suggests the VS group in cuckoos; see [73,74]). However,

we conducted our analyses using both types of avian

colour vision, thus we are confident that any errors associated

with this ‘cone sensitivity problem’ did not affect our results.

It must be pointed out, however, that our findings could

be potentially biased owing to quick and thus unobserved
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rejections of poorly matching parasitic eggs in nests of uncer-

tain parasitism status (n ¼ 3). To be sure that this was not

the case, we performed new randomizations where we

added three artificially created (simulated) parasitized clut-

ches with average chromatic contrasts to the original sample

size. Detailed description of methods of these additional

simulations is summarized in the electronic supplementary

material. The results of these simulations showed that the

addition of three simulated parasitized clutches did not

affect the results of our original analysis ( p ¼ 0.0173 and

0.0311 for UVS and VS, respectively). Moreover, the cuckoo

is not only a brood parasite but it can also partially predate

on host clutches without parasitizing them [75]. In addition,

Moksnes et al. [28], who videotaped nests of the reed warbler

(Acrocephalus scirpaceus) during egg laying, recorded cuckoo

visits in 20 nests; however, only 14 of them were parasitized.

The remaining six nests were only partially depredated by

the cuckoo. If we apply this ratio to our data (19 parasitized

nests and three nests with uncertain status), then it would

suggest that some (if not all) of these three nests were most

probably only partially depredated and not parasitized.

An interesting and important question is whether cuckoos

really profit from the host selection in our study area. Our

recent study revealed that the great reed warblers recognize

parasitic eggs based on the chromatic contrast, but only in

well illuminated nests [60]. However, the chromatic contrast

alone (calculated for UVS type of cones) did not differ

between rejecters (n ¼ 16) and acceptors (n ¼ 23; Wilcoxon

test, W ¼ 217, p ¼ 0.36, data from 2009 and 2010). This may

be because cuckoos match the appearance of the host

clutches, thus reducing the contrast perceived by the hosts.

We suggest that cuckoo parasitizing host clutches similar to

its own eggs in chromatic aspects may even get below the dis-

crimination threshold of its host. By reaching the host’s

acceptance threshold, the brood parasite may effectively

escape host rejection of parasitic eggs and thereby increase

its reproductive success.

If the egg-matching scenario is true and the cuckoo

females preferentially select the best-matching host nests,

then they should know what their own eggs look like. A

number of studies have been published on the mechanisms
of own egg recognition in cuckoo hosts [76–83] and some of

them suggest that birds possess an internal template of their

own eggs [81–83]. So, one may expect that cuckoos may exhibit

such abilities as well. Owing to the elusive lifestyle of the

cuckoo, however, the direct mechanism of how cuckoo females

know the appearance of their own eggs remains enigmatic.

Similar to the hosts, the memory template of their own eggs

may comprise an inherited and a learned component acquired

during the first egg laying [79]. The idea mentioned by Anto-

nov et al. [32] that the first cuckoo egg is laid somewhere in

isolation seems highly unlikely [5]. Instead, cuckoo females

are probably able to remember the appearance of their own

eggs and compare this self-referent phenotype with the

appearance of host clutches they have visited prior to laying.

However, to the best of our knowledge, the cuckoo has

never been observed watching its egg during the very short

parasitism events.

The main conclusion of this study is that cuckoos do not

lay eggs haphazardly in a host population, but match the

appearance of host clutches with respect to chromatic con-

trast. By doing so, they may effectively reduce the chance

of egg rejection by the host and thus enhance their reproduc-

tive success. However, it is currently difficult to explain how

the cuckoo can learn the appearance of its own eggs. There-

fore, we highly encourage others to test this appealing idea

in future studies.
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