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biological view
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Recent studies of the molecular mechanisms of long-term depression (LTD)

suggest a crucial role for the signalling pathways of apoptosis (programmed

cell death) in the weakening and elimination of synapses and dendritic

spines. With this backdrop, we suggest that LTD can be considered as the

electrophysiological aspect of a larger cell biological programme of synapse

involution, which uses localized apoptotic mechanisms to sculpt synapses

and circuits without causing cell death.
1. Introduction
Long-term potentiation (LTP) and long-term depression (LTD) are much studied

for their own sake as fascinating neurophysiological phenomena as well as for

their crucial relevance for brain development, cognitive function and human ner-

vous system diseases. Numerous excellent and worthy reviews have been written

about the mechanisms of LTP and/or LTD, but mostly from a physiological–

pharmacological and/or molecular perspective [1–6]. The majority of these

reviews tend to portray synapses as largely conceptual compartments in which

signalling pathways (kinases, phosphatases, etc.) are activated or inactivated,

resulting in changes in the function and abundance of postsynaptic glutamate

receptors. The dynamic aspects of synaptic plasticity mechanisms—such as the

synaptic delivery of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptors in LTP and the removal/endocytosis of AMPA receptors in

LTD, which are now widely accepted in the field [1,7–9]—are often conceptually

divorced from the structural and cell biological changes taking place in the

neuron and synapse as a whole. In this review, we offer a view of LTD from a

cell biologist’s perspective, emphasizing the idea that weakening of synaptic

transmission and endocytosis of AMPA receptors occur not in molecular iso-

lation, but rather in the context of an ‘involution’ of synapses, whereby

synapses wither and die and their contents are mobilized and removed.
2. Caspases and apoptotic mechanisms in long-term
depression

Programmed cell death (also called apoptosis) [10] removes excess cells that

form during the development of an organism, sculpting a wide range of tissues

and organs, not least the nervous system, into their adult form [11,12]. The pro-

cess of apoptosis—which involves the coordinated regulation and action of

multiple genes and proteins—results in the timely demise and tidy removal

of unwanted cells with minimal inflammatory or other untoward effects on sur-

rounding tissues. In recent years, evidence is accumulating for an involvement

of the molecular mechanisms of apoptosis in processes that do not result in cell

death (i.e. non-apoptotic pathways).

Examples of non-cell death roles of apoptotic mechanisms in the nervous

system include the dendritic pruning of Drosophila neurons during develop-

ment [13,14], the structural remodelling of hippocampal neuron synapses and

Xenopus retinal growth cones [15,16], and bird song learning [17]. This topic

has been reviewed recently by Hyman & Yuan [18].

The cysteine-aspartate protease caspase-3 is well established as a key ‘execu-

tioner’ enzyme in the programmed cell death of neurons and other cell types
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Figure 1. A putative illustration of apoptotic pathway involvement in spine pruning. LTD induces Ca2þ influx via NMDA receptors and an increase in Ca2þ levels in
mitochondria, which leads to cytochrome c release. Activation of the mitochondrial apoptosis pathway culminates in activation of caspase-3, which exerts local effects on
synaptic strength (LTD) and spine size by proteolysis of proteins in the postsynaptic compartment, e.g. Akt. The ubiquitin-proteasome system (UPS) and IAPs inhibit
activated caspases and limit the extent of local synaptic apoptosis. For simplicity, NMDA receptors are shown only in one spine at bottom of the dendrite, and the LTD
effects of AMPA receptor depletion and spine shrinkage are shown only on the upper side of the dendrite (GSK3b, glycogen synthase kinase-3b).
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[11]. Caspase-3 (and its close relative caspase-7) lies down-

stream of the two major apoptotic pathways—intrinsic and

extrinsic—within cells. In the intrinsic (or mitochondrial)

pathway, apoptotic stimuli lead to release of proapoptotic

molecules, such as cytochrome c and second mitochondria-

derived activator of caspases (SMAC, also known as

DIABLO), from mitochondria; these molecules lead to acti-

vation of caspase-9, which then cleaves and activates

caspase-3 and caspase-7, leading to apoptosis [19]. The

release of cytochrome c from mitochondria is inhibited by

antiapoptotic members of the Bcl-2 family of proteins (such

as Bcl-xL) and promoted by proapoptotic members (such as

BAD, BAX and BAK) [20]. In the cytoplasm, activation of

the caspase-9–caspase-3 cascade is restrained by inhibitor

of apoptosis proteins (IAPs) which bind to and inhibit these

caspases [21,22].

In addition to their crucial role in programmed cell death,

recent studies show that apoptotic mechanisms, in particular

caspase-3, participate in LTD and perhaps synapse elimin-

ation in the absence of cell death. Pharmacologic inhibition

of caspase-3/7 or genetic disruption of caspase-3 in mice

blocks induction of LTD in CA1 region of hippocampus

[23]. N-methyl-D-aspartate (NMDA) receptor-dependent

AMPA receptor internalization—which is an essential mech-

anism underlying LTD induction—is also blocked by the

same manipulations in cultured neurons [23]. Thus, cas-

pase-3 activity is required for NMDA receptor-dependent

LTD. Interestingly, caspase-3 does not appear to be necessary

for mGluR-dependent LTD (Kei Cho 2013, personal com-

munication, [24]). In addition, knockout mice lacking BAD

or BAX (proapoptotic Bcl-2 family proteins) are defective in

AMPA receptor internalization and NMDA receptor-
dependent LTD, but not in mGluR-dependent LTD [24]. In

hippocampal slice cultures, postsynaptic overexpression of

Bcl-xL (an antiapoptotic Bcl-2 family member) suppresses the

induction of LTD [23]. Together, these data strongly support

the idea that activation of the mitochondrial (intrinsic) path-

way of apoptosis—which seems to occur at least in part

within the postsynaptic compartment—is required for LTD.

LTD in hippocampal slice cultures is also inhibited by postsyn-

aptic overexpression of different fragments of XIAP (an IAP

protein that inhibits caspase-9 and caspase-3), confirming the

importance of caspase-9–caspase-3 activity in LTD [23].
3. Localized ‘synaptic apoptosis’ as a conceptual
framework for long-term depression

Caspase-3 is necessary for LTD, but is it activated during

LTD? This has been more difficult to ascertain, because the

degree and extent of caspase-3 activation would be predicted

to be less than that occurring during programmed cell death.

Indeed, by staining and immunoblotting approaches, it has

been shown that caspase-3 is activated, but only to a

modest extent, following bath NMDA stimulation (‘chemical

LTD’) [23,24]. Active caspase-3 was detectable in dendrites as

well as cell body under such conditions [23].

The activation of caspase-3 (and presumably the mitochon-

drial apoptosis pathway leading to caspase-3 activation) may

be restricted to peripheral compartments of the neuron so that

death of the entire cell does not ensue (figure 1). This has

given rise to the idea of localized ‘synaptic apoptosis’—a term

first coined by Mattson et al. [25]—as the cell biological basis of

LTD. A critical question that remains is whether local activation
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Figure 2. Relative size and distribution of mitochondria and spines in neuronal
dendrites. Dendrites of cultured hippocampal neurons days in vitro (DIV) are
shown with mitochondria labelled with mitochondria-targeted red fluorescence
protein (RFP; red) (a), and in merge with dendritic spines labelled with yellow
fluorescence protein (YFP)-actin (green) (b). Dendritic mitochondria range in
length from 1 – 2 mm to 20 – 30 mm. In most cases, a single mitochondrion
spans a distance that encompasses multiple dendritic spines.
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of the mitochondrial apoptosis pathway and of caspase-3 is

sufficient—as opposed to just being necessary—for LTD. Addres-

sing this question will require development of experimental tools

to activate apoptosis mechanisms within neurons at a specific

location and time. An important related unknown is the molecu-

lar mechanism(s) by which active caspase-3 contributes to LTD.

Once apoptotic mechanisms including caspase-3 are

locally activated by LTD-inducing stimuli, what determines

the outcome between local synapse weakening versus cell-

wide death? It appears that the mitochondrial apoptotic path-

way is only transiently and modestly activated by LTD-

inducing stimulation, whereas neuronal cell death is associated

with higher levels of activation of apoptotic mechanisms and

caspases [23,24,26]. We hypothesize that a greater amplitude,

broader extent and/or longer duration of activation of the

mitochondria-caspase pathway in neurons would be required

to mediate cell death. It is possible that the dendrites of a

neuron might be able to integrate depressive signals, such

that only when these signals accumulate beyond a certain

threshold, do they lead to apoptotic death of the whole

neuron. When the apoptotic signals are below the threshold

for cell death, only local synaptic apoptosis can occur. The

elaborate, extended morphology of neurons is well suited for

localized apoptosis to occur in restricted compartments far

from the cell body. The mechanisms that ‘insulate’ the effects

of apoptosis to localized peripheral regions of the cell are pre-

sently unclear but would be important to study. It would not

be surprising if there were active cell biological mechanisms to

restrict the spread of local synaptic apoptosis in neurons, just

as there are active mechanisms to inhibit the progression of

apoptotic cell death [20].

How big is the region of localized synaptic apoptosis? Most

dendritic mitochondria are quite large relative to individual

spines (typically 2–20 mm in length [27]). Mitochondria reside

within the dendrite shaft and they span lengths that encompass

multiple spines/synapses (figure 2). If the mitochondrial

release of proapoptotic factors, and consequent activation of

the caspase-9–caspase-3 cascade, mediates the induction of

LTD, one would expect that LTD would spread over con-

siderably more than 10 mm. Previous conclusions of the

homosynaptic nature of LTD are largely based on experiments

showing pathway or input specificity, in which the stimulated

pathways/inputs could be hundreds of micrometres apart. In

such circumstances, short-distance heterosynaptic LTD could

be missed. Indeed, LTD has been reported to ‘spread’ more

than LTP [28], and heterosynaptic LTD (LTD occurring at unsti-

mulated synapses) has been described in several studies [29,30].
4. Localized apoptosis and ‘synapse involution’
Interestingly, LTD is most robustly inducible during the period

of two to four weeks of age in a rodent’s life [31,32], which cor-

responds to the most active period of synapse elimination

during brain development. LTD is also directly associated

with shrinkage and loss of dendritic spines in live-imaging

experiments [33,34], leading many to think about NMDA

receptor-dependent LTD as an electrophysiological correlate

(or harbinger) of excitatory synapse elimination. Given that

apoptosis mechanisms seem to underlie LTD (as discussed

above), it is appealing to consider LTD and the associated

spine shrinkage and elimination as different facets of an overall

process of synapse involution.
What are the molecular mechanisms that underlie spine

shrinkage and synapse loss associated with LTD? In pro-

grammed cell death, caspase-3 and other effector caspases

orchestrate dismantling of the cell structure through cleavage

of specific substrates [35]. It seems reasonable to suppose that

localized synaptic apoptosis, such as in LTD, might also involve

local cleavage of key substrates by caspase-3, leading to local

pruning of neuronal structures. Actin rearrangements underlie

the structural remodelling of dendritic spines, while micro-

tubules are the core support of dendritic shafts [36]. Various

actin regulatory proteins, including ROCK1, gelsolin, spectrin

and fodrin are present in dendrites [37–39] and are known

caspase-3 targets [40–42]. Microtubules play an essential role

in shaping the dendritic tree. Tau, a microtubule-associated

protein, is also a caspase-3 target [43]. It is worth pointing

out here that caspase-3 activation has also been observed not

just downstream of NMDA receptor activation, but dependent

on NMDA-induced AMPA receptor internalization [44].

Other prominent signalling molecules that are involved in

LTD and shown to be present in dendrites are the calcium-

sensitive phosphatase calcineurin and the protein kinase Akt.

Calcineurin regulates ion channels and cytoskeletal proteins

[45,46], inhibits synaptic function [47] and is proteolytically acti-

vated by caspase-3 [48]. Akt is an antiapoptotic and progrowth

kinase that phosphorylates and inhibits glycogen synthase

kinase (GSK) 3b activity, which is required for induction of

LTD [49,50]. Akt is also a substrate of caspase-3 [51], and pre-

vention of cleavage of Akt blocks LTD [23] (figure 1). Hence,
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caspase-3 involvement in LTD induction could involve Akt pro-

teolysis, which would in turn increase GSK3ß activity. It is

interesting that Akt is a proto-oncogene that promotes dendrite

growth [52], raising the possibility that the phosphatidylinositol

3 (PI3) kinase-Akt signalling pathway is antagonistic to the

mitochondrial apoptosis-caspase-3 pathway in the local

regulation of synapse strength and synapse morphology.

The postsynaptic density (PSD) is a sine qua non feature of

excitatory synapses; it is tightly aligned with the presynaptic

active zone and typically found at the tip of dendritic spines.

A complex, proteinaceous, membrane-associated organelle,

the PSD is the structure in which postsynaptic glutamate

receptors are concentrated and where they interact physically

and functionally with scaffold proteins and associated signal-

ling molecules (kinases, phosphatases, guanine nucleotide

exchange factors, GTPase activating proteins, etc.) [53]. The

size of the PSD (and of the dendritic spine) correlates closely

with the strength of the synapse and the abundance of post-

synaptic AMPA receptors [53]. Therefore, during LTD, the

removal of postsynaptic AMPA receptors and associated

shrinkage of synapses and spines must involve major mol-

ecular rearrangements, and ultimately down-sizing, of the

PSD. Indeed, a recent study by Granger et al. supports the

notion that structural reorganization of the synapse is a

fundamental mechanism underlying synaptic plasticity [54,55].

The PSD is organized around a lattice of key scaffold pro-

teins, of which PSD-95 is one of the most abundant and best

understood [56,57]. PSD-95 overexpression boosts excitatory

synaptic transmission, a function that depends on the accumu-

lation of PSD-95 in synapses, which in turn is regulated by

phosphorylation of PSD-95 on ser-295 by protein kinase JNK

[58]. Ser-295 dephosphorylation of PSD-95 occurs rapidly fol-

lowing LTD-like stimulation and is required for AMPA

receptor internalization and LTD [58]. The dephosphorylation

appears to be mediated by PP1/PP2A phosphatases, which

are activated during LTD [46,59]. Dephosphorylation of ser-

295—as well as phosphorylation of threonine-17 by GSK-3—

contributes to the destabilization of PSD-95 in the PSD [60],

which should lead to mobilization and loss of PSD-95 from

synapses and mediate morphological shrinkage of synapses/

spines in addition to weakening of synaptic transmission.

It is likely that the size and structure of the PSD are also

regulated by additional mechanisms during LTD, such as

protein degradation by proteases and by proteasomes, which

are recruited to spines in activity-dependent fashion [61,62].

Whether caspase-3 substrates exist in the PSD is presently

unknown and an exciting question to pursue in future studies.
5. External forces in elimination of spines and
synapses: microglia engulfment

In addition to caspase activation, removal of apoptotic cellu-

lar debris by phagocytic cells is a core event in programmed

cell death [63]. As LTD and synapse involution by local apop-

tosis could depend on similar mechanisms of programmed

cell death, one is forced to wonder whether phagocytosis

might play a role in removal of ‘dying’ synapses.

Indeed, recent studies point to phagocytic processes for

clearance of synapses and spines in the nervous system [64,65].

Microglia (resident macrophage-like cells of the central nervous

system) have been shown in imaging studies to engulf remnants

of synapses in the developing brain [66]. The phagocytosis of
synapses appears to depend, at least in part, on complement pro-

teins, which have been long studied in innate immunity and

which are significantly expressed in the brain. A major function

of complement is to tag microbes or unwanted cells and cellular

debris for rapid clearance by macrophage engulfment or

complement-mediated cell lysis [67]. Complement cascade com-

ponents C1q and C3 can be found at synapses during the period

of synapse elimination and are required for the developmental

pruning of retinogeniculate synapses [65,68]. Disruption of

microglia or complement function caused defects in the

development of neural circuits [65–69].

These studies suggest that synapse elimination in develop-

ment and in disease might involve recognition and clearance of

dying synapses by professional phagocytic cells, analogous to

the removal of apoptotic cell corpses in programmed cell death.
6. How is the mitochondrial apoptosis pathway
activated by long-term depression stimuli?

Mitochondria are organelles well positioned to play a role in

synaptic plasticity. Mitochondria are present close to and

occasionally even within individual spines (figure 2), and their

distribution and motility are regulated by synaptic activity [70].

Well known to act as Ca2þ buffers in cells, mitochondria

take up Ca2þ after synaptic stimulation [71]. Additionally,

Ca2þ uptake by mitochondria promotes their release of pro-

apoptotic factors [72]. Thus, a dendritic mitochondrion can

act as a sensor of prolonged, moderate elevation of postsynaptic

Ca2þ, a condition that seems to be critical for induction of LTD.

Mitochondria also often have close contacts with the endo-

plasmic reticulum (ER) [73], which is extensively present in

postsynaptic compartments (figure 1). Activation of mitochon-

drial Ca2þ uptake by Ca2þ release from ER leads to Ca2þ

accumulation in mitochondria [74] and cytochrome c release

[75]. Ca2þ release from ER stores via ryanodine receptors and

IP3 receptors may also play a role in LTD in hippocampal neur-

ons and Purkinje cells [28,76,77], and appears to be required for

caspase-9/3 activation by NMDA stimulation in neurons [23].

It is tempting to speculate that the functional interaction of

ER and mitochondria—which has been recently shown to

also be involved in autophagosome formation [78]—might be

important for LTD induction.
7. Long-term depression in neurodegeneration
Synapse loss and reduced dendritic spine density are character-

istic features of various neurodegenerative diseases [68,79,80].

NMDA receptor activity has been implicated in the neurotoxi-

city of epilepsy, Huntington’s disease, Alzheimer’s disease,

stroke and traumatic brain injury [81–85]. Excessive NMDA

receptor activation can induce loss of dendritic spines and neur-

ite beading [86], and subsequent neuronal death [87]. Hence, it

is possible that physiological LTD and synapse loss in neurode-

generation share common mechanisms. In line with this

hypothesis, Ab oligomers (which are probable pathogenic

agents in Alzheimer’s disease) can enhance LTD. Ab oligomers

can also induce or promote spine loss, AMPA receptor internal-

ization, stimulation of calcineurin and GSK3ß and activation of

caspase-3 [88–95], which are common to the features of NMDA

receptor-dependent LTD. Notably, D’Amelio et al. [47] observed

that active caspase-3 is elevated in the dendritic spines of a
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transgenic mouse model of Alzheimer’s disease (Tg2576), in the

absence of cell death, and this caspase-3 activation correlated

with memory impairment and reduced spine density and size.
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8. Are there similar apoptotic mechanisms
occurring in axons and presynaptic sites?

Most of the studies reviewed here have focused on dendrites

and spines, because the postsynaptic compartment is easier

to manipulate and measure experimentally in molecular-

genetic and electrophysiological experiments. Nevertheless,

there have been a few studies showing the involvement of

caspases in axon pruning in the absence of neuronal death

[96,97]. Although further studies are needed, it appears that

apoptotic mechanisms can also regulate axonal morphology.

It will be interesting to investigate whether local activation of

caspases can locally affect synapse structure and function

from the presynaptic side [98,99].
 20130138
9. Viewing long-term potentiation and
long-term depression as growth versus
apoptosis of synapses

At a very simple cell biological level, we propose that LTD and

synapse loss are the opposites of LTP and synapse formation:

LTD and synapse elimination can be regarded as manifestations

of synapse ‘involution’, whereas LTP and new synapse for-

mation can be considered synapse ‘growth’. Both are, of
course, natural, even temporally overlapping processes in the

maturation of neurons and circuits.

In the context of growth versus involution, it is notable

that LTP and LTD use largely opposing signalling pathways

that have been much studied in the context of oncogenesis.

In contrast to the attrition of synapses in LTD, which is

dependent on apoptotic signalling pathways (as discussed

above), LTP relies on signalling mechanisms implicated in

cell growth and proliferation. For example, activation of the

proto-oncogene Ras, and its oncogenic downstream kinases

PI3 kinase and ERK, favours LTP rather than LTD

[100,101]. The proto-oncogene Akt, which is downstream of

PI3 kinase, promotes the growth of dendrites and LTP but

antagonizes LTD [49]. Phosphatase and tensin homolog

(PTEN), a protein phosphatase and tumour suppressor that

opposes the action of the Ras-PI3 kinase pathway, drives

synaptic depression and is required for LTD [102]. The

protein kinase GSK3ß is critical for NMDA receptor-depen-

dent LTD [49] and is also known to promote cell death, at

least in part via the intrinsic apoptosis pathway [103].

In conclusion, recent data from a variety of experimental

systems point to an important role for apoptotic mechanisms

in LTD and synapse elimination. By analogy to cancer signal-

ling, we suggest that common molecular mechanisms that

drive cell growth and proliferation in mitotic cells are used

in postmitotic neurons for expansion and strengthening of

specific synapses (LTP). Conversely, postmitotic neurons

have adapted the molecular mechanisms of programmed

cell death to weaken and eliminate unwanted synaptic

connections in localized regions of the cell.
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