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Two sides to long-term potentiation:
a view towards reconciliation

Zahid Padamsey and Nigel Emptage

Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK

Almost since the discovery of long-term potentiation (LTP) in the hippocampus,

its locus of expression has been debated. Throughout the years, convincing

evidence has accumulated to suggest that LTP can be supported either presyn-

aptically, by an increase in transmitter release, or postsynaptically, by an

increase in a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

receptor number. However, whereas postsynaptic enhancement appears to be

consistently obtained across studies following LTP induction, presynaptic

enhancement is not as reliably observed. Such discrepancies, along with the fail-

ure to convincingly identify a retrograde messenger required for presynaptic

change, have led to the general view that LTP is mainly supported postsynapti-

cally, and certainly, research within the field for the past decade has been heavily

focused on the postsynaptic locus. Here, we argue that LTP can be expressed at

either synaptic locus, but that pre- and postsynaptic forms of LTP are dissociable

phenomena mediated by distinct mechanistic processes, which are sensitive

to different patterns of neuronal activity. This view of LTP helps to reconcile

discrepancies across the literature and may put to rest a decades-long debate.

1. Long-term potentiation expression at the pre- and
postsynaptic locus is mechanistically distinct

While the locus of long-term potentiation (LTP) expression is disputed, the locus of

LTP induction is widely accepted to be postsynaptic and dependent on N-methyl-

D-aspartate receptors (NMDARs). Blockade of NMDARs is often reported to inhi-

bit LTP induction [1], and Ca2þ influx from the receptor has been causally linked to

the insertion of postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptors (AMPARs) [2]. NMDARs, however, are not always required for

the induction of LTP. In 1990, Grover & Teyler [3] reported that LTP could be

induced in NMDAR blockade (50 mM (2R)-amino-5-phosphonovaleric acid

(APV)) with 200 Hz, but not 100 Hz, tetanic stimulation; potentiation was not

simply a result of residual NMDAR activity during high-frequency stimulation

as it was induced with similar magnitude under a more potent receptor blockade

(100 mM APV þ 20 mM MK-801) ([4] but see [5]). LTP obtained in NMDAR block-

ade was later shown to require the activation of L-type voltage-gated calcium

channels (L-VGCCs) [6–11]. Others subsequently reported that a similar form

of potentiation could be obtained (i) when presynaptic stimuli (less than or

equal to 0.1 Hz) were delivered in the presence of voltage-gated potassium chan-

nel blockers [6,8,9,11–13], (ii) when tetanic stimulation (25–100 Hz) occurred in

the absence of gamma aminobutyric acid A (GABAA)-mediated inhibition

[14,15] and (iii) when presynaptic stimuli (1–2 Hz) were paired with strong post-

synaptic depolarization [7,16]; by contrast, no potentiation was induced by

presynaptic stimulation in the absence of postsynaptic depolarization or by post-

synaptic depolarization in the absence of presynaptic stimulation [4,17]. These

findings suggest that the induction of L-VGCC-dependent LTP requires presyn-

aptic activity to coincide with strong postsynaptic depolarization, and that

given strong postsynaptic depolarization, LTP can be induced even with very

low-frequency (less than or equal to 0.1 Hz) presynaptic stimulation. Although

it may be thought that the stimulation paradigms used to obtain L-VGCC-depen-

dent LTP represent artificial experimental conditions that would be unlikely to

occur in vivo, several groups have also shown that L-VGCC-dependent LTP can

be induced by theta-burst stimulation [10,18–21], which is thought to emulate
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physiological patterns of hippocampal activity. Moreover, the

finding that inhibition of L-VGCCs augments the impairment

to spatial memory caused by NMDAR antagonists, suggests

that L-VGCCs support some aspects of learning and memory

in vivo, independent of NMDARs [22–24].

The locus of expression of L-VGCC-dependent LTP appears

to be presynaptic [16,20,25] (but see [4]). The most compelling

evidence comes from Bayazitov et al. [20], who used synaptopH-

lourins to optically monitor activity-driven changes in

presynaptic function [20]. SynaptopHlourin is a pH-sensitive

variant of green fluorescent protein that has been fused to the

luminal domain of the vesicular protein, VAMP2. The fluoro-

phore is quenched within the acidic lumen of the vesicle and

fluoresces upon vesicular exocytosis, when it is exposed to the

pH-neutral extracellular environment. Bayazitov et al. [20]

demonstrated that presynaptic function was enhanced follow-

ing either theta-burst or 200 Hz stimulation and that such

increases could only be abolished with the L-VGCC antagonist,

nitrendipine, but not with the NMDAR antagonist, APV; the

resilience of presynaptic enhancement to APV is also evident

in several studies using FM dyes to monitor presynaptic func-

tion [18,26,27]. Moreover, in APV, a similar fold potentiation

was observed both for the presynaptic pHlourin response and

the recorded field potential, suggesting that LTP was exclusively

expressed presynaptically under NMDAR blockade. Conver-

sely, tetanus in nitrendipine resulted in an enhancement of the

recorded field potential but not in the presynaptic pHlourin

response, suggesting that under L-VGCC blockade, LTP was

exclusively expressed postsynaptically. Such findings strongly

suggest that pre- and postsynaptic forms of LTP are mechanisti-

cally distinct, with the former requiring L-VGCC activation and

the latter requiring NMDAR activation.

The finding that presynaptic change can occur independently

of NMDAR activation appears to be at odds with findings from

other laboratories, including our own, that demonstrate that

NMDAR blockade abolishes, or at least reduces, presynaptic

enhancement [18,20,26–28]. It is, however, important to recog-

nize that the NMDAR, in addition to acting as a Ca2þ source

for the spine, is also a potent source of depolarization for the

cell and dendrite. The NMDAR is far more permeable to Naþ

than it is to Ca2þ, and the activation of the receptor facilitates

somatic and dendritic spiking [14,29–32]. Although postsynaptic

enhancement depends on NMDARs as a source of Ca2þ, presyn-

aptic enhancement, given its dependence on L-VGCC activation,

may only rely on NMDARs as a source of postsynaptic depolar-

ization. This would explain why NMDAR antagonists abolish

presynaptic potentiation during standard 100 Hz, but not

during 200 Hz or theta-burst stimulation protocols, which are

more effective at producing postsynaptic depolarization via

AMPAR activation. It is important to note that presynaptic

potentiation can also be obtained when single presynaptic

stimuli are paired with postsynaptic depolarization, which

rules out any specific requirement of high-frequency presynaptic

activity for the enhancement of presynaptic strength [16,33].

Thus, pre- and postsynaptic forms of LTP may well be mechan-

istically dissociable and differentially depend on L-VGCCs and

NMDARs for Ca2þ influx.
2. Reconciling the literature
The inconsistency with which presynaptic changes are reported

across laboratories has cast doubt as to whether the presynaptic
terminal is a locus of LTP expression. However, given the

differential importance of L-VGCC activation in pre- and

postsynaptic forms of LTP, the failure of some laboratories to

report presynaptic enhancement might depend on the nature

of the experimental conditions under which LTP is induced.

L-VGCCs are activated by strong depolarization and are

susceptible to desensitization during periods of prolonged

depolarization (more than 100 ms) [34,35]. As such, we reason

that the magnitude and duration of postsynaptic depolarization

during LTP induction determines the extent of L-VGCC acti-

vation, and thus the likelihood that LTP has a presynaptic

component of expression. To test this idea, we examined past

studies to see whether a correlation exists between the stimu-

lation protocol used to induce LTP and the likelihood of

obtaining presynaptic enhancement. To circumvent bias, our

literature search was guided by past reviews on the locus

of LTP expression [2,36–42], including those predominantly

supporting either a pre- [39] or postsynaptic view [2,36,37].

Collectively, the studies included in our analysis employed

a variety of techniques to investigate the locus of LTP expres-

sion at Schaffer-collateral synapses, including the use of: the

NMDAR-component of synaptic potentials, glial transport cur-

rents, use-dependent-receptor blockers to estimate glutamate

release probability, paired pulse ratios or brief high-frequency

bursts to monitor changes in short-term plasticity, and finally,

FM dyes, Ca2þ indicators or pHlourins to optically monitor pre-

synaptic function. We excluded studies using coefficient of

variation analysis, minimal stimulation or paired recordings,

principally because the unmasking of postsynaptically silent

synapses can masquerade as presynaptic enhancements using

these techniques. Postsynaptic unmasking contributes signifi-

cantly to LTP expression, especially during the first few weeks

of postnatal development, when synaptic plasticity is most

commonly studied [43]. It is therefore difficult to judge whether

changes in coefficient of variation analysis or in synaptic failure

rate following LTP induction in young tissue are attributable to

the enhancement of pre- or postsynaptic function. Moreover,

results from minimal stimulation are potentially confoun-

ded by activity-dependent changes in axonal excitability for

experiments conducted at room temperature ([44] but see [45]).

We examined a total of 38 studies, which assess LTP

expression across 53 experimental conditions (table 1). Pre-

synaptic changes were reported in 23 of the 38 studies and in

23 of the 53 experimental conditions. LTP was generally

induced either by brief, high-frequency tetanic stimulation

(50–200 Hz) or by a pairing protocol, in which lower frequency

stimulation (generally less than 2 Hz but ranging between 0.2

and 100 Hz) was delivered while voltage-clamping the post-

synaptic neuron between 210 and 10 mV, often for tens of

seconds. From our meta-analysis, we find that LTP is signifi-

cantly more likely to have a presynaptic component of

expression when induced by tetanic stimulation (20 of 35 con-

ditions) rather than by pairing (3 of 18 conditions) (X2 ¼ 7.92;

p ¼ 0.005). LTP induced by pairing, rather than tetanic stimu-

lation, also appeared to be insensitive to L-VGCC blockers

[7,10,18–20]. Perhaps, one reason for these findings is that

prolonged periods of depolarization that are involved in

pairing protocols, although effective at relieving the Mg2þ

block of NMDARs, may desensitize L-VGCCs; the resulting

LTP is therefore insensitive to L-VGCC antagonists and lacks

a presynaptic component of expression. That said, pairing pro-

tocols can elicit L-VGCC-dependent LTP when postsynaptic

depolarization consists of several brief, rather than one long,
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voltage step; this protocol may more effectively activate

L-VGCCs without triggering channel desensitization [7].

Tetanic stimulation did not always produce presynaptic

changes. However, given the high voltage-threshold property

of L-VGCCs, the likelihood of generating presynaptic poten-

tiation would depend on the ability for tetanus to produce

sufficiently strong postsynaptic depolarization. Consistent

with this, Zakharenko et al. [18,19] and Bayazitov et al. [20]

demonstrated, using optical techniques, that theta-burst or

200 Hz stimulation generated an L-VGCC-sensitive form of

LTP involving robust presynaptic enhancements, whereas

no such L-VGCC-sensitive enhancements were induced by

50 or 100 Hz stimulation [18–20,25]. As stated previously,

the enhanced probability of obtaining presynaptic changes

under high-frequency stimulation probably reflects the

requirement for strong postsynaptic depolarization rather

than for high-frequency presynaptic activity per se [6–11,16,

33]. Other experimental conditions may also influence the

level of postsynaptic depolarization achieved during tetanus

including the temperature of the preparation, the divalent

cation concentration, GABAA-receptor antagonists, as well

as the intensity and duration of presynaptic stimulation

used during tetanus, all of which vary considerably across

studies. As such, tetanic stimulation might preferentially gen-

erate presynaptic enhancement under some experimental

conditions, but not others.

We further examined whether the magnitude of LTP gen-

erated by tetanic stimulation reflects the likelihood that LTP is

associated with presynaptic enhancement, regardless of the

actual pattern of stimulation and the experimental conditions

under which it is induced. We reason that stimulation achiev-

ing sufficiently strong depolarization would recruit both pre-

and postsynaptic components of LTP, and therefore generate

larger enhancements in synaptic activity. Consistent with this

notion, we find that the average amplitude of LTP was

194.59+9.62% (n ¼ 17) when it was associated with presyn-

aptic enhancement, but only 153.50+ 7.77% (n ¼ 12) when

it was not (U ¼ 34; p ¼ 0.003) (figure 1). Moreover, presyn-

aptic enhancement was reported in 91.67% of experiments

(n ¼ 11/12) that produced LTP with a magnitude greater

than or equal to 180% (figure 1; dashed line), but only

35.3% of experiments (n ¼ 6/17) produced LTP with a lower

magnitude (X2 ¼ 9.21; p ¼ 0.002). Only experiments that

induced LTP using tetanic stimulation under standard exper-

imental conditions were included in our analysis (29 of 35

conditions); as such, experiments in which LTP was induced

in AMPAR blockade or in GluR2 knockout animals were

excluded (6 of 35 conditions). Collectively, these findings

demonstrate that LTP at the presynaptic terminal is not some

enigmatic and sporadic process, but a predictable form of plas-

ticity whose induction is likely to depend on the levels of

postsynaptic depolarization achieved during tetanus.
3. Nitric oxide as a retrograde messenger
LTP at the presynaptic locus is dependent on postsynaptic

depolarization. How this event is signalled is not known,

but it is thought to depend on a postsynaptically generated

retrograde signal. Unfortunately, the failure to identify a con-

vincing messenger has cast doubt on a presynaptic locus of

LTP. Although several putative messengers have been pro-

posed [25,77,78], the most commonly investigated candidate
has been, and continues to be, nitric oxide (NO). NO was first

suggested as a retrograde signal in plasticity by Schuman &

Madison [79] and O’Dell et al. [80], who demonstrated that

inhibition of NO signalling impaired the induction of LTP, a

finding that had been previously reported by Bohme et al.
[81]. Similar impairments in LTP could be achieved by scaven-

ging extracellular NO using haemoglobin, suggesting that NO

was required to act across the synapse to potentiate synaptic

responses [79]. The inherently diffuse nature of NO signalling

would appear to contradict the site-specificity of LTP.

Zhuo et al. [82,83], however, demonstrated that NO application

had no effect on synaptic responses until paired with a weak

tetanus, which alone failed to generate LTP, suggesting that

NO was only effective at potentiating responses at active

synapses [82,83]. Subsequent studies demonstrated that NO

synthesis is activity dependent and that both neuronal and

endothelial variant of nitric oxide synthase (NOS) are expressed

postsynaptically in CA1 pyramidal neurons [84], and that gen-

etic deletion of NOS [85–87], or pharmacological inhibition of

NOS in vivo [88], impairs LTP at Schaffer-collateral synapses.

Perhaps, the most compelling evidence for NO as a retro-

grade messenger came in 1996, from Arancio et al. [89]. In

their study, the authors demonstrated that LTP induction

was blocked by (i) extracellular NO scavengers, (ii) intracellular

NO scavengers applied to either pre- or postsynaptic neurons

and (iii) injection of NOS inhibitors in the post-, but not pre-,

synaptic neuron. They further showed (i) that photolytic

release of NO could generate LTP when paired with presyn-

aptic stimulation (ii) and that potentiation could be blocked

by extracellular NO scavengers when NO was photoreleased

in the post-, but not presynaptic compartment. Their findings

strongly suggest that extracellular diffusion of postsynaptically

synthesized NO into active presynaptic terminals is both

necessary and sufficient for the induction of LTP.
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Although the study by Arancio et al. [89] demonstrates

that NO acts at the presynaptic terminal, evidence for its

role in the actual enhancement of presynaptic strength has

come more recently. In 2003, Nikonenko et al. [90] found

that tetanic stimulation induced structural changes within

the axon, including outgrowth of filopodia and the restruc-

turing of presynaptic boutons. These changes could be

abolished with NO inhibitors and could be elicited with

bath application of NO donors. Stanton et al. [91] later

demonstrated that activity-dependent potentiation of presyn-

aptic function, as assessed with FM dyes, was also dependent

on NO signalling [91]; these findings have since been con-

firmed by two additional studies using FM dyes and paired

pulse ratio to monitor presynaptic enhancements [27,67].
 s.R.Soc.B
369:20130154
4. Reconciling the literature
Although NO appears to be a promising candidate for a ret-

rograde signal, its role in plasticity remains controversial,

principally because some studies fail to find LTP impair-

ments following the inhibition of NO signalling. Much like

the presynaptic expression of LTP, the importance of NO

looks to be dependent on the stimulus paradigm used to

induce LTP. For example, Johnston & Raymond [68] demon-

strated that NO inhibitors only affected LTP induced by

multiple trains of theta-burst stimulation, as opposed to a

single train, which in their hands failed to enhance presyn-

aptic strength [68]. We therefore reason that NO inhibition

is most likely to impair LTP when it has a presynaptic com-

ponent of expression. To examine this idea, we looked at

studies investigating the effects of NO inhibitors on LTP at

Schaffer-collateral synapses; all relevant studies searched on

PubMed (search terms: LTP and NO) were included.

Although, these studies did not specifically monitor presyn-

aptic strength, we looked to see whether, across studies, the

sensitivity of LTP to NO inhibitors was correlated with the

magnitude of LTP, which we have already shown reflects

the likelihood that an enhancement in presynaptic function

has occurred post-tetanus (figure 1).

We examined a total of 36 experiments across 21 studies

(table 2); experiments were divided into NO-sensitive and

NO-insensitive, depending on whether NO blockade reduced

the expression of LTP. We find that the magnitude of control

LTP is 162+5.5% in NO-sensitive experiments (25/36), but

only 136+ 8.0% in NO-insensitive experiments (11/36)

(U ¼ 84.5; p ¼ 0.02). We also divided experiments based on

those reporting (i) strong LTP, as defined as having a magni-

tude greater than or equal to 180%, which has a high

probability (91.67%) of being associated with presynaptic

changes (figure 1) and (ii) those reporting weak LTP (less

than 180%), which is less likely (35.3%) to be associated

with presynaptic changes. Although the age and temperature

of the preparation, as well as the type and concentration of

NO inhibitors varied greatly across experiments (table 2),
we find that NO inhibition reduced LTP in 10 of 10 exper-

iments that yielded strong LTP but in only 16 of 26

experiments that yielded weak LTP (X2 ¼ 11.08; p ¼ 0.0009).

Such findings suggest that the degree to which plasticity is

dependent on NO signalling depends on the magnitude,

and potentially the locus, of LTP. It should be mentioned,

however, that independent of its role as a retrograde signal,

NO has effects on postsynaptic signalling; as a result, inhi-

bition of NO synthesis may have additionally affected

postsynaptic plasticity under certain experimental conditions

[99,103,106,108,109].

There have also been disagreements regarding the effect of

exogenous NO on synaptic function. Bohme et al. [81] first

demonstrated that NO donors persistently potentiated synap-

tic responses; similar effects were later confirmed using NO

donors, free NO, and photoactivated NO [80–83,89,90,92,

103,104]. By contrast, two groups have failed to elicit LTP

with NO application [110–112]. Exogenous NO, therefore,

appears to have varied effects on synaptic responses across

studies. However, it is important to recognize that, like any

transmitter in the nervous system, NO has a diverse repertoire

of effects on neuronal function [113]. As with glutamate, the

specific effect of NO at a synapse will very likely depend on

(i) the spatio-temporal dynamics and concentration of signal-

ling, (ii) the current pattern of neuronal activity and (iii) the

state of the synapse. For NO, the parameters required for the

induction of LTP remain largely unknown and may not

always be emulated by the application of exogenous NO, in

whatever form [113]. The fact that the vast majority of studies

manage to potentiate synaptic responses using exogenous NO,

while having little knowledge of the dynamics of endogenous

NO signalling, is remarkable in and of itself, and certainly a

compelling demonstration that NO signalling has the potential

to induce LTP; though, as with glutamate, this potential is

likely to be realized only under certain conditions.
5. Concluding remarks
Discrepancies in the literature have raised doubts over a

presynaptic locus of LTP. We have argued that these discrepan-

cies actually reflect the presence of two mechanistically distinct

forms of LTP: one, which is expressed postsynaptically and

dependent on Ca2þ influx from NMDARs and the other,

which is expressed presynaptically and dependent on Ca2þ

influx from L-VGCCs. Experimental protocols that successfully

activate L-VGCCs are most likely to recruit a presynaptic com-

ponent of LTP expression and are also most likely to involve a

retrograde signal, such as NO. As research continues to eluci-

date the mechanistic basis of presynaptic plasticity, one thing

is becoming clear: the current, postsynaptic-centric dogma of

LTP needs to change in order to reflect the more comprehensive

understanding of synaptic plasticity that is supported by a

growing body of literature. There are two sides to the synapse,

and both can change.
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