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Abstract
Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer
systematic name sulfane, H2S) became the third small molecule that can be both toxic and
beneficial depending on the concentration. In spite of its impressive therapeutic potential, the
underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to
obey fundamental chemical principles. H2S chemistry was studied long before its biological
relevance was discovered, however, with a few exceptions, these past works have received
relatively little attention in the path of exploring the mechanistic conundrum of H2S biological
functions. This review calls attention to the basic physical and chemical properties of H2S, focuses
on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol
derivatives, discusses the applications of these basics into H2S biology and methodology, and
introduces the standard terminology to this youthful field.
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1. Introduction
Hydrogen sulfide (or its newer systematic name sulfane [1], H2S) had been conventionally
considered as a toxic molecule until sixteen years ago when Abe and Kimura first suggested
its physiological function in the nervous system [2]. In 2008, Yang et al. developed mice
deficient in the H2S generating enzyme cystathionine γ-lyase (CSE) and discovered the
development of hypertension in these CSE knockouts [3]. Their study further confirmed the
endogenous generation of H2S and its physiological relevance. Since then, H2S has been
found to play a variety of roles in mammals ([4–8] and the accompanying review in this
issue) and more intriguingly, is considered as the third “gasotransmitter”1 after nitric oxide
(nitrogen monoxide, •NO) and carbon monoxide [9–14]. In contrast to the tremendous
number of reports on its potential therapeutic effects [13,15–17], the underlying mechanisms
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are poorly understood. H2S biochemistry has been reviewed, suggesting mechanisms
including reducing oxidative stress and protein post-translational modification [18–20].
However, the chemistry defining the interactions between H2S and its direct targets has been
largely overlooked. Here we provide an overview of H2S chemistry that is biologically
relevant but has been studied mostly from other aspects, and discuss applications in H2S
biochemistry and biology. Since there has recently been interest in the similarities and
interactions between H2S and •NO biology [21–27], we categorize H2S chemistry based on
the three potential targets that H2S may share with •NO, oxidants, metals and thiol (RSH)
derivatives. The goal is to reemphasize the importance of basic chemistry on the road of
biological adventures.

2. Basic physical and chemical properties
Under ambient temperature and pressure, H2S is a colorless gas with an odor of rotten eggs.
It is flammable and poisonous in high concentrations. Acute exposure to 500 ppm can cause
death [28]. In this regard, caution should be used for handling [29]. H2S is soluble in water,
its solubility has been reported to be about 80 mM at 37 °C [19], 100 mM in water at 25 °C
[30], 122 mM in water at 20 °C [31] and up to ~ 117 mM (condition unspecified) [17]. The
differences are apparently due to the experimental conditions including pressure,
temperature and the composition of the solution. On the other hand, aqueous H2S is volatile.
In other words, H2S always equilibrates between the gas phase and the aqueous phase (first
equilibrium of eq. 1). Its properties of gas-aqueous distribution including Henry’s Law
coefficient have been studied [32]. H2S is lipophilic [14,31] and can diffuse through
membranes without facilitation of membrane channels (lipid bilayer permeability PM ≥ 0.5 ±
0.4 cm/s) [33].

(1)

H2S is a weak acid, it equilibrates with its anions HS− and S2− in aqueous solution (second
and third equilibria of eq. 1). Its pKa values appear frequently in publications, particularly
review articles, however, the original research reports are rarely cited. Here are mentioned a
few good sources. A survey of publications prior to 1970 showed that the reported pKa1
values varied from 6.97 to 7.06 at 25 °C, and pKa2 from 12.35 to 15 [34]. Based on that
survey the pKa1 value of 7.02 was suggested [35]. Thereafter, a similar range of pKa2 values
(12.20~15.00 at 25 °C) has been reported [36], whereas higher values (17.1 ± 0.2 at room
temperature [37], > 17.3 ± 0.1 at 25 °C [38], 19 at 25 °C [39] and 19 ± 2 [40]) have also
been reported. Assuming a pKa1 value of 7, it can be calculated that 28% of the total
hydrogen sulfide in a pH 7.4 solution exists as H2S, whereas 72% is in the form of HS−. The
high pKa2 value indicates that S2− is negligible in the solution. The pKa value of a
compound depends on conditions including temperature and the solution composition.
Millero and Hershey reviewed both thermodynamics and kinetics studies on aqueous H2S,
and derived equations for the calculation of both pKa and the solubility of H2S under certain
pressure, temperature and composition of the solution [41,42]. Using precise pKa values
under the exact experimental conditions is important for the calculation of H2S
concentration. It has been shown that at physiological pH the concentration of H2S (or
H2S(aq)) at 20 °C (pKa1 6.98) can be twice as much as that at 37 ° C (pKa1 6.76) (Figure 3 in
[29]).

1A note of terminology, the definition of a “gas” is a substance possessing perfect molecular mobility and the property of indefinite
expansion to fill the available space. This is true of each of these substances in the pure state under standard conditions but obviously
does not accurately describe the physical properties of these substances (as well as O2 and CO2) in virtually all of their biological
actions which are more appropriately described as dissolved noneletrolytes.
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Practically, the three equilibria in eq. 1 represent the real dynamics of the H2S solution. One
can easily predict that in an open system, according to Le Châtelier’s Principle the equilibria
will continuously shift to the left, in the direction of forming H2S(aq) which then escapes
from solution. It has been reported that half of H2S can be lost from solution in five minutes
in cell culture wells, three minutes in a bubbled tissue bath and an even shorter time in the
Langendorff heart apparatus [43]. This fact should be taken into consideration for the actual
H2S concentration in an experimental system containing headspace, which has been utilized
in most of the studies on H2S. This may also explain to some extent the remarkable
variations in the reported H2S concentrations in tissues and plasma [44–46]. Moreover, one
should also be aware that based on eq. 1, the leftward equilibrium shift could cause not only
a tremendous decrease in H2S concentration, but also a considerable increase of the solution
pH. Eq. 1 is also the basis of the application of H2S gas or inorganic metallic sulfide such as
sodium sulfide (Na2S) and sodium hydrosulfide (NaHS) as H2S sources in solution. Caution
should be taken since an unbuffered stock solution from H2S gas tends to be acidic, whereas
that from metallic sulfide is basic (eq. 1). In the following discussion, unless specified we
use H2S to indicate all three species H2S, HS− and S2−.

The bond dissociation energy of H2S is 90 kcal/mol [18], essentially the same as the S-H
bond in thiols (92.0 ± 1.0 kcal/mol [47]). The element sulfur can exist in molecules with a
broad range of formal oxidation states including −2 as in H2S, 0 as in elemental sulfur (S8),
+2 as in sulfur monoxide (SO), +4 as in sulfite (SO3

2−) and +6 as in sulfate (SO4
2−). With

the lowest oxidation state of −2, the sulfur in H2S can only be oxidized. Therefore, H2S is a
reductant. The standard reduction potential under the biochemistry convention (pH = 7 and
Eo′(H+/H2) = − 0.421 V) Eo′(S0/H2S) is −0.23 V [48] (Eo′(S0/HS−) = −0.270 V in [49]),
which is comparable to the reduction potential under the biochemistry convention of
glutathione disulfide / glutathione E′(GSSG/GSH) at 40 °C, −0.24 V [50], and Eo′(cystine/
cysteine), −0.340 V [48].2 H2S reduces aromatic azide [52–55] and nitro groups [54] to
amine, which is the basis of new fluorescent methods for H2S detection [52–55].

Like thiolate (RS−), HS− is also a nucleophile [56,57] (see 5.1). Its nucleophilic reactions
with 5,5′-dithiobis-(2-nitrobenzoic acid) [58], N-ethylmaleimide [58],
parachloromercuribenzoate [58], 2,2′-dipyridyl disulfide [59] and monobromobimane
[45,60,61] have been utilized for H2S detection. Also based on its nucleophilic property,
classes of fluorescent probes for H2S have been recently developed [62–65]. H2S detoxifies
the electrophile methylmercury (MeHg+) very likely through a direct reaction which
produces a less toxic compound (MeHg)2S [66]. Two intriguing reports have appeared
involving nucleophilic attack of postulated signaling molecules by H2S. First, through a
nucleophilic displacement reaction, H2S modifies a variety of electrophiles (represented by
8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP)) involved in redox signaling,
then consequently regulates these signaling pathways [67]. Second, Filipovic et al. reported
a transnitrosation from nitrosothiol (RSNO) to H2S forming the smallest nitrosothiol,
thionitrous acid (HSNO/−SNO) [68]. HSNO/−SNO then potentially transfers nitroso group
or donates •NO or nitroxyl (HNO/NO−) to initiate consequent signaling [68].

As will be seen below, the reductive and nucleophilic properties of H2S are likely the most
predominant aspects of H2S biochemistry, both of which can contribute to its physiological
actions. In the following, we categorize and discuss its reactions based on the postulated
biological targets of H2S, oxidants, metals and thiol derivatives.

2A value of + 0.17 V for the reduction potential of S0/HS− has been used to compare to −0.25 V for the reduction potential of GSH
and cysteine [19,51], however, it is very likely that the former is relative to the H+/H2 standard under the convention of physical
chemistry (pH = 0 and Eo(H+/H2) = 0 V) whereas the latter is relative to Eo′(H+/H2) of −0.421 V [48].
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3. Terminology
One molecular mechanism that has been proposed for H2S as a gasotransmitter is the
posttranslational modification of protein cysteine residues forming persulfide (RSSH)
[12,69,70]. This process has been called “sulfhydration”, although, as has been pointed out,
this terminology does not follow the rule of chemical nomenclature [71]. Persulfide contains
so called “sulfane sulfur”. In the path of exploring the mechanisms of the biological
functions of H2S, the involvement of “sulfane sulfur” has attracted more and more attention
[51]. Here we briefly introduce these terms since they will appear frequently in this review.

Carrying six valence electrons, zero valence sulfur never exists by itself, it can attach to
other sulfur(s) forming compounds historically called “sulfanes”. This sulfur-bonded sulfur
called “sulfane sulfur” is labile, can be transferred between sulfur-containing structures
[20,60,72–74]. According to the International Union of Pure and Applied Chemistry
(IUPAC), sulfanes include polysulfides, hydropolysulfides and polysulfanes [1].
Polysulfides are compounds RSnR, where Sn is a chain of sulfur atoms (n ≥ 2) and R ≠ H
[1]. When one R = H, they are called hydropolysulfides (RSnH), whereas both R = H called
polysulfanes (HSnH) [1]. However, the use of the term “sulfane” is discouraged to avoid
confusion, since “sulfane” is actually the newer systematic name for H2S [1]. Here we adapt
IUPAC names, for example, hydrodisulfides instead of persulfides or perthiols. For “sulfane
sulfur”, our focus here is its property of being transferred between sulfur-containing
structures as zero valence sulfur (see 6.3 for the mechanism), therefore, we adopt S0 that has
previously been used by Toohey [51] to represent it.

There are a variety of S0-containing compounds [75]. For example, S8 (forming a ring
structure), thiosulfate (S2O3

2−), polysulfanes, hydropolysulfides and certain polysulfides
(RSnR when n > 2) [75]. The sulfur in disulfides (RSSR) can also be activated by a double-
bonded carbon adjacent to the sulfur-bonded carbon [75]. A typical example is the classic
garlic compound diallyldisulfide (DADS) (see 6.3 and eq. 15). S0-containing compounds are
widely distributed in nature. Polysulfides are present in a variety of natural products, in
particular, they constitute major active components of garlic [76,77]. The sulfur chain also
exists in proteins. Rhodanese hydrodisulfide has been crystalized and its crystal structure has
been studied at different resolutions [78–82]. Hexasulfide has been found in a rhodanese-
like enzyme in bacteria [83]. Recently, a hepta-sulfur bridge was characterized in
recombinant human CuZn-superoxide dismutase (CuZn-SOD) [84]. S0 tends to be formed
specifically at the “rhodanese homology domain” [85–88] in proteins [51,75]. It is involved
in the regulation of the activity of numerous enzymes [89–105]. Combining its special labile
property, it is believed to play important roles in biological systems [75,106–109]. It has
recently been reported that polysulfide may be a H2S-derived signaling molecule [110].

4. H2S Reaction with oxidants
It has been shown that H2S can be cytoprotective against oxidative stress [111–118]. H2S
inhibits the cytotoxicity induced by either peroxynitrite (ONOOH/ONOO−) [119] or
hypochlorite (HOCl/−OCl) [120] in SH-SY5Y cells, and the protective effect is comparable
to that of GSH. H2S can be converted to sulfite by activated neutrophils. The conversion
depends on NADPH oxidase activity and is inhibited by ascorbic acid, indicating the
involvement of oxidants [121]. Direct scavenging of oxidants as an antioxidant has been
suggested as a mechanism for H2S protection. As a reductant, H2S reacts with oxidants.
Although, its nucleophilic properties largely contribute to its reactivity as mentioned above.
H2S reactions with oxygen (O2) [41,122–127], hydrogen peroxide (H2O2) [128–130] and
HOCl/−OCl [128,129] have been extensively studied in environmental solutions. Here we
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focus more on those studies performed in laboratory solutions, especially those under
biological relevant conditions.

4.1 With O2

H2S reaction with O2 (autoxidation) generates polysulfanes, sulfite, thiolsulfate and sulfate
as the intermediates and products, although the mechanisms remain undefined due to their
complexity [35,131,132]. The thermodynamics and the kinetics of the reaction have been
briefly reviewed [133]. Chen et al. concluded that the reaction is too slow overall to be
biologically relevant [35]. However, metals [123,126,127,134–139] (also see 5.2.2) and
other biological substances such as phenols and aldehydes [134] can accelerate the reaction.
Indeed, it has been known since 1958 that certain metalloprotein complexes (including
ferritin) can catalyze H2S oxidation [140]. Staško et al. studied the reaction of H2S with two
relatively stable radicals 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) (in the absence of a metal
chelator), and found that O2 played a dominant role in these reactions [141]. They further
investigated H2S autoxidation using spin trapping and electron paramagnetic resonance
(EPR), and suggested that the one-electron transfer forming sulfhydryl radicals (HS•/S•−)
was one of the primary steps during the reaction [141]. Recently, Hughes et al. showed that
the metal chelator diethylenetriaminepentaacetic acid (DTPA) prevented the disappearance
of H2S under aerobic conditions reemphasizing the catalytic effect of transition metals on
H2S autoxidation [29]. Microbes enhance the reaction by three or more orders of magnitude
[133] via enzyme systems such as sulfide:quinone oxidoreductase (SQR) [142,143]. In
mammalian cells, H2S autoxidation is catalyzed by mitochondrial enzymes (including SQR)
generating the same intermediates and products as that in the test tube: S0 as in enzyme
hydrodisulfide (also see 6.1); sulfite; thiolsulfate (also see 6.3) and sulfate [19,144,145].
This rapid enzymatic process has been suggested to be the mechanism of H2S-regulated
oxygen sensing [146–149].

Practically, H2S autoxidation should be taken into consideration during the preparation of
the H2S stock solution. Deoxygenation and addition of a metal chelator are suggested to
avoid contamination from H2S autoxidation, particularly the bioactive product S0. Toohey
believes that S0 actually presents inevitably in an H2S solution, and even the crystal
Na2S·9H2O exposed to air is coated with S0 [51]. On the other hand, anhydrous Na2S from
Alfa Aesar (Cat. No. 65122) is found to remain pure for several months in a vacuum
desiccator [29,45]. Methylene blue also catalyzes H2S autoxidation and the mechanism
involves H2O2 as an intermediate (see 4.3) [150,151]. This might at least in part explain the
unreliability of the methylene blue method for the measurement of H2S concentration
[29,45,152].

4.2 With superoxide (O2•−)
The apparent second order rate constant for the reaction of H2S and O2

•− has been
determined as different values (Table 1) [153,154]. The difference was explained to be the
result of different methods (cytochrome c [154] vs. epinephrine [153]) used to measure the
O2

•− concentration [154]. The mechanism was not examined in either of these studies.

4.3 With H2O2

The reaction of H2S with H2O2 was utilized more than a century ago to quantitate chemicals
including H2S and metallic sulfide [161]. It is an interesting reaction because the pH of the
reaction mixture oscillates between acid and base as the reaction proceeds [162,163].
Although the reaction mechanism is still not clear [151,156,161,164–167], the reported rate
constants are similar (Table 1) [151,154,156]. Among these studies, Hoffmann’s work [156]
deserves to be mentioned because the reaction solution was buffered, metal chelator was
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added (to avoid the catalytic effect of ferric iron), and the mechanism was examined [167].
This study proposed the rate law of the reaction –

where k1 = 0.008 M−1 s−1, k2 = 0.483 M−1 s−1 and Ka1 is the first dissociation constant of
H2S [156]. Polysulfanes were also found as intermediates, which can be formed following
the nucleophilic attack of HS− on H2O2 (eqs. 2 and 3 when X = OH) [156]. Demonstration
of the direct reaction of H2S with either H2O2 or O2

•− has been attempted in a buffered
solution [168] and in myocardial mitochondria [169]. There are some caveats in their
studies. First, as a general problem for all of these chemiluminescent probes, luminol is not a
specific indicator for H2O2, and lucigenin is not a specific indicator for O2

•− [170]. Another
misunderstanding that is also very common is to use the xanthine oxidase / (hypo)xanthine
system as a positive control for O2

•− generation, which actually produces much more H2O2
than O2

•− under most conditions [171,172]. In addition, the control experiments for the
effects of H2S alone on these assays are very important due to the complexity of the
reactions, and are not mentioned in the reports [168,169]. Similar problems apply to another
report claiming that H2S directly scavenges H2O2 as measured by ferrous oxidation –
xylenol orange (FOX) assay [173].

(2)

(3)

4.4 With HOCl/−OCl
It has been shown that H2S scavenges HOCl/−OCl and its common derivative taurine
chloramine as measured by 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation [173]. The same
problem as mentioned in 4.3 is that the control of the H2S effect on the assay is not reported,
although the authors did mention that higher concentrations of H2S can reduce the product
of TMB oxidation [173]. Nagy and Winterbourn found that the overall reaction of H2S with
HOCl/−OCl is extremely fast with an apparent second order rate constant of 2 × 109 M−1 s−1

at pH 7.4 (Table 1). HOCl is more reactive than −OCl, which is consistent with the possible
mechanism that nucleophilic displacement by H2S is the rate limiting step (eq. 2 when X =
Cl) [157]. In spite of the fact that the direct scavenging of HOCl/−OCl by H2S is almost
diffusion limited, it is still less relevant to the protective effect of H2S in vivo because of its
low concentration compared to other antioxidants [157]. However, S0 is produced during the
reaction (eq. 3 when X = Cl), which has the potential to mediate signaling pathway(s) for the
protection [157].

4.5 With ONOOH/ONOO−

Carballal et al. performed a broad study on H2S reactions with oxidants including H2O2,
HOCl/−OCl, and particularly ONOOH/ONOO− and its downstream intermediates
(•OH, •NO2 and CO3

•−) [155]. The rate constants included in their study are summarized in
Table 1. Similar to the proposed mechanisms for the reaction of H2S with H2O2 and
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HOCl/−OCl, they suggest that the reaction of H2S with ONOOH/ONOO− involves an initial
nucleophilic attack on ONOOH/ONOO− by H2S (eq. 4) and then downstream steps
involving S0 formation (eq. 3 when X = OH). Although H2S has comparable reactivity as
the classic antioxidants cysteine and GSH, the direct scavenging of oxidants is unlikely to
contribute to its antioxidant activity due to its relatively lower concentration in vivo [155].
This is in agreement with Nagy and Winterbourn’s conclusion as discussed in 4.4 [157].
Theoretical studies suggest that the concerted two-electron oxidation of H2S by
peroxynitrous acid (ONOOH) is energetically feasible based on the calculated activation
energy of 17.8 kcal/mol [174]. Filipovic et al. reported a slightly higher rate constant for
H2S reaction with ONOOH/ONOO− ((3.3 ± 0.4) × 103 M−1 s−1 at 23 °C and (8 ± 2) × 103

M−1 s−1 at 37 °C, Table 1), but declared a different mechanism from the multi-step
mechanism that is well accepted for thiols and proposed by Carballal et al. for H2S [158].
Interestingly, they proposed an associative mechanism that is consistent with the theoretical
prediction (eq. 5) and identified sulfinyl nitrite (HS(O)NO) as the major product, which can
consequently generate •NO (eq.6) [158].

(4)

(5)

(6)

4.6 With •NO
There has been more and more attention paid to the “cross talk” between H2S and •NO [21–
27,175]. The direct reaction between the two has been investigated primarily by two groups,
Moore’s and Bian’s.

Moore’s group suggested nitrosothiol formation from the reaction [176–179]. However, as
has been pointed out by King [180], the direct reaction between H2S and •NO requires
oxidation, same as the putative reaction of thiol with •NO forming S-nitrosothiol [181].
Experimentally, Moore et al. provide evidence for nitrosothiol formation from the specific
reaction of mercury chloride (HgCl2) with nitrosothiol and the consequent measurement of
nitrite and •NO formation [178], however, detailed interpretations are not provided. Here we
present a few major concerns. First, sodium nitroprusside (SNP) was used as an •NO donor,
which actually can directly react with H2S [182] through a mechanism that is still in debate
[183,184]. This problem has also been brought to light by King [180]. In addition, 3-
morpholinosydnonimine (SIN-1) was also used as an •NO donor, which actually
produces •NO and O2

•− simultaneously [185] and consequently ONOOH/ONOO− [186] and
other species [187]. Second, the nitrite formation from donors SIN-1, 3-bromo-3,4,4-
trimethyl-3,4-dihydrodiazete 1,2-dioxide (DD1) and (Z)-1-[2-(2-aminoethyl)-N-(2-
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ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA NONOate) were not inhibited by
H2S. In the case of SIN-1 and DD1, the addition of HgCl2 reversed the nitrite formation to a
level even higher than the control (donor alone). In spite of the fact that HgCl2 reacts with
nitrosothiol producing nitrosonium (NO+) instead of •NO [188,189], a tremendous increase
of •NO generation upon HgCl2 addition was detected by the •NO electrode, which is not
consistent with their nitrite measurement. Third, N-[4-[1-(3-aminopropyl)-2-hydroxy-2-
nitrosohydrazino]butyl]-1,3-propanediamine (SPER NONOate) by itself will not generate an
EPR signal (Fig. 3A in their publication), a spin trap must have been used, but it was not
stated in the report. Lastly, the direct reaction between HgCl2 (an electrophile) and H2S (a
nucleophile) should be considered. As mentioned above, H2S reacts with
parachloromercuribenzoate [58], and potentially with MeHg+ [66].

Bian’s group suggested the nitroxyl (HNO/NO−) formation from the reaction of H2S
and •NO, which is simply based on the similar result obtained using Angeli’s salt, an HNO
donor [190]. However, in their later report, HNO/NO− was not mentioned specifically and
“a new biological mediator” was suggested instead [191].

4.7 With lipid hydroperoxide (LOOH)
Jeney et al. found that H2S delayed product accumulation from lipid peroxidation induced
by hemin [192]. By showing that one type of the peroxidation products, LOOH, decreases in
the oxidized lipids after H2S treatment, which correlates with the decrease in cytotoxicity of
these oxidized lipids, it was hypothesized that the direct reaction of H2S and LOOH could
be a potential mechanism for H2S cytoprotection. Muellner et al. also found that H2S could
diminish LOOH formed from Cu2+-initiated lipid peroxidation [193]. Relative to their data
obtained by FOX assay (also used by Jeney et al.), their high-performance liquid
chromatography (HPLC) measurement of both (9S)-hydroperoxy-(10E,12Z)-
octadecadienoic acid (a LOOH) and its reduced product (9S)-hydroxy-(10E,12Z)-
octadecadienoic acid provided more convincing evidence for the direct reaction between
H2S and LOOH. Studies on the kinetics and the mechanisms of H2S reactions with reactive
lipids are needed.

4.8 With other oxidants
It has also been reported that H2S can scavenge the triplet state of riboflavin and radicals of
tyrosine and tryptophan generated by photolysis, and can therefore protect the lysozyme
from damage [194]. H2S also has the potential to react with nitrated fatty acid, an
electrophile, which is another •NO-derived signaling molecule [195]. However, studies on
the chemical reactions and mechanisms are needed.

5. H2S Reaction with metals
5.1 With inorganic iron: chemical concepts

The chemical interactions of sulfur species and metals fall into two basic categories,
oxidation/reduction and ligation. In oxidation/reduction, complete electron transfer occurs
between the sulfur species and the metal, while ligation (binding of the sulfur species to the
metal) involves the formation of what is referred to in inorganic chemistry as a coordinate
complex. Both of these interactions are predicted by the chemical properties of sulfur-
containing molecules as nucleophiles.

The common definition of acids and bases is that an acid is a proton donor and a base is a
proton acceptor. In 1923 Gilbert N. Lewis (University of California Berkeley) proposed a
more general (and thus more useful) definition, that an acid is an electron pair acceptor and a
base is an electron pair donor [196]. In 1929 Christopher K. Ingold (University of Leeds)
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introduced the terms nucleophile and electrophile to denote species that act by either
donating (nucleophile) or accepting (electrophile) their electrons [197]. A further nuance is
the current notion that a nucleophile is a species that is “electron rich” and thus exhibits
affinity for species that are “electron poor” (electrophile).

Transition metal ions are positively charged (many times with multiple charges) and thus are
electrophiles. In pure aqueous solution metal ions such as iron (Fe2+/Fe3+) do not exist
“free” but attract and organize water molecules around them in specific geometries. Water is
a relatively weak nucleophile so it is displaced by others that are stronger. Sulfur-containing
molecules, including H2S, are strong nucleophiles and will bind to iron in aqueous solution.
Thus, when H2S is added it will displace the water bound to the iron. If H2S is the only
nucleophile, the resulting binding to the iron results in an insoluble precipitate. Undoubtedly
the insolubility of metal sulfides is their most industrially important general chemical
property, which has been exploited for many uses, including methods of analysis of metals
and metal mixtures [198]. The structures that are formed when nucleophilic ligands (the
term for the nucleophiles that bind in specific geometric positions around the central metal
ion) bind noncovalently to a metal ion are called complexes.

5.2 With biological iron
5.2.1 With heme iron
Cytochrome c oxidase: By far the most studied hemoprotein for H2S interaction is
mitochondrial cytochrome c oxidase (CcO) [199]. The inhibition of this enzyme is generally
believed to be the basis of the toxicity of H2S exposure, which is second only to cyanide for
work-related gaseous fatalities [200]. However, rather than toxicity it has been shown that
administration of H2S to mice results in a suspended animation-like state which appears
attributable to the inhibition of respiration via cytochrome oxidase [201], as described in the
accompanying review in this issue.

Interaction between CcO and H2S was first described by Keilin in 1929 [202] and has been
studied by several investigators (although virtually all studies have been done under
nonphysiological conditions of high H2S concentrations and sometimes long incubation
times). H2S interacts with CcO through the O2-binding copper (CuB) / heme (a3) iron
binuclear site in the oxidized state (Cu2+/Fe3+) [199]. H2S both binds to and reduces CcO
[203], which may be key to its salutatory, as opposed to toxic, activities even though
comparable respiratory inhibition with other “pure” inhibitors causes death [199,201,204].

Small molecule sensor hemoproteins: Studies over the past couple of decades have
revealed that nature has evolved an array of hemoprotein sensors that are specific for small
diatomic nonelectrolytes (O2, •NO, CO) [205–208]. The phenomena that are responsible for
the remarkable specificity of each of these sensors for their cognate ligands are multiple and
illustrate the critical importance of the protein structure, both surrounding the heme group
and also pathways in the protein that provide access of the ligand to the heme pocket. These
phenomena include heme pocket polarity, distal ligand(s), cavities around the heme, and
strength of proximal histidine-iron bonding. The “fine tuning” of hemoproteins to induce
ligand-specific interactions is elegantly illustrated with H2S as ligand by studies with a
mollusk/bacterial symbiosis [209–212]. In this relationship, cytoplasmic hemoglobins
(reaching concentrations of 1.5 mM) in the gills of the clam host deliver O2 and H2S to the
colonizing chemoautotrophic bacteria that utilize the H2S metabolically to provide nutrients
for the host.

Hemoglobin/Myoglobin and other hemoproteins: It has been known for many years that
H2S forms a tight complex to methemoglobin [213], and induced methemoglobinemia exerts
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protection against H2S toxicity in vivo [214]. By far the best known interaction of H2S with
hemoglobin or myoglobin is in the presence of O2 or H2O2 to generate the species
sulfhemoglobin or sulfmyoglobin, which is a covalent heme modification generating an
intensely green color that is diagnostic of H2S poisoning [215]. The mechanism of this
reaction has been proposed to involve the formation of a ternary complex of H2S, ferryl (or
peroxo) heme, and a distal histidine [216]. The relevance of this toxicological phenomenon
(or the comparable derivatives of other hemoproteins such as catalase [217] and
lactoperoxidase [218]) to the biological signaling aspects of H2S is unclear.

5.2.2 With nonheme iron
Iron-sulfur clusters: In 1960, Beinert and Sands reported the appearance of a unique low-
temperature EPR signal upon reduction of preparations of mitochondrial succinic and
NADH dehydrogenase [219]. It is now known that this and related signals are due to the
ubiquitous presence of iron-sulfur centers, protein-bound complexes of iron and sulfur
[220]. The most abundant structures (distributed throughout all three biological kingdoms)
possess the iron / sulfur stoichiometry Fe2S2 or Fe4S4 with each iron of approximately
tetrahedral coordination with two sulfur and two protein-contributed (usually cysteine thiol)
ligands. For much of the time since their discovery, it has been generally accepted that, the
function of these clusters is a carrier of electrons and in fact these centers are the most
abundant electron carrier in the mitochondrion, outnumbering all other electron carriers
(hemes, flavins). It is now known that these unique protein components serve a remarkable
variety of biological functions in addition to electron transfer, principally as sensors for
oxidative stress and also for cellular iron homeostasis [221].

As noted in 5.1, iron forms mostly insoluble precipitates with H2S forming a vast array of
both regular and irregular structures. In the cell, however, an extensive machinery has
evolved for the formation and incorporation of specific iron-sulfur centers into proteins. It
has been shown that the sulfur in iron-sulfur centers originates from cysteine thiol and is
transferred as S0 bound to the sulfurtransferase component in both prokaryotic and
eukaryotic systems [222].

Chelatable or labile iron pool: The formation of insoluble precipitate with added H2S has
been used as early as 1850 to visualize tissue iron [223]. This suggests that in cells H2S
could function biologically to mask the chelatable or labile iron pool and prevent formation
of highly reactive oxygen species and thus contribute to its salutatory function in a variety of
pathologies involving disturbances in O2, a possibility for which there is indeed evidence
[224]. However, as mentioned in 4.1, metal catalyzes H2S autoxidation that causes reactive
oxygen species formation and consequent oxidative damage to cellular components
(including DNA) [139].

5.3 With other cellular transition metals
The only reported reaction of H2S with a copper-containing protein (with the exception of
CcO, see 5.2.1) is CuZn-SOD, where the reaction involves copper-catalyzed reduction of
O2

•− to H2O2 and oxidation of H2S to S0 [154]. This process may be functionally important
in terms of modulation of cellular signaling from reactive oxygen species.

6. H2S Reaction with thiol derivatives (or thiol reaction with oxidized H2S)
Although still being questioned [225–227], S-nitrosation of protein thiols has been proposed
to be a cGMP-independent mechanism for •NO signaling [228,229]. Analogously, it has
been suggested that H2S can mediate signaling through so called “sulfhydration” of protein
cysteine residues forming hydrodisulfides [12,69,70,230–233]. The same mechanism has
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been postulated for H2S neurotoxicity [234]. However, it is important to realize that H2S
does not directly react with thiol. As discussed above, H2S is a reductant, it will not react
with another reductant such as thiol. Also, both HS− and RS− are nucleophiles, therefore
will not react with each other.

Similar to •NO reaction with thiol forming S-nitrosothiol (eq. 7) [181], H2S reaction with
thiol forming hydrodisulfide needs oxidation (eq. 8). N-acetylcysteine (NAC) in
combination with metronidazole is effective in ethylmalonic encephalopathy [235]. The
proposed mechanism for the effectiveness of NAC is the increase of GSH production that in
turn detoxifies H2S to GSH hydrodisulfide (GSSH), which is catalyzed by SQR [235]. As
pointed out by the authors, the electron of the apparent reaction of GSH and H2S forming
GSSH (an oxidation) is transferred to coenzyme Q and therefore coupled to the
mitochondrial respiratory chain [235]. Some S0-containing compounds including
hydrodisulfides have been chemically synthesized [236–238], we here focus on the direct
reactions between H2S and thiol derivatives, or thiol and oxidized H2S, that can possibly
form hydrodisulfide under biological conditions. For each type of reaction, we summarize
the initial studies on the test tube chemistry, then those biologically relevant studies, and
eventually list their speculated occurrences in almost every aspect of H2S biology and
methodology.

(7)

(8)

6.1 H2S reduces oxidized thiol, disulfide
The mechanism is most likely to be a nucleophilic displacement as shown in eq. 9. which is
analogous to the disulfide-thiol exchange reaction.

(9)

Under alkaline conditions, cystine reacts with Na2S forming hydrodisulfide that is
characterized by its maximal absorption at 335 nm [239]. The reaction is very reversible, the
rate constants for the reaction and the reverse reaction were determined as 3.7 ± 0.4 M−1

min−1 and 5.5 ± 0.6 M−1 min−1 respectively at 25 °C, pH 10.0 and ionic strength 0.17 M
[240]. A mixture of lipoate (the oxidized disulfide form of dihydrolipoate) and Na2S in 0.1
M sodium hydroxide (NaOH) also produces hydrodisulfide as measured by an absorption
peak at 335 – 340 nm [241]. This reaction was also suggested by Schneider et al. when they
studied the hydrodisulfide formation from disulfides alone (see 6.2) [242]. Cavallini et al.
studied the interaction of proteins with H2S in 0.01 M NaOH [243]. Disulfide-containing
proteins including insulin, bovine serum albumin (BSA), ribonuclease, chymotrypsinogen A
and ovalbumin all react with H2S to form hydrodisulfide. The apparent second order rate
constants at 25°C were reported as 2.2 M−1min−1 for cystamine, 0.35 M−1min−1 for cystine
(lower than that from [240]), 2.3 M−1min−1 for denatured BSA and 4 M−1min−1 for
denatured insulin respectively. The reactions also occur at lower pH between 8 and 9.
However, proteins that do not contain cysteine or intramolecular disulfide such as gelatin
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and casein do not react. The accessibility of the protein disulfide bonds to H2S was found to
be important for hydrodisulfide formation.

More recently, cysteine was detected from the reduction of cystine by NaHS in culture
medium, the hydrodisulfide formation was not studied [115]. In spite of the importance of
GSH/GSSG in maintaining the redox balance in biological systems, reaction 9 has not been
tested for GSSG until recently. Francoleon et al. studied the reaction of GSSG and H2S
under physiologically relevant conditions, and observed GSSH formation by different
methods [95]. Reaction 9 may also occur physiologically in disulfide-containing proteins
[19] and may be catalyzed by enzymes. The molecular mechanism of the stimulation of
ATP-sensitive potassium ion (KATP) channels by H2S has been suggested to involve the
interaction of H2S with the disulfide possibly formed between the two vicinal cysteines in
the extracellular loop of the channels [244]. Within the three sequential enzymes that
catalyze H2S autoxidation in mitochondria, SQR catalyzes the first step, H2S oxidation to
S0. This enzymatic reaction is initiated by the reaction of H2S with SQR disulfide forming
SQR hydrodisulfide [144].

As mentioned above, reaction 9 is reversible. The reverse reaction is the key step in the
proposed mechanism for the endogenous generation of H2S from garlic [245]. It may also be
involved in the endogenous generation of H2S via 3-mercaptopyruvate sulfurtransferase
(3MST) and cysteine transaminase [246]. Thioredoxin or dihydrolipoate is required for
3MST to produce H2S, therefore, a mechanism of dithiol reaction with 3MST hydrodisulfide
(through transsulfuration from 3-mercaptopyruvate (3MP) to 3MST cysteine thiol as
described in 6.3) producing an inner disulfide and H2S has been proposed [246]. The reverse
reaction has also been applied to measure S0 using dithiothreitol (DTT) as the reductant
[73,234,247–252].

6.2 Disulfide alone in the absence of H2S
Disulfide itself can be converted to hydrodisulfide in the absence of H2S. Incubation of
insulin in 0.5 M NaOH showed a maximal spectral change at 370 nm indicating
hydrodisulfide formation [242]. Among postulated mechanisms [253–256], Tarbell and
Harnish first suggested the mechanism that OH− abstracts a proton from the β carbon of the
sulfur atom followed by α,β-elimination and hydrodisulfide formation (eq. 10) [257].
Schneider et al. studied the structural effect of the disulfides (by using cystine and its
derivatives, GSSG and insulin therefore changing the substitutes X and Y in eq. 10) on
hydrodisulfide formation, and their results supported the elimination mechanism [242].

(10)

Reaction 10 does occur under physiological pH with the assistance of pyridoxal or pyridoxal
phosphate, and has been applied to generate hydrodisulfide under physiologically relevant
conditions [105,258]. A similar elimination mechanism (through Schiff base formation with
pyridoxal or pyridoxal phosphate) has been suggested for cystine (CysSSCys) desulfuration
by cystathionase at physiological pH (eq. 11) [258–261].
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(11)

The product cysteine hydrodisulfide (CysSSH) then transfers S0 to other thiols (also see
6.3). This is thought to be the mechanism of the activity alteration of some enzymes by
cystathionase/cystine [96,262–266]. It is worth mentioning that in order for cysteine instead
of cystine to inhibit tyrosine aminotransferase in the presence of cystathionase, a cysteine
oxidase is required [267]. This once again emphasizes the fact that for a thiol to form
hydrodisulfide, an oxidation is needed. Certain garlic derived disulfides can also be the
substrate of cystathionase producing hydrodisulfides [268], and the same mechanism is
considered to be responsible for the therapeutic effects of garlic [269]. Further, more
enzymes are found possessing the same activity as cystathionase [270,271]. Toohey suggests
that the two enzymes involved in H2S biosynthesis, cystathionine-β-synthase (CBS) and
CSE, should have the same activity and therefore argues that it is S0 not H2S that is formed
from the enzymatic reaction [51].

6.3 Thiol reacts with the oxidized H2S, S0

Since S0 does not exist by itself, the reaction is actually between thiol and S0-containing
compounds. A very important as well as interesting reaction of S0 is its transfer between
sulfur structures through the formation of thiosulfoxide tautomer (eq. 12) [51,272]. With an
empty orbital, the sulfoxide sulfur in the tautomer can interact with a nucleophile (Nu) and
consequently S0 is transferred (eq. 12). Therefore, the reaction is called transsulfuration.
When the nucleophile is cyanide (−CN), thiocyanate (−SCN) is produced, which can
simultaneously bind ferric iron forming a complex (Fe(SCN)6

3−) with characteristic
maximal absorbance at 460 nm [74]. This is the chemical basis of the method called
cyanolysis that is used for S0 detection [74]. When the nucleophile is a thiol, hydrodisulfide
can be formed via the S0 transfer. The formed hydrodisulfide can further react with S0

forming hydropolysulfides (eq. 13), which can react with each other generating polysulfides
and H2S (eq. 14, including the reverse reaction of eq. 9). As described for the reverse
reaction of eq. 9 in 6.1, reaction 14 indicates an additional mechanism for H2S generation.

(12)

(13)

(14)

S0 was detected from the filtrate of a pH 9.1 mixture of S8 and thiol (mercaptoethanol,
mercaptopyruvate and cysteine) or H2S, indicating the transsulfuration from S8 to thiol or
H2S [273]. Cavallini et al. suggested that the reaction of cysteine and S8 in alkaline solution
could produce hydrodisulfide [259]. The downstream product cysteine trisulfide
(CysSSSCys) has been synthesized from the reaction, but not hydrodisulfide probably due to
its instability [274]. In the study of H2S reaction with cystine in basic solution (discussed in
6.1), the transsulfuration between cysteine and disulfane (HS2

−) was suggested [239]. The
rate constants for the reaction and the reverse reaction were determined as 122 ± 20 M−1
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min−1 and 6.1 ± 0.5 M−1 min−1 respectively at 25 °C, pH 10.0 and ionic strength 0.17 M
[240]. In the case of GSH, a nucleophilic attack of GSH on the S8 ring has also been
suggested [275–277]. The resulting GSSH then reacts further to form GSH polysulfide
(GSnG, n > 2) and to produce H2S [275–277]. From the anaerobic reaction of GSH and S8 at
pH 7.5, Rohwerder et al. detected the formation of GSSG and its higher homologous
products up to GS5G [275]. Again, the hydrodisulfide might be too reactive to be detected
[275].

Francoleon et al. studied S0 transfer from GSSH to papain cysteine thiol and found
consequent inhibition of protein activity [95]. Actually transsulfuration from low molecular
weight S0-containing compounds to protein thiols is believed to contribute to the activity
changes in a variety of enzymes [89,92,96,99–101,105]. Transsulfuration can be accelerated
by sulfurtransferases. Rhodanese assists S0 transfer from thiosulfate to other enzymes and
consequently modulates their activities [89,90,103,104]. In addition, it is proposed to be the
enzyme that catalyzes the final step of H2S autoxidation in mitochondria, which is the S0

transfer from SQR hydrodisulfide to sulfite forming thiosulfate [19,144]. 3MST catalyzes S0

transfer from 3MP to an acceptor [278,279] via 3MST hydrodisulfide formation [273,280]
(although 3MP does not have the typical structure of S0-containing compounds, its sulfur is
labile [281] due to the adjacent carbonyl group C=O). Adrenal ferredoxin may be an
acceptor to serve its function on iron-sulfur chromophore formation [102]. Thioredoxin can
also be an acceptor, and the resulting thioredoxin hydrodisulfide could undergo further S0

transfer to perform its biological roles [282]. As described in 6.1, thioredoxin hydrodisulfide
may also react with its adjacent thiol forming inner disulfide and releasing H2S (reverse
reaction of eq. 9) [19,246].

Another mechanism for hydrodisulfide formation from thiol reaction with S0-containing
compound has been proposed as the initial reactions of H2S production from garlic
compounds in the presence of GSH. It is simply a nucleophilic displacement initiated by the
nucleophilic attack of GSH on the α position of the S-S unit of a garlic compound (eq. 15)
[76,77,245,283]. The α position can be the α carbon of an allyl group (as in DADS), and can
also be a sulfur (as in trisulfides) (eq. 15). The hydrodisulfides that are formed then further
react with GSH liberating H2S (reverse reaction of eq. 9).

(15)

6.4 H2S reacts with S-nitrosothiol
It has been reported that H2S very rapidly reacts with S-nitrosocysteine (CysNO), S-
nitrosopenicillamine or S-nitrosoglutathione (GSNO) generating a relatively stable UV
spectrum with a peak absorption at 410 nm [284]. Compared with previous reports
[285,286], this spectrum was assigned to a hydrodisulfide ONSSH/ONSS− [284]. One
speculated mechanism involves an initial nucleophilic attack of H2S on RSNO forming
HSNO/−SNO (eq. 16) [287–291]. It was also suggested that HSNO/−SNO consequently
reacted with another H2S forming ONSSH/ONSS− [284], although an oxidant is needed for
the reaction (eq. 17). Alternatively, HS2

− originating from an unknown mechanism (RSSR
was suggested to be a candidate) could react with RSNO via nucleophilic displacement (eq.
18) [284]. Others found that the reaction of H2S with RSNO released •NO [292–294]. By
measuring •NO formation, this reaction was applied to quantitate the amount of RSNO
[293]. As has been mentioned, the detailed study by Filipovic et al. supported HSNO/−SNO
formation during the reaction, which could consequently donate •NO, nitroso group or
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HNO/NO− [68]. Although their data do not support the direct formation of hydrodisulfide
and HNO/NO− for low molecular weight RSNO, it may hold true for protein RSNO (eq. 19)
[68]. A good mechanistic rationale and comparison to the reaction between RSH and RSNO
can also be found in King’s review [180].

(16)

(17)

(18)

(19)

6.5 Other proposed mechanisms
According to eq. 8, hydrodisulfide may be formed from reactions of other oxidized thiols
and H2S, or other oxidized H2S and thiols. It has been deduced that hydrodisulfide mediates
the reaction of H2S with oxidized thiols, thiosulfate ester (RS-SO2-OH) [295,296] and
cystinedisulfoxide [297]. Another ideal candidate for the oxidized thiol, sulfenic acid, has
also been suggested to react with H2S forming protein hydrodisulfide [19,20,157]. Other
oxidized sulfur species that have been proposed to react with thiol forming hydrodisulfide
include the simplest sulfenic acid HSOH [20], and HS(O)NH2 that can be generated from
the reaction of H2S with HNO/NO− [68].

7. Conclusions
There has been an explosion of publications claiming the beneficial effects of H2S, and in
the enthusiasm, it appears that an extensive chemical literature on H2S has often been
neglected. As discussed above, a few factors that need to be considered during H2S
manipulation include the purity of its donor, its volatility, its reaction with O2 and the
possible pH change in the solution. In spite of these complications, the way H2S stock
solutions are prepared is rarely mentioned in research reports. A relatively cautious method
and a good description can be found in [245,298,299]. Although not a focus here, it has been
pointed out by many researchers that a major problem in H2S research is a lack of reliable
methods to precisely and specifically measure H2S ([45,152,300] and the accompanying
review in this issue). Physiological concentrations of H2S that are different in orders of
magnitude have been reported [44–46]. Without doubt, H2S chemistry is the basis for the
development of new detection methods.
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Some speculations in the literature regarding the actions of H2S are not based on sound
chemical principles. H2S has been described as an antioxidant to explain its ability to protect
against oxidative stress. However, the chemistry shows that the direct scavenging of
oxidants by H2S is unlikely due to the lower concentration of H2S compared to other
antioxidants in vivo. Another mechanism is the protein post-translational modification by
H2S generating S0 that is involved in almost every aspect of H2S chemistry, and that has the
high potential of transducing signals owing to its unique property of transsulfuration. So is it
H2S or S0 that is the signaling molecule implicated in diverse biological processes [51]? In
addition, the metabolism of sulfur-containing molecules including cysteine, GSH, H2S, S0-
containing molecules and many others are highly related [60,115,301–303], an overall
estimation of the sulfur flow upon H2S addition would be informative for determining the
actual mechanism. Better and more efficient tools for the detection of these sulfur-
containing species are highly needed. Fluorescent probes for the detection of S0 have been
recently developed [304], their applications in biological systems need to be examined.

In all, without these concerns being addressed, the title of H2S as a gasotransmitter or
signaling molecule should not be awarded. As has been pointed out, critical opinions and
“brakes” are urgently needed in H2S research to reveal the authentic biological mechanisms
of this interesting molecule [152,305–308].
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Highlights

• includes a comprehensive survey of literatures on the basic physical and
chemical properties of H2S and H2S chemistry,

• focuses on the chemical foundation of H2S biology and methodology,

• introduces standard terminology to the H2S field,

• calls attention to chemical misconceptions in the studies of H2S.
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Table 1

Apparent second order rate constants of H2S reactions with different oxidants.

Oxidants k (M−1 s−1) Conditions References

O2
•− 1.5 × 106 pH 7.8 [153]

(6.5 ± 0.9) × 104 pH 7.8 and 25 °C [154]

H2O2 0.73 ± 0.03 pH 7.4 and 37 °C [155]

1.22 pH 7.4 and 25 °C a [156]

~ 1 pH 7.8 [154]

HOCl/−OCl 2 × 109 pH 7.4, 25 °C and ionic strength 1.0 M [157]

(8 ± 3) × 107 pH 7.4 and 37 °C [155]

ONOOH/ONOO− (4.8 ± 1.4) × 103 pH 7.4 and 37 °C [155]

(8 ± 2) × 103 pH 7.4 and 37 °C [158]

(3.3 ± 0.4) × 103 pH 7.4 and 23 °C [158]

•OH 1.5 × 1010 pH 6 [159]

9.0 × 109 pH 10.5 [159]

•NO2 (3.0 ± 0.3) × 106 pH 6 and 25 °C [155]

(1.2 ± 0.1) × 107 pH 7.5 and 25 °C [155]

CO3
•− (2.0 ± 0.3) × 108 pH 7.0 and 20 ± 2 °C [160]

a
Calculated based on pKa1 7.0 and Hoffmann’s rate law as discussed in the text.
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