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Abstract
Background—In the planning of a dose finding study, a primary design objective is to maintain
high accuracy in terms of the probability of selecting the maximum tolerated dose. While
numerous dose finding methods have been proposed in the literature, concrete guidance on sample
size determination is lacking.

Purpose—With a motivation to provide quick and easy calculations during trial planning, we
present closed form formulae for sample size determination associated with the use of the
Bayesian continual reassessment method.

Methods—We examine the sampling distribution of a nonparametric optimal design, and exploit
it as a proxy to empirically derive an accuracy index of the continual reassessment method using
linear regression.

Results—We apply the formulae to determine the sample size of a phase I trial of PTEN-long in
pancreatic patients, and demonstrate that the formulae give very similar results to simulation. The
formulae are implemented by an R function ‘getn’ in the package ‘dfcrm’.

Limitations—The results are developed for the Bayesian continual reassessment method, and
should be validated by simulation when used for other dose finding methods.

Conclusions—The analytical formulae we propose give quick and accurate approximation of
the required sample size for the continual reassessment method. The approach used to derive the
formulae can be applied to obtain sample size formulae for other dose finding methods.

Introduction
The primary objective of a phase I clinical trial in cancer is the identification of the
maximum tolerated dose (MTD), defined as a dose associated with a target toxicity rate. A
wide variety of dose finding approaches have been proposed, including model-based designs
such as the continual reassessment method (CRM) [1], random walk designs [2], stepwise
procedures [3], stochastic approximation [4], and stochastic optimization [5]. While the dose
finding literature has flourished in the past two decades, the determination of the sample size
remains a recurring question in practice, for which the literature has thus far offered little
insight. This has potentially impeded wide applications of these methods in practice, as
clinicians would often appreciate and expect guidance on sample size justification early in
the planning stage. An exception is the stepwise procedures in Cheung [3] who formulates
dose finding as a multiple testing problem that allows us to control the probability of correct
selection (PCS) at a pre-specified accuracy. This frequentist property, in turn, informs the
required sample size for the stepwise procedures. However, the sample size determination
process involves numerical iterations that are highly specialized. For this type of stepwise
procedures which include the traditional algorithm-based A+B designs, analytical formulae
are also available to calculate the expected number of patients treated at a dose level [3, 6].
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For more complicated designs such as group and escalation designs [7] and the model-based
Escalation With Overdose Control (EWOC) [8], sample size considerations and
recommendations have been made based on computer simulation. Although a method’s
operating characteristics should be evaluated thoroughly by simulation before
implementation, it will be useful, particularly in consulting settings and for trial budgeting
purposes, to provide a quick approximation of the required sample size.

The CRM is one of the most recognized dose finding methods among clinicians, and has
seen increasing applications in practice. Its empirical and theoretical properties have been
extensively studied; see [9, 10, 11] for example. The calibration of the CRM design
parameters has also been written about [12, 13, 14]. These calibration techniques, however,
do not provide guidance on sample size determination. Some general rules of thumbs of
sample size are given in [15] but are ad hoc. The purpose of this article is to present closed
form formulae for sample size calculation for the CRM. A main difficulty in deriving a
formal sample size formula for the CRM is that the method is highly outcome-adaptive, and
that the theoretical properties necessary for calculating PCS are intractable. Our approach
hinges on the concept of a nonparametric optimal design introduced in [16]. The basic idea
behind the nonparametric optimal design is to simulate toxicity outcomes of the same patient
at all test doses, and estimate the entire dose-toxicity curve using the sample proportions,
which achieve the Cramer-Rao lower bound for the corresponding true toxicity probabilities.
Hence, this design may serve as an upper limit of performance for the CRM and any other
dose finding methods.

A CRM model
In a typical phase I study, each patient is treated at a dose chosen from a set of K levels, with
dose labels {d1, …, dK}. Let Y = Y (k) denote a patient’s toxicity outcome at dose level k
with probability pk = Pr{Y (k) = 1}. The dose finding objective is to estimate ν = arg mink |
pk − θ | where θ is the target toxicity rate. The CRM is a model-based design that
approximates pk with a one-parameter function F(dk, β) for some “least false” parameter
value β [15]. In this article, we focus on the commonly used power function

(1)

where β has a normal prior with mean 0 and variance 1.34 [17]. The CRM treats each patient
sequentially according to the model-based recommendation based on the most recent data.

Precisely, let β̂i denote the posterior mean of β given the first i observations, with β̂0 = 0
denoting the prior mean. Then patient i will be given dose level ν̂i−1 = arg mink |F(dk, β̂i−1)−
θ|. This process continues until a pre-specified sample size n is reached, and the final MTD
estimate is given as ν̂n.

In the CRM, the dose labels dks are not the actual doses administered, but are determined to
yield good operating characteristics for the CRM [13]. Specifically, we will calculate dks for
model (1) as follows: for a pre-specified starting dose ν0 and a half-width δ ∈ (0, θ), set

(2)

The algorithm (2) will yield a unique set of dose labels that satisfy two properties. First, the
model-based recommendation ν̂0 based on the prior distribution will match the actual
starting dose ν0, because F(dν0, β̂0) = θ. For sample size calibration purposes, we for the
moment consider CRM that starts the first patient at the median dose level, that is,
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(3)

Second, the CRM design using these dose labels has an indifference interval of half-width δ;
that is, it will converge to a dose with true toxicity probability on the interval θ ± δ. Based
on the numerical results in [13], setting

(4)

generally produces reasonable operating characteristics. As there are many ways a CRM
model can be specified, extensive work on how to specify the CRM model components has
been reported [13, 14]. In this article, while the sample size formulae are derived with
respect to the CRM model specifically defined by (1)–(4), the results can be used to produce
a quick sample size estimate and applied to CRM models defined otherwise (e.g., CRM
starting at a dose below the median level); see the section “Application”.

Design objective
For the purpose of sample size calculation, we need to define an index for accuracy.
Precisely, for given j = 1, …, K, let πj = (p1j, … pKj)T denote the dose-toxicity curve with

(5)

for some odds ratio R > 1; that is, the true MTD is level j under πj. Since the probability of
selecting the MTD (i.e. PCS) depends on the true πj, we take the risk-adjusted average
approach considered in [18] and define the CRM’s accuracy index as

, where Pπ denotes the probability computed under the
probability vector π. That is, the index An is the average PCS under the K logistic dose-
toxicity curves. The design objective then is to choose the smallest sample size n that
satisfies An(θ, K, R) ≥ a* for given clinical parameters {θ, K, R} and accuracy a*.

Apparently, the larger R is, the steeper is the dose-toxicity curve πj, thus representing a
greater “effect size”. As in sample size calculation in other clinical contexts, this effect size
R is to be pre-specified. To facilitate the elicitation of the effect size from the clinical
investigators, Table 1 shows the steepness of the dose-toxicity curve indicated by the
toxicity probabilities (pj−1,j, pj+1,j) of doses adjacent to the MTD under various values of R
for some common θ. We observe that, for a given R, the toxicity probabilities of the adjacent
doses become farther away from θ as a larger θ. For example, for θ = 0.30, the adjacent
probabilities 0.20 and 0.43 under R = 1.75 seem to be so different from 0.30 that it may be
desirable to differentiate the MTD from the adjacent doses. On the other hand, for θ = 0.10
and R = 1.75, the adjacent doses have toxicity probabilities (0.06 and 0.16) that may be
considered indifferent to 0.10. These examples are of course for illustration purposes; and
the effect size is to be specified to suit the particular clinical application. Generally,
however, a “large” R may be appropriate for a “small” θ.

Review of the nonparametric optimal design
In a real clinical study, each patient is given a dose, with the outcome observed only at that
dose. We may occasionally draw additional inferences under the assumption of monotone
dose-toxicity relationship. For example, suppose a patient receives dose level 3 in a trial and
has a toxic outcome. We then can infer by monotonicity that he would have had a toxic
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outcome at doses higher than dose level 3. However, we will have no information as to
whether the patient would have suffered a toxic outcome had he received dose levels 1 or 2.
In other words, we can only observe a partial outcome profile. In contrast, in a computer-
simulated clinical study where the true π is specified, it is possible to “observe” the
outcomes of the same patient at all K dose levels, that is, a complete toxicity profile.
Specifically, we can draw a toxicity tolerance Ui for patient i in a simulated trial from a
uniform distribution with limits 0 and 1, and set Yi(k) = I(Ui ≤ pk) where I(E) is an indicator
function of the event E. Consequently, for a trial with sample size n, the sample proportion

 is an unbiased estimate for pk and its variance achieves the Cramer-
Rao lower bound. O’Quigley et el. [16] thus propose using ν̃n = arg mink |Ȳk,n − θ| as an
optimal benchmark for the estimation of ν: intuitively, because any dose finding method in a
real trial uses only the partial outcome profiles, we expect that its accuracy may not exceed
that of ν̃n. Note that the benchmark design ν̃n cannot be implemented in practice because
complete toxicity profiles are not available.

A lower bound formula for sample size
While it is easy to simulate the operating characteristics of the benchmark design ν̃n, we will
exploit its theoretical properties so as to use them to provide approximation for the accuracy
index of the CRM. Specifically, we show in the Appendix that for given π = (p1, …, pK)T,
the survivor function of ν̃n can be approximated by

(6)

for k ≥ 2, where , and Φ is the standard
normal distribution function. As a simple consequence of (6), the benchmark index Bn(θ, K,
R) for ν̃n under the logistic dose-toxicity configurations {πj} can be approximated as
follows:

(7)

where

and

Note that pj−1,j = θ / (θ + R − Rθ) and pj+1,j = Rθ / (1 − θ + Rθ) under a logistic dose-toxicity
curve (5). To do a “sample size calculation” for ν̃n for given θ, K, R, we can keep iterating n
until Bn(θ, K, R) ≥ a* for some pre-specified a*. Alternatively, in order to obtain a closed
form sample size formula, we further approximate (7) with
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(8)

where . It can be proved that the absolute difference between (7) and
(8) is of the order of O(n3/2λ−n) for some λ > 1, while (7) converges to the true value of the
benchmark index at a rate of n−1/2. For finite sample sizes, we compare the approximations
(7) and (8) with the simulated values of Bn(θ, K, R) under the clinical scenarios listed in
Table 2: the largest absolute deviation between the approximated and the simulated values
was 0.033, and (7) and (8) differed by no greater than 0.004 in absolute value.

Result 1: For given θ, K, R, the smallest sample size required to achieve Bn(θ, R, K) ≥ a*
can be approximated by rounding up ñ (a*), where

(9)

While the nonparametric optimal design ν̃n cannot be implemented in practice, the sample
size ñ (a*) can serve as a lower bound for other dose finding methods, and hence provide a
benchmark for efficiency calculation.

Empirical approximation of An(θ, K, R) and sample size formulae
We ran simulation for the CRM defined by (1)–(4) under all possible combinations of the
clinical parameters listed in Table 2, with 2000 replicates each for every logistic curve πj for
a given combination, and evaluated An(θ, K, R) based on the simulated trials and Bn(θ, K,
R) according to (8). Table 3(a) gives the results of the main effects model that regresses
logit{An(θ, K, R)} on θ, K, R, and n as factors. This model verifies some intuitions about
how the CRM’s accuracy depends on the clinical parameters. First, accuracy increases as R
and n increase. Second, accuracy improves as a less extreme θ is used: this is expected
because on average 10 subjects are needed to expect a toxic outcome in order to target a
dose with θ = 0.10 toxicity probability, whereas 5 are needed with θ = 0.20. Third, the
accuracy decreases as K increases: this is also intuitive because choosing the right dose is
more difficult among a larger number of dose levels. Figure 1(a) plots the simulated An(θ,
K, R) versus the fitted values Ân(θ, K, R), which shall be respectively abbreviated as An and
Ân. Although the correlation is extremely high, with a coefficient of determination of 0.971,
the relationship appears to be non-linear. Besides, since our goal is to “predict” An,
correlation may not be an appropriate metric to suggest whether a model is adequate. Rather,
we will consider the maximum absolute difference ε∞ ≔ ‖An − Ân‖∞ between the
simulated and the fitted values in all 750 combinations of the clinical scenarios. For the
main effects model, ε∞ = 0.087, which is quite large considering the fact that the accuracy
An is typically no greater than 0.8.

The second model regresses logit{An(θ, K, R)} on logit{Bn(θ, K, R)}, and gives

(10)

Figure 1(b) plots the simulated An versus the fitted Ân based on (10). Not only is model (10)
a much simpler approximation than the main effects model, it also gives a comparable
coefficient of determination of 0.981. This suggests the benchmark index (8) as a good
predictor for the accuracy index An, although (10) alone does not provide an adequate
approximation over all clinical scenarios, with ε∞ = 0.063.
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Table 3(b) presents the results of a full model that includes θ, K, and R as factors and
logit{Bn(θ, K, R)} as a covariate, and Figure 1(c) plots An versus Ân based on this model.
This full model is good for the purpose of predicting An, with ε∞ = 0.022. However,
because this model includes θ, K, and R as factors (as opposed to numerical variables), the
model cannot be applied to clinical scenarios that are not listed in Table 2, such as when R =
1.8. Thus, we next consider θ, K, and R as numerical variables in the regression models, and
use the full model as a reference for accuracy. To account for possible non-linear and non-
monotone effects after adjusting for the benchmark index, we consider also quadratic terms
and reciprocals. Precisely, we compared linear models using all 29 = 512 combinations of
{θ, θ2, θ−1, K, K2, K−1, R, R2, R−1} as numerical covariates, in addition to logit{Bn(θ, K,
R)}. Thus, each linear model will have from 1 up to 9 covariates. Table 4 shows the model
with the smallest ε∞ for each given number of covariates, and suggests that the covariates
K2, R, R−1 and logit{Bn(θ, K, R)} constitute the smallest model that achieves comparable
predictability with the full model. Specifically, this model gives:

(11)

and yields ε∞ = 0.023. The fitted accuracy index Ân in (11) can be viewed as an
approximate “power curve” for the CRM. Furthermore, based on (11), to achieve an average
PCS of at least a*, for given θ, K, R, we can first evaluate b* so that

(12)

and calculate the required sample size by the CRM as ñ(b*) using formula (9). The
efficiency of the CRM, for a given a*, can be defined as the ratio of the required sample size
by the nonparametric optimal design to that by the CRM, that is, ñ(a*)/ñ(b*).

Some numerical results
Table 5 tabulates the sample size requirements obtained by formulae (9) and (12) under
some common clinical parameters {θ, K, R} for a* = 0.5, 0.6; the sample size values
exceeding 60 are excluded because these are usually infeasible numbers for phase I cancer
trials. As such, Table 5 (and the formulae) can serve as a quick screening tool indicating the
feasibility of a study for a given set of clinical parameters. As expected, the required sample
size increases with a large K and a small effect size R. Also, we observe that a substantially
larger sample size is needed to raise the accuracy from a* = 0.5 to 0.6. Unless a large effect
size R is specified, achieving a* > 0.6 may require a larger-than-typical sample size in
practice. For example, to achieve a* = 0.65 for a trial with θ = 0.10 and K = 5 (not listed in
Table 5), we need to assume R = 2.5 in order to require a plausibly feasible, albeit large,
sample size of n = 41. Therefore, the sample size formulae are useful in giving investigators
realistic expectations of accuracy that they can achieve with the sample size conventionally
expected: In particular, an 80% “power” (i.e., a* = 0.8) that is conventional for a phase II
trial would seem to be unrealistically high for a typical phase I trial.

Like in other regression applications, we should be cautious about extrapolation, i.e., when
applying the results derived empirically to scenarios outside the range of the clinical
parameters used in the model (i.e., Table 2). For example, for θ = 0.1, K = 5, R = 1.6, and a*
= 0.5, Table 5 gives a required n = 51 which is outside the range of n listed in Table 2. The
usage of this table (and the formulae) should therefore be viewed as a quick starting point in
consultation; and simulation should be used to verify and study the operating characteristics
of the design in the subsequent trial planning. For this particular clinical setting, we ran
simulation and obtained A51(0.1, 5, 1.6) = 0.505 which is very close to the target a* = 0.50.
We have checked entries larger than 40 in Table 5 and verified that the simulated accuracy
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differs from the target a* by no greater than 0.010. Likewise, for entries less than 20,
simulation should be used to verify the accuracy. For example, for θ = 0.30, K = 4, R = 2.0
and a* = 0.5, Table 5 prescribes n = 9 and simulation verified A9(0.3, 4, 2) = 0.511. In this
case, the CRM seems to be very efficient requiring only n = 9 subjects. However, note that
R = 2.0 for θ = 0.3 represents a rather large effect size; see Table 1 and the discussion in the
section “Design objective” above. Therefore, it would be prudent to consult Table 1 for a
reasonable effect size when using Table 5 or the formulae to determine the sample size.

Application
To provide a quick estimate of budget (that is, n) for a dose finding study of PTEN-long
monotherapy in patients with pancreatic cancer, we calculated the required sample size
using formulae (9) and (12). In the trial, the MTD was defined with target θ = 0.25. The
starting dose of the trial would be determined based on a prior pharmacokinetic study, and
would be the third dose level in a panel of K = 5 test doses. To obtain an average PCS of a*
= 0.6 under R = 1.8, we obtained b* = 0.648 and ñ(b*) = 31.6. Thus, the sample size of the
trial was set to be 32. This calculation could be easily performed on a calculator during a
consultation session with the clinical investigators of the study. An R function ‘getn’ is also
available in the ‘dfcrm’ package to perform the calculation; see Appendix.

Table 6 shows the operating characteristics of the CRM design defined by (1)–(4) with n =
32 by simulation under each of the 5 logistic dose-toxicity curves {πj}. The accuracy index
based on the simulation is 0.604, very close to the approximated value (0.602) based on
(11).

While the sample size formulae can give a quick answer, there is no reason not to fine-tune
the CRM design using the same sample size if time permits. Using the calibration approach
outlined in [13], we obtained the optimal δ = 0.0600 for the CRM defined by (1)–(3) and n =
32 under this particular set of scenarios, i.e., with starting dose at ν0 = 3. Table 6 shows that
this design has similar accuracy to the CRM with δ = 0.0625, with a slightly larger average
PCS of 0.608. Generally, since we can potentially improve the operating characteristics
upon the CRM design used in deriving the sample size, the formulae we derived lead to a
conservative sample size. In most cases, as in this particular case, setting δ = 0.25θ
according to (4) produces very competitive operating characteristics, and hence the formulae
provide meaningfully close approximation.

While the sample size approximation assumes starting a trial at the median level in
accordance with (3), we may apply the calculated sample size in trials with other starting
dose. Suppose that the PTEN-long trial investigators postulate the prior MTD as ν0 = 2 and
start the trial at level 2 instead of level 3. Applying the calibration approach in [13] to the
CRM model defined by (1), (2), and ν0 = 2 with n = 32, we obtained the optimal δ = 0.0575
for this particular set of clinical parameters. The operating characteristics of this design, also
included in Table 6, are comparable to the CRM designs that start at dose level 3, with an
average PCS of 0.599, very close to the target a*. This is in line with the findings in [13, 15]
that the starting dose has minimal impact on the CRM’s operating characteristics, provided
that the design is properly calibrated.

Finally Table 6 also shows the operating characteristics of the optimal nonparametric design
based on ν̃32. The simulated average PCS is 0.650, whereas the approximation based on (7)
is 0.649. The CRM designs lose about 4–5 percentage points of accuracy, or roughly 7% of
0.650, when compared to this optimal benchmark. From this viewpoint, the efficiency of the
CRM is quite high. In contrast, the efficiency defined with respect to the sample size ratio is
about 76%, with ñ(0.6) = 24.0. This is probably due to the fact that a large increase in
sample size is needed for even a modest increase in accuracy; cf. Table 5.
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Discussion
It is not the intention of this paper to comment on a dose finding method’s efficiency.
Rather, the purpose is to facilitate quick assessment of the sample size, thus giving the
investigators a rough idea whether a phase I dose finding trial is “adequately powered” as
demonstrated in Table 5.

This work is not to replace simulation as a planning tool. As shown in our application, we
can use the proposed formulae to obtain a sample size as a starting point, and then use
simulation to examine possible improvements by fine-tuning the CRM, and evaluate effects
of a different starting dose or CRM model specification. For sample size calculation
purposes, we need to define an accuracy index, for which we use the average PCS in this
article. As pointed out by a referee and also in [19], looking at a design’s behavior about the
true MTD only does not fully reflect the operating characteristics of the design. Specifically,
when the true dose-toxicity curve is shallow and the toxicity probabilities of the adjacent
levels are close to that of the MTD, the design may have satisfactory performance by
choosing the adjacent levels with high probability, even though the PCS is not very high.
Therefore, we should use simulation to study the full distribution of MTD recommendation
of the design under a variety of dose-toxicity curves after we have determined the sample
size. Also note that while we use the logistic dose-toxicity configurations as the basis of
sample size calculation, we can perform simulation under other dose-toxicity curves in the
planning process. As previously pointed out in [9], the method’s consistency does not rely
on the correctness of the model assumptions; in this paper, we use a misspecified power
model (1) while the operating characteristics are evaluated under logistic curves.

This paper describes a general approach that explores the nonparametric optimal design as a
proxy for the CRM; and the nonparametric optimal design is particularly useful because its
benchmark index Bn can be computed analytically via Equations (6)–(8), thus leading to a
closed form sample size expression (9). Table 3 shows that the benchmark index Bn
attenuates the magnitude of the effects of the clinical parameters {θ, K, R} on An, and
suggests that the performance of ν̃n depends on these design parameters in a qualitatively
similar way to that of the CRM. As we may expect that any reasonable dose finding designs
will behave similarly, this approach can be potentially applied to derive sample size
formulae for other dose finding designs. In particular, it would be of great interest to extend
these results to the two-stage CRM that starts a trial with a pre-specified initial dose-
escalation sequence before the first toxicity is observed [17]. As additional calibration steps
for this initial sequence are needed, further work on how to exploit the benchmark index Bn
for the two-stage CRM is warranted.

Finally, based on published results in the literature, we expect that various versions of
model-based dose finding designs [8, 20, 21] have comparable operating characteristics,
provided that they are properly calibrated. Therefore, the sample size formulae derived in
this article may also be applied to approximate the required sample size for these alternative
designs. This quick assessment of sample size should however be validated by simulating
the detailed operating characteristics, as demonstrated in our application.
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Appendix

Derivation of (6) and (7)

It is easy to verify that ,
where Vik = I(Ui ≤ pk) + I(Ui ≤ pk−1) is a discrete random variable taking value on {0, 1, 2},
with mean E(Vik) = pk + pk−1 and variance

. Hence,
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where the approximation on the last line is by the central limit theorem. Equation (6) is thus
derived. Consequently, under a logistic curve πj ,

where σ*2 = θ(1 − θ) + pj+1,j(1 − pj+1,j) + 2θ(1 − pj+1,j) and σ′2 = θ(1 − θ) + pj−1,j(1 − pj−1,j)

+ 2pj−1,j (1 − θ). Therefore, 

where

Equation (7) thus follows.

Derivation of the upper bound of the difference between (7) and (8)
Assume without loss of generality ΔU ≥ ΔL. Then define h = ΔU − Δ̄ = Δ̄ − ΔL. Expanding

 about  using Taylor’s series gives

(A1)

for some , where ϕ is the density function of standard normal. Likewise, we
have
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(A2)

for some . Adding (A1) and (A2) then gives

(A3)

It is easy to see that (A3) lies between 0 and , with the latter

converging to 0 at a rate of n3/2λ−n where  because . It is easy
to see that the difference between Equations (7) and (8) converges to zero at this rate.

R code for the PTEN-long study
An R function ‘getn’ is made available in the package ‘dfcrm’ (version 0.2-0 built on
2013-02-19). The function implements the sample size calculation proposed in this article.
The following code is used to obtain the sample size for the PTEN-long study:

> library(dfcrm)
> a = 0.6
> theta = 0.25
> K = 5
> oddsRatio = 1.8
> obj = getn(a, theta, K, oddsRatio)
> obj
Target rate: 0.25
Number of dose levels: 5
Effect size (odds ratio): 1.8
Required accuracy: 0.6
Calculated sample size: 32
> n = obj$n
> n
[1] 32
>
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Figure 1.
Scatterplots of simulated average PCS versus the fitted average PCS by various models. The
coefficient of determination is the square of the sample correlation coefficient.
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Table 2

Clinical parameters used in the simulation.

Parameter Values

θ 0.10, 0.15, 0.20, 0.25, 0.30

K 4, 5, 6, 7, 8

R 1.25, 1.50, 1.75, 2.00, 2.25, 2.50

n 20, 25, 30, 35, 40
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Table 4

List of models with smallest ε∞ for each given number of covariates.

Covariates ε∞

θ, θ2, θ−1, K, K2, K−1, R, R2, R−1 0.023

θ, θ2, θ−1, K2, K−1, R, R2, R−1 0.023

θ, θ2, θ−1, K2, R, R2, R−1 0.022

θ, θ−1, K2, R, R2, R−1 0.022

θ, θ−1, K2, R, R−1 0.022

K2, R, R2, R−1 0.023

K2, R, R−1 0.023

R, R−1 0.039

K2 0.047
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