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Abstract
Substantial advances have been made in modeling protein association mechanisms and in
calculating association rate constants (ka). We now have a clear understanding of the physical
factors underlying the wide range of experimental ka values. Half of the association problem,
where ka is limited by diffusion, is perhaps solved, and for the other half, where conformational
changes become rate-limiting, a number of promising methods are being developed for ka
calculations. Notably, the binding kinetics of disordered proteins are receiving growing attention,
with “dock-and-coalescence” emerging as a general mechanism. Progress too has been made in
the modeling of protein association kinetics under conditions mimicking the heterogeneous,
crowded environments of cells, an endeavor that should ultimately lead to a better understanding
of cellular functions.

Introduction
The association of proteins with small molecules and other macromolecules constitute the
key steps of all cellular functions. In addition to the structures of the complexes formed and
their binding affinities, association mechanisms and rate constants uniquely contribute to the
characterization of cellular functions. Association processes are often under kinetic, rather
than thermodynamic, control [1], e.g., when several macromolecules compete for the same
binding site [2] or when a protein is faced with alternative pathways [3]. Understanding the
physical principles governing association mechanisms and rate constants and furthermore,
realistically modeling them, are thus of paramount importance.

In many cases, convincing arguments can be made that rapid association, not just high
affinity, is essential for biological function. For example, some bacteria produce enzymes
(e.g., barnase in Bacillus amyloliquefaciens and nuclease colicins in Escherichia coli; Fig. 1)
that are exported to rapidly kill off competitor cells by cleaving their nucleic acids.
However, these enzymes can also potentially cleave the host cell’s own nucleic acids. This
ill fate is prevented by co-producing inhibitors (i.e., barstar and immunity proteins), and
rapid enzyme-inhibitor association here is obviously crucial to ensure the self-defense of the
host cell.
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Various cellular functions rely on altering association (ka) and dissociation (kd) rate
constants. Translation initiation, putatively the rate-limiting and most highly regulated phase
of bacterial protein synthesis, provides a good example. Crucial to translation initiation is
the binding of the initiator tRNA (i.e., fMet-tRNAfMet) to the ribosome 30S subunit [2]. This
binding, in the absence of initiation factors (IF1-3), has the same low ka and low kd as the
binding of noncognate, elongator tRNAs [4•]. Pre-binding of IF1-3 to the 30S subunit
results in increases in ka of as much as 400-fold for the initiator tRNA but by only ~10-fold
for noncognate tRNAs, as well as significant, uniform increases in kd for all the tRNAs. The
resulting disparity in ka is essential for the accuracy of initiator tRNA selection.

Post-translational modifications such as phosphorylation present a different mechanism for
altering ka. A recent study [5] found that response levels in cellular signaling correlated with
the phosphorylation-dependent binding affinities of a linker peptide on a kinase for the SH2
domain of an effector protein. However, as the phosphorylation in this case affected ka but
not kd, a similar correlation can be argued if ka, instead of the association constant (i.e., Ka =
ka/kd), is used. Even if Ka was the determinant for the cellular function in this study, it
remains important to point out that the increases in Ka upon phosphorylation were achieved
through increases in ka, as opposed to decreases in kd. The latter might not be a viable option
for signaling proteins, as the complexes formed with their targets generally have to be short-
lived. It has been proposed that structural disorder allows signaling proteins to bypass the
requirement for maintaining high ka, without sacrificing specificity [6].

The question of whether Ka or ka is the better predictor of cellular response in signaling was
specifically addressed by Kiel and Serrano [7]. They introduced c-Raf mutations that were
expected to change either only Ka (by changing kd) or only ka (by compensatory changes in
kd) for association with Ras. The effects of these mutations on MAP kinase signaling
correlated better with predicted ka than with predicted Ka. While signaling networks may not
generally be dictated by single protein-protein association steps, this study does highlight the
importance of considering association kinetics, not just equilibrium, in predicting the
outcome of signaling.

The association constant is determined by the end states of the binding process, namely the
unbound state, in which the two subunits separately reside in the solvent environment, and
the bound state, in which the subunits form specific, noncovalent interactions. In contrast, to
determine the association rate constant one has to consider the whole binding process. This
process involves both overall translational and rotational diffusion of the molecules, which
brings the binding sites on the two molecules into proximity, and internal conformational
changes, which allow the molecules to achieve their native stereospecific fit. There is a long
history of deriving theoretical results for ka by formulating the diffusional and internal
motions of simple molecular models [1] and in developing algorithms for computing ka
through simulating the motions of realistically represented protein molecules [8–12].

The past few years have seen major progress in modeling protein association mechanisms
and in calculating association rate constants. In highlighting this progress below, we will
focus on association between protein molecules, but will occasionally include examples
where the subunits are nucleic acids, small molecules, and multi-component complexes.

An overview on the wide spectrum of protein association rate constants
The observed ka values for protein-protein association range from ~1 to 1010 M–1s–1 (Fig.
1). It is now clear that this 10 orders of magnitude spectrum involves two different rate-
limiting mechanisms [13,14]. The binding process between two proteins, A and B, can be
modeled by the reaction scheme [6,13]
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(1)

where A · B denotes an initial complex in which at least a portion of the binding site on A
forms near-native contact with the cognate portion of the binding site on B, and C denotes
the final, native complex. The formation of the initial complex predominantly involves the
translational and rotational diffusion of the molecules, whereas the subsequent step
predominantly involves the conformational changes of the molecules. The overall rate
constants for association and dissociation are

(2)

(3)

Both the diffusional step and the conformational step can be rate-limiting for association.
The former regime occurs if kc ≫ kD− (e.g., when structural differences are small between
the bound and unbound states). Then ka ≈ kD Recent calculations for over 100 protein-
protein complexes found that, in the absence of any biasing force in the diffusional step,
diffusion would set an upper bound of 104 to 106 M−1s−1 for ka [15••]. Electrostatic
attraction can bias the diffusional step and push up kD by 3 or more orders of magnitude.
Indeed, proteins that associate with rate constant higher than 107 M−1s−1 always have highly
complementary electrostatic surfaces (Fig. 1).

When large-scale structural differences exist between the bound and unbound states, the
conformational step can become rate-limiting. In this regime, ka ≈(kD/ kD−) kc kD/kD− is the
association constant for forming the initial complex and probably has a lower bound of 102

to 103 M−1, similar to those for low-affinity protein-protein complexes. kc could be
compared to the rate of transition from a folding intermediate to the native state of a protein,
which can be as low as 10−2 to 10−3 s−1 [16,17]. Therefore, a lower bound of 1 M−1s−1 is
expected when association is rate-limited by conformational changes.

The diffusion-limited regime
In general, ka values higher than 104 M−1s−1 can be proposed to be diffusion-limited. Most
ka calculations have been restricted to this regime [11]. Here, the initial complex can be
placed very close to the native complex, and its precise location can be determined by
sampling near the bound state in the 6-dimensional translational and rotational space [18].
This and other developments culminated in the transient-complex theory for protein
association [13]. The transient complex specifically refers to the initial complex in the
diffusion-limited regime, in which the two proteins have near-native separation and relative
orientation but have yet to form most of the stereospecific native contacts. The association
rate constant is predicted as

(4)

where ka0 is the “basal” rate constant, i.e., the rate constant at which the two proteins reach
the transient complex by free diffusion, and the Boltzmann factor captures the rate
enhancement by inter-protein electrostatic attraction. Applications to structurally similar
proteins show that different degrees of electrostatic complementarity across the binding
interface can produce orders of magnitude disparities in ka [19]. Differences in sizes and
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shapes of the interface can also contribute to variations in ka by modulating the basal rate
constant, which is dictated by the extent of the orientational restraints between the subunits
in the transient complex [15••,20••]. The orientational restraints themselves may result in
preferred pathways for reaching the transient complex [21]. Pre-binding of a third protein
near the interface can modify the placement of the transient complex, potentially
contributing to a dramatic increase in ka [22].

Another important development is the automated implementation of the transient-complex
theory, resulting in the TransComp web server (http://pipe.sc.fsu.edu/transcomp/) for ka
prediction [15••]. To illustrate the level of accuracy of the server predictions a comparison to
experimental results for 49 diverse protein-protein complexes is shown in Fig. 2. In an
intriguing application, extensive TransComp calculations suggested that a conserved
cationic surface on the kinesin motor domain enhances the association rate with, and
contributes to, the directional movement on microtubules [23•].

Recently machine-learning protocols have also been employed to predict kinetic parameters
from atomic coordinates [24,25]. The benefit of these approaches is that they too are able to
identify, from diverse training sets, which structural and energetic features are the more
powerful predictors, with solvent mediated hydrogen bonding and surface complementarity
identified as being particularly important for the prediction of ka [25].

Structural and dynamic differences of proteins result in a variety of association mechanisms
[15••,20••]. The association of many proteins that fall in the diffusion-limited regime can be
viewed as rigid docking of the subunits accompanied by fast local conformational
adjustments (Fig. 3a). In other cases the docking of one subunit may require a larger scale
breathing motion of the other subunit to open the binding site (Fig. 3b). As long as the
breathing motion is fast on the timescale of the diffusion approach between the subunits, the
overall association process is still diffusion-limited [26].

Modeling conformational changes during association
When conformational changes are slow on the timescale of the diffusion approach between
the subunits, they become rate-limiting. In this regime, internal motions have to be explicitly
modeled during the association. A few such simulation studies, on binding of small
molecules to proteins, have been published over the years [27,28]. Using algorithms
originally designed for calculating the association rate constants of rigid molecules [8,9] to
calculate the association of flexible molecules presents the formidable challenge of having
to simulate internal motions over the length of time required for achieving successful
association.

Recently a new algorithm was developed [29], based on breaking the association process
into two problems confined to either the outer region, where the molecules can be modeled
as rigid, or the inner region, which covers the binding site but is small enough such that
modeling of internal motions can be affordable. The algorithm has been tested on the
binding of small molecules to proteins [Qin, Greives, & Zhou, to be published]. Another
interesting approach is based on long, extensive molecular dynamics simulations, from
which a Markov state model of the binding process was constructed [30•]. Application of
either approach has yet to be made to study protein-protein association.

Association of disordered proteins with structured targets
Intrinsically disordered proteins (IDPs) represent an extreme form of molecular flexibility
[31,32]. Their coupled folding and binding processes have increasingly been investigated
experimentally and computationally [33,34••]. When bound to structured targets, they often
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form open structures with extended interaction surfaces [35]. It is unlikely that an IDP
would form its extensive interactions with its target all at once, as the resulting severe
orientational restraints would lead to extremely low ka [6,15••]. Rather, different segments
of the IDP have to form contacts with their cognate subsites at different times. A likely
scenario, consistent with molecular simulations [36–39], is the sequential formation of these
contacts [15••,20••]. In such a “dock-and coalescence” mechanism (Fig. 3c), one particular
segment of the IDP first docks to its cognate subsite on the target, thereby allowing the
remaining segments to explore conformational space and coalesce around their cognate
subsites.

In the simplest case, the docking step is rate-limiting for overall association. Then
mutations, either on the docking segment of the IDP or on its cognate subsite, that perturb
the docking step would significantly affect the overall ka, whereas those perturbing the
coalescing step or even deletion of the entire coalescing segment would not. Such telltale
signs have indeed been observed experimentally [40–43•]. Molecular simulations have
suggested that the flexibility of IDPs helps reduce the free energy barrier for the coalescing
step [39,44], potentially making the docking step rate-limiting. Importantly, for IDPs that
bind to their targets with a rate-limiting docking step, the TransComp method can again be
used to predict the association rate constants, by studying just the binding of the docking
segments with their cognate subsites [15••]. TransComp calculations have now produced ka
values that are in quantitative agreement with experimental results for a variety of IDPs,
suggesting that dock-and-coalesce may be a general mechanism for IDPs binding to their
structured targets, often with docking as the rate-limiting step [15••,20••,34••].

Compared to structured proteins, IDPs achieve similar levels of specificity for their targets,
but with the specific interactions more widely distributed over space. Therefore during
dissociation these interactions do not have to be broken all at once, leading to an increase in
kd. In this way IDPs can form highly specific and yet short-lived complexes with their
targets, fulfilling the twin requirements for signaling proteins [6].

Influence of cellular environments on association kinetics
Understanding cellular functions ultimately requires the modeling of protein association
processes not in dilute solutions but in solutions mimicking the crowded, heterogeneous
cellular environments. It is now recognized that such environments can significantly affect
both thermodynamic and kinetic properties of protein association [45]. A reasonable
approach to model association kinetics in a crowded solution is by accounting for the effects
of the crowder molecules on the interaction energetics and the motional dynamics of the
reactant molecules [46]. This approach has been validated by simulations of a simple system
in which both reactant and crowder molecules are modeled as hard spheres [47].

For protein association that is rate-limited by the conformational step, the dominant
contribution of crowding can be captured by its effect on the free energy of the transition
state for the conformational step (relative to the unbound state). If this transition state is
structurally similar to the native complex, then the effect of crowding on free energy barrier
is close to that on the binding free energy. An efficient method has been developed for
calculating the latter quantity [48].

For protein association in the diffusion-limited regime, crowding exerts its dominant effect
on the diffusional approach of the subunits toward the transient complex. The presence of
crowder molecules slows down the relative diffusion of the associating subunits but also
produces an effective interaction energy between them [47]. The transient-complex theory
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has been modified to account for these effects and predict the association rate constant under
crowding as [49•]

(5)

where γ is the factor by which the relative diffusion constant is slowed down by the
crowders and  is the crowding-induced interaction energy between the subunits in the
transient complex. Hard-core repulsion from the crowder molecules can lead to apparent
attraction between the subunits (i.e., ). Then and  would have opposing
consequences on the association rate, leaving a nearly null net effect. Therefore despite the
presence of crowders the association would appear unimpeded. This prediction is confirmed
by recent kinetic experiments under in vitro crowding and in living cells [50,51•].

Prospects
Over recent years major progress has been made in modeling protein association
mechanisms and in calculating association rate constants. For half of the association
problem, where ka is higher than 104 M−1s−1 and limited by diffusion, the determinants for
ka are now well understood and the calculations of ka are quite accurate. For the other half,
where conformational changes become rate-limiting, promising methods are being
developed and it will be interesting to see how practical and predictive when these are ready
for application to study protein-protein association.

Quantitative modeling of protein association kinetics can provide answers to open questions
concerning essential cellular functions. For example, how do initiation factors achieve the
substantial rate increase for the binding of the initiator tRNA to the ribosome 30S subunit?
Interference with this rate increase may potentially be a new mechanism of antibiotic action.
More broadly, modeling of association mechanisms may uncover intermediates along
kinetic pathways, which could form a new class of targets for drug design [52].

An area where the progress in ka calculations reported here could have immediate impact is
the modeling of signaling networks. One of the more popular approaches to modeling such
networks dynamically is to construct a set of rate equations to monitor key cellular events
over time [53]; for example, the nucleocytoplasmic shuttling of proteins associated with the
TGF-β pathway [54], and the modulation of disease-associated pathways due to protein
missense mutations [7,55]. While some of the kinetic parameters for such equations have
been or can be experimentally determined, others may need to be predicted. It is here that
the accurate prediction of association rate constants from bound or even unbound protein
structures can be extremely valuable.
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Highlights

• Protein association rate constants are essential for cellular functions.

• Half of the problem of modeling association kinetics has a solution.

• Binding of disordered proteins appears to follow a dock-and-coalesce
mechanism.

• Crowded cellular environments influence protein association and cellular
functions.
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Fig. 1.
The wide spectrum of experimental values for the rate constants of protein-protein
association. The conformational change-limited regime and diffusion-limited regime are
generally separated around ka = 104 M−1s−1 (indicated by a vertical line). In the diffusion-
limited regime, if there is no long-range force to bias the diffusion, ka usually falls between
104 and 106 M−1s−1 (shaded region). Proteins that associate with ka > 107 M−1s−1 invariably
feature strongly complementary electrostatic surfaces (as shown for four complexes; blue
and red represent positive and negative electrostatic potentials, respectively); ka values for
the four systems measured at ionic strengths of 150, 50, 15, and 25 mM (from left to right)
are indicated by short lines touching the ka axis.
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Fig. 2.
Level of accuracy of TransComp ka predictions. (a) Comparison of predicted and
experimental ka values for 49 protein-protein complexes. (b) Structures of 10 of the 49
complexes, illustrating the structural diversity. Adapted from Qin et al. [15••].
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Fig. 3.
Three different mechanisms of protein association, illustrated by three proteins binding to G-
actin (shown as pink surface) [20••]. (a) Profilin reaches the transient complex (not shown)
with G-actin by diffusion and then quickly forms the native contacts all at once to produce
the native complex. (b) Vitamin-D binding protein must undergo breathing motion to
transiently widen the opening between its domains 1 and 3 to allow G-actin to enter. (c) The
Wiskott-Aldrich syndrome protein has a disordered actin-regulatory region. The binding of
this regulatory region to G-actin follows the dock-and-coalesce mechanism: the WH2
segment (in blue) docks to the cleft between subdomains 1 and 3 of G-actin, allowing the
remaining segment (in green) to sample conformations and coalesce to its cognate subsite in
the cleft between subdomains 2 and 4 of G-actin.
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