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SUMMARY
We discuss in this paper the validation of an open source framework for the solution of problems
arising in hemodynamics. The proposed framework is assessed through experimental data for fluid
flow in an idealized medical device with rigid boundaries and a numerical benchmark for flow in
compliant vessels. The core of the framework is an open source parallel finite element library that
features several algorithms to solve both fluid and fluid-structure interaction problems. The
numerical results for the flow in the idealized medical device (consisting of a conical convergent,
a narrow throat, and a sudden expansion) are in good quantitative agreement with the measured
axial components of the velocity and pressures for three different flow rates corresponding to
laminar, transitional, and turbulent regimes. We emphasize the crucial role played by the accuracy
in performing numerical integration, mesh, and time step to match the measurements. The
numerical fluid-structure interaction benchmark deals with the propagation of a pressure wave in a
fluid-filled elastic tube. The computed pressure wave speed and frequency of oscillations, and the
axial velocity of the fluid on the tube axis are close to the values predicted by the analytical
solution associated with the benchmark. A detailed account of the methods used for both
benchmarks is provided.
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1. INTRODUCTION
Computational fluid dynamics (CFD) is nowadays a tool of choice for the investigation of
blood flow problems. It has been extensively applied over the years to study the physiology
and physiopathology of the cardiovascular system [1, 2, 3] and to patient-specific planning
of interventions for cardiovascular disease [4, 5, 6]. It has been used in the medical device
industry to develop and/or analyze the performance of prosthetic heart valves [7], stents [8,
9], ventricular assist devices [10], blood filters [11] etc. In addition, CFD results are also
being used by some manufacturers to help demonstrate safety and efficacy of a device as
part of the pre-market device submissions to the U.S. Food and Drug Administration (FDA)
[12].

However, the reliability of the computational approach to the study of physics phenomena is
dependent on the validation of the mathematical models and the verification of the
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numerical methods [13]. A verified method is capable of correctly solving the problem
equations, while a valid model is able to correctly describe the features of the problem (i.e.,
it uses the right equations).

In 2004, the FDA launched a “Critical Path Initiative” program [14] aimed, among other
things, at improving the use and validating CFD techniques in the evaluation of medical
devices. A benchmark nozzle model was developed which contains all the features
commonly encountered in medical devices (flow contraction and expansion, recirculation
zones etc., see Figure 1) and three laboratories were asked to perform flow visualization
experiments on fabricated models for five flow rates spanning laminar, transitional, and
turbulent regimes [12]. This resulted in benchmark data available online to the scientific
community for the validation of CFD simulations [15]. Other significant efforts towards the
definition of a shared test bed for numerical solvers for partial differential equations, and
specifically for flow problems, include the works by Turek and coworkers for the
verification of solvers for the Navier-Stokes equations [16] and for the fluid-structure
interaction problem [17, 18].

The results of a first CFD study of the FDA nozzle model are reported in [19]. Twenty-eight
groups of CFD professionals around the world participated in the study, following different
modeling approaches (turbulence models vs. direct numerical simulations, 2D vs. 3D
geometries, choice of the boundary conditions etc). Overall, the results obtained by different
groups had a very large variability, also with respect to the experimental results. It was
observed that turbulence models were in general unable to correctly estimate the centerline
velocities in the inlet and throat of the nozzle, and velocities and shear stresses in the
recirculation zones downstream of the sudden expansion. Limitations of direct numerical
simulations when dealing with flows in the transitional regime were also discussed, most
likely due to under-resolution of the computational grid. One of the conclusions of the study
was the recommendation that validation studies should always be performed when
attempting the use of computational models for the evaluation of medical devices.

Our goal is two-fold: (i) validate an open source CFD framework for the solution of
problems of interest in hemodynamics and (ii) provide a detailed report on the methodology
that we use, to make our experiences reproducible. To achieve this goal we refer to (a) the
FDA benchmark; (b) the FSI test case presented in [20]. The former is intended to assess the
code capabilities in simulating fluid flow in a rigid domain representative of a medical
device. The latter is intended to evaluate the performance of the software in simulating fluid
flow in deformable domains, which is clearly of utmost relevance for cardiovascular
problems. In particular - in absence of an analogue of the FDA benchmark including FSI -
the second test deals with the propagation of a pressure wave in a fluid-filled elastic
cylindrical vessel for which an analytical solution for the wave speed and frequency of
oscillation are provided.

The core of our open-source CFD framework is LifeV [21], an open source library of
algorithms and data structures for the numerical solution of partial differential equations
with high performance computing (HPC) technologies. High performance computing is
supported by LifeV through the interplay with third-party software (in particular the linear
algebra package Trilinos [22] by Sandia National Laboratories). LifeV is maintained and
developed by an international network of universities and research centers across Europe
and the US, whose core members are the Politecnico di Milano (Italy), the École
Polytechnique Fédérale de Lausanne (Switzerland), and Emory University in Atlanta (USA).
Other institutions contribute to the project, including the INRIA in Paris (France), Florida
State University, Georgia Institute of Technology, and the University of Houston.
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LifeV has been used over the last ten years as a valuable tool for the prototyping of
numerical methods (see e.g. [23, 24, 25, 26, 27, 28]). Moreover, software based on LifeV
has been extensively used in research projects focused on the modeling of blood flow
problems, among others the drug release from implantable stents [29], the design of medical
procedures in cardiology [30], the optimization of diagnostic procedures [31], surgical
planning [32] and the study of cerebral hemodynamics [33].

As part of the framework we also consider open source mesh generators, such as Netgen
[34] and Gmsh [35], and software for visualization and post processing such as ParaView
[36]. Both Netgen and Gmsh provide several algorithms for 3D mesh generation and mesh
refinement. Their scripting languages allow to have a fine control on the features of the
mesh when dealing with simple geometries (in particular axisymmetric domains). ParaView
is a large software project based on VTK. In this context, it is recalled for its powerful
graphical interface and for offering several filters to operate on the data from numerical
simulation (to visualize, probe, process, …).

We discuss in this paper some of the the strengths of this framework, such as its open source
nature, its solid mathematical background, its flexibility in handling complex geometries,
and its performance on HPC machines. This work in fact represents a first step towards
making such CFD framework a reliable tool for flow simulations in medical devices or
biomechanics problems. Nonetheless, we also draw some conclusions (e.g., on which
methods and algorithms work best in the different flow regimes) that are not restricted to
this specific CFD framework, but rather are general and could be used as guidelines for
similar CFD studies with different software.

The outline of the paper is as follows. In Section 2 we state the problems that we want to
solve (fluid, structure, and coupled fluid-structure interaction problems). For each problem
we touch on the numerical methods that we use for their discretization in time and space and
discuss the solution of the associated linear systems. In Section 3, we describe the FDA
benchmark and the numerical benchmark for FSI problems and we report the results of the
validation and verification. Conclusions are drawn in Section 4.

2. PROBLEM DEFINITION
2.1. The fluid equations

The motion of an incompressible viscous fluid in a spatial domain (denoted hereafter by Ωf)
over a time interval of interest (t0, T) is described by the Navier-Stokes equations

(1)

(2)

where ρf is the fluid density, u is the fluid velocity, σf the Cauchy stress tensor and gf the
body force. For Newtonian fluids σf has the following expression
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where p is the pressure, μf is the fluid dynamic viscosity, and ε(u) = (∇u + (∇u)T)/2 is the
strain rate tensor. Equations (1)–(2) need to be supplemented with initial and boundary
conditions.

In the following we focus on the problem of the flow of blood in a vessel (either rigid or
deformable). For such a problem, it is commonly accepted to ignore any body force
(including the gravity force).

The Reynolds number can be used to characterize the flow regime, and identify the
transition of the flow to turbulence. We define the Reynolds number as

(3)

where ū is the mean sectional velocity within a pipe of hydraulic diameter D and νf = μf/ρf is
the fluid kynematic viscosity. The Reynolds number can be thought of as the ratio of inertial
forces to viscous forces. For large Reynolds numbers, inertial forces are dominant over
viscous forces and vice versa.

2.1.1. Discretization—We approximate in time equations (1)–(2) by the backward
differentiation formula of order 2 (BDF2 [37]) and we linearize the convective term by an
extrapolation formula of the same order. Given Δt ∈ ℝ, let us set tn = t0 + nΔt, with n = 0,
…, NT and T = t0 + NTΔt. Problem (1)–(2) discretized in time reads: given un, for n ≥ 1, find
the solution (un+1, pn+1) of the system:

(4)

(5)

For the space discretization, we introduce a conformal and quasi-uniform partition  of Ωf
made up of a certain number of tetrahedra. We will use two inf-sup stable finite element

pairs: the  elements and the ℙ2-ℙ1 elements and we will point out the strengths and
limitations of both. For more details concerning the discretization of the Navier-Stokes
problem, we refer, e.g., to [38]. We do not use any stabilization for the convective term:
careful selection of the discretization parameters - time step and mesh size - yields stable
solutions without the need for numerical stabilization techniques. Moreover, even though the
semi-implicit treatment of the convective term in eq. (4) does not guarantee the
unconditional stability in time of the numerical scheme, we encounter no stability issues in
the numerical experiments described in Sec. 3.1 and 3.2.

Let us denote by M the mass matrix, K the diffusion matrix, N the matrix associated with the
discretization of the convective term, and B the matrix associated with the discretization of
the operator (−∇·). The linearization and full discretization of problem (1)–(2) yields the
following system

(6)
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(7)

where un+1 and pn+1 are the arrays of nodal values for velocity and pressure. The array 
accounts for the contributions of solution at the previous time steps and the contribution that
the boundary nodes give to the internal nodes.

Set . We can rewrite (6)–(7) in the form

(8)

where

(9)

At every time level tn+1, to solve system (8) we use the left preconditioned GMRES method.
As preconditioner, we use an upper-triangular variant of the pressure corrected Yosida
splitting [23, 39] given by

(10)

The above preconditioner is a suitable approximation of the U factor in the exact block LU
factorization of matrix A in (9):

(11)

See also [40, 41, 42, 43] for more details.

2.2. The structure equations
The motion of an elastic structure in terms of its displacement field d with respect to a given
material reference configuration Ω̂s is governed by the elastodynamics equation

(12)

where gs is the body force which we neglect in the following. We assume that the structure
behaves like a linearly elastic, or Hookean, material. Thus, we have:

(13)

Here, ε(d) = (∇d + (∇d)T)/2 is the strain tensor, μs and λs are the Lamé constants, that are
related to Young’s modulus E and the Poisson ratio νs as follows:
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2.2.1. Discretization—For the time discretization of problem (12), we adopt a method
from the family of generalized-α schemes (see, e.g., [44]). Such schemes represent a more
stable version of the well-known Newmark method

(14)

(15)

(16)

where vn and an are proper approximations of the structure velocity and acceleration at time
tn. Here, set  and  to have second order accuracy. The numerical solutions obtained
with the Newmark scheme may be affected by high frequency spurious oscillations if the
time step is not small enough compared to the space discretization parameters. Generalized-
α methods act as low-pass filters that selectively introduce numerical damping only for the
high frequency modes, while conserving the low frequency modes. The spectral properties
of those methods are determined by a single parameter: the asymptotic spectral radius ρ∞ (0
≤ ρ∞ ≤ 1). If ρ∞ = 1 the generalized-α method reduces to the Newmark method. By setting

(17)

(18)

the generalized-α scheme replaces momentum equation (14) by

(19)

By using (17)–(18) and (15)–(16), it is possible to rewrite equation (19) in terms of the only
unknown vn+1. Concerning the particular choice of the generalized-α method and
parameters, we take αm = −1, αk = 0, γ = 3/2 and β = 1, which correspond to ρ∞ = 0. This
scheme, originally proposed in [45], features excellent stability properties and second order
of accuracy in time.

For the space discretization, we introduce a conformal and quasi-uniform triangulation 
of Ω̂s made up of a certain number of tetrahedra and we set up a Galerkin finite element
procedure using ℙ2 elements. We denote by Ms the mass matrix and by Ks the stiffness
matrix obtained after discretization of problem (12). The problem now becomes: given vn,
for n ≥ 1, find the solution vn+1 of equation:
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where v is the array of nodal values for the structure velocity, while bs accounts for the
contributions of the solution at the previous time steps and boundary conditions.

2.3. The coupled problem
The structure deforms due to the contact force exerted by the fluid onto the fluid-structure
interface, so that both the structure and fluid domains depend on t, i.e. Ωs = Ωs(t) and Ωf =
Ωf(t). Let us denote by Γ(t) the fluid-structure interface, that is the common boundary
between Ωf(t) and Ωs(t). The fluid problem (1)–(2) and the structure problem (12) are
coupled by two transmission conditions:

1. continuity of velocity

(20)

2. continuity of stress

(21)

n being the outward normal for Ωf(t). In (21), σs is the structure Cauchy stress
tensor, which is the Eulerian description of the second Piola-Kirchhoff stress tensor
Σs defined in (13).

In order to describe the evolution of the whole domain Ω(t) = Ωf(t) ∪ Ωs(t), we adopt two
different approaches in each subdomain. The structure domain is described with a
Lagrangian mapping as in section 2.2. Thus, if d: Ω̂s × (t0, T) denotes the displacement of the
structure with respect to the reference configuration, then each point xs in the current
configuration Ωs(t) is associated to a point x̂s in the reference configuration by xs(x̂s, t) = x̂s
+ d(x̂s, t). The fluid domain is described with an Arbitrary Lagrangian-Eulerian (ALE)
mapping. In other words, its kinematics is only required to comply by that of the boundary
Γ(t), which is the result of the coupling with the structural model. We define the position xf
of internal points to Ωf(t) as the harmonic extension of the position of points on Γ(t). See,
e.g., [46, 47] for details. The position in the reference fluid domain Ω̂f (at t = 0) is denoted
by x̂f, and the domain velocity w is calculated using the following expression:

The velocity ALE time derivative, i.e. rate of change of the fluid velocity in a point that
moves with the computational domain reads

With these definitions, we can write the incompressible Navier-Stokes equations in ALE
formulation as follows:

(22)
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(23)

for t ∈ (t0, T). Coupling conditions (20),(21) can be written in the equivalent form

(24)

(25)

where rf > 0 and rs > 0 (rf ≠ rs) are constants.

2.3.1. Discretization—At every time level tn+1, the FSI problem discretized in time and
space can be written in matrix form as:

(26)

(27)

Here, the boundary mass matrices Rf, Rs and the coupling matrices Tfs, Tsu, Tsp arise from
the discretization of the coupling conditions (24),(25).

To precondition system (26), we consider an inexact LU block factorization of the matrix
Afs, in a similar way to what already done in Sec. 2.1 and in the same spirit of [46, 47]. The
approximated U factor for matrix Afs is:

where Σ̂s and Σ̂p are appropriate approximations of the structure Schur complement

and the pressure Schur complement

To approximate Σs, we use (C + rfRf)−1≈ H, where H is defined in (10). Thus, we have:
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To approximate Σp, we modify the pressure corrected Yosida preconditioner defined in Sect.
2.1 as follows:

(28)

At every time level tn+1, we solve  with the GMRES method. The
position of the fluid domain is extrapolated from the previous time step, while the non-
linearity induced by the fluid convective term is resolved with Picard iterations (see e.g.
[37]).

3. RESULTS
3.1. The FDA benchmark

The FDA benchmark consists in simulating the flow of an incompressible and Newtonian
fluid with prescribed density and viscosity (ρf = 1056 kg/m3 and μf = 0.0035 Pa·s) in an
idealized medical device shaped like a nozzle (see Fig. 1) at different Reynolds numbers.

The geometry of the device includes a conical convergent, a throat, and a sudden expansion.
In this paper, we are only considering the so-called “Sudden Expansion” model [12, 19], that
is in Fig. 1 the fluid flows from left to right. The idealized device was designed to feature
accelerating, decelerating, and recirculating flow, all of which occur in real medical devices.

The system is studied in a variety of conditions, including the laminar, transitional, and
turbulent regimes: the results of the published inter-laboratory experiments refer to values of
the Reynolds numbers (defined as in (3)) evaluated in the throat, denoted by Ret, of Ret =
500, 2000, 3500, 5000, 6500. In this paper, we focus on the first three values of Ret for
reasons that will be clarified in the following (see Remark 3.4). In table I, we report the
throat Reynolds number Ret, the corresponding inlet Reynolds number Rei, and flow rate for
the flow regimes that we are going to consider. Notice that in all the three flow regimes the
flow upstream of the throat is laminar, Rei being below the critical Reynolds number for
transitional flow in a straight pipe (Re ≃ 2000 [48]).

Since we are dealing with a viscous fluid, on the lateral surface of the computational domain
we prescribe a no-slip boundary condition. For all three flow regimes in table I, at the inlet
section we prescribe a Poiseuille velocity profile to get the desired flow rate, a choice which
is justified by the considered values of Rei. At the outlet section, we prescribe a stress-free
(natural) boundary condition. This simulates a discharge into open air, which does not
correspond to the experimental set up of the FDA benchmark (a closed flow loop [12]).
However, this choice is expected to alter the computed solution only in a confined region of
the computational domain close to the outlet section [49]. The results of the flow analysis
are not affected, provided the computational domain represents a long enough expansion
channel. As discussed in the following, we always considered the length of the expansion
channel (Lo in Fig. 1) to be greater than 10 times its diameter, and we did not observe a
dependence of the solution on the actual value of Lo.

As for the initial condition, we start our simulations with fluid at rest, i.e., p = 0 and u = 0
everywhere in Ωf. We use a smooth increase of the velocity profile at the inlet to transition
from the fluid at rest to the regime flow conditions. A short transition reduces the duration
and therefore the overall computational cost of the simulation. However, a fine time
discretization is required to resolve fast transient dynamics of the computed solution.
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For every flow regime, we use direct numerical simulations (DNS), with no turbulence
model. This choice is motivated by the results presented in [19], where it is shown that DNS
most accurately predicts the velocities at all Ret, in particular in the entrance region, in the
throat, and just downstream of the sudden expansion. In DNS, it is essential to assess
whether or not the flow field is properly resolved. For this purpose, we follow the approach
proposed by [50], that is the grid resolution is qualified in terms of the viscous length scale,
computed as

(29)

In (29), Δl represents the local grid size, Vτ is the tetrahedron volume, and || · ||F is the
Frobenius norm. If l+ ~ O(1), the average grid size Δl is of the order of the viscous length
scale, which is the smallest spatial scale at which turbulent fluctuation can persist.

As mentioned in Sec. 2.1, selection of the time step was not driven by stability issues but
rather based on accuracy considerations solely.

We compare the experimental data provided by the FDA with our numerical simulations for
all the flow regimes listed in table I. The experimental data were acquired by three
independent laboratories and one of the laboratory ran three trials, so that for each case we
have five sets of data. The comparison is made in terms of normalized axial component of
the velocity along the centerline and at various radial sections (see Fig. 2), and normalized
wall pressure difference along the length of the domain. The axial component of the velocity
uz is normalized with respect to the average axial velocity at the inlet ūi:

(30)

where Q is the volumetric flow rate calculated from the throat Reynolds number (see table
I). The pressure difference data are normalized with respect to the average velocity at the
throat ūt:

(31)

where pz denotes the wall pressure along the z axis and pz=0 is the wall pressure at z = 0. As
a proxy for the wall pressure at a given axial coordinate, we probed the pressure value at the
corresponding location on the axis of the domain, since we observed pressure values being
approximately uniform on axial cross-sections.

The graphs with the above comparisons are reported in Sec. 3.1.1 for Ret = 500, Sec. 3.1.2
for Ret = 2000, and Sec. 3.1.3 for Ret = 3500. Finally, a quantification of the agreement is
provided in Section 3.1.4 following a validation metric proposed in [19].

3.1.1. Case Ret = 500—Among the considered values of Ret, the case Ret = 500 proved to
be the the easiest to be studied, as expected since the flow is laminar all along the length of
the domain.

We selected Li = 10Di and Lo = 15Di (see Fig. 1) and considered three meshes with different
levels of refinement:
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• mesh coarse15D, with an average element diameter havg = 6.9 · 10−4, a maximum
element diameter hmax = 1.8 · 10−3 and a minimum element diameter hmin = 1.7 ·
10−4; this mesh has 1.7 · 105 nodes and 8.3 · 105 tetrahedra;

• mesh medium15D, with havg = 4.5 · 10−4, hmax = 1.9 · 10−3, hmin = 1.3 · 10−4; this
mesh has 6.3 · 105 nodes and 3.4 · 106 tetrahedra;

• mesh fine15D, with havg = 3.4 · 10−4, hmax = 1.8 · 10−3, hmin = 9.2 · 10−5; this mesh
has 1.3 · 106 nodes and 7 · 106 tetrahedra.

A special refinement was prescribed, so that the mesh size was reduced in the convergent
and hmin was achieved in the throat. All three meshes had a small value of the viscous length
scale at the steady state (maximum value l+ ≃ 0.5 over the entire domain). We ran a

simulation on each mesh, with time step Δt = 10−3 for every mesh and using  finite
elements. An advantage of this choice of finite elements is that the resulting algebraic
problem is significantly smaller and easier to solve with respect to the one generated by
choosing ℙ2-ℙ1 finite elements. The latter are however more accurate, and this may be
required in some cases, as we discuss later.

We let the simulations run until reasonably close to the steady state. To this aim, we
monitored the flow rate and average pressures at the inlet and outlet sections. After t = 3 s,
all the simulations gave a pressure drop along the nozzle with at least four stable significant
digits, and a flow rate with at least five stable significant digits. We observed high frequency
oscillations in the pressure field computed on the finest mesh, that we attribute to numerical
rounding errors magnified by the high condition number of the corresponding matrices. In
this case, to isolate the variability due solely to the transient regime we applied a low-pass
filter to the sequence of computed values. To reach t = 3 s required roughly 15.5 hours of
computational time on 32 CPUs for mesh coarse15D, 24 hours on 128 CPUs for mesh
medium15D, 36 hours on 256 CPUs for mesh fine15D.

First, we report the comparison for the normalized axial velocity (30) along the z axis (Fig.
3(a)) and the normalized pressure difference (31) along the z axis (Fig. 3(b)). In Fig. 3, we
plotted a dot for every measure and a solid line to linearly interpolate the five sets of
measurements, while we used a dashed line for the numerical results obtained with the three
meshes. From Fig. 3(a), we see that the numerical axial velocities computed on the
medium15D and fine15D meshes are always superimposed, showing that mesh
independence is achieved with the second level of refinement. Results obtained on the
coarse15D mesh are superimposed to the previous in the entrance region, convergent, and
throat, while they differ in the sudden expansion region. However, the axial velocities
computed on all the meshes are in agreement with the measurements, all along the portion of
the z axis under consideration (−0.088 ≤ z ≤ 0.08). As for the numerical pressure differences,
the three curves corresponding to the computational results on the three meshes cannot be
distinguished in the scale of the picture, all along the axis (see Fig. 3(b)), but they do not
match the measured data. As reported in [19], these data sets seem in fact to be significantly
affected by normalization errors. This would explain the apparent positive offset of about
1.5 mmHg in most of the measurements with respect to the computed values. Moreover, the
experimental results vary significantly from one data set to the other, suggesting that a
comparison with the measurements is troublesome in this case.

In Fig. 4, we show the profiles of the normalized axial velocity (30) at four different radial
sections. In the entrance region and in the throat (Fig. 4(a) and (b)) there is no noticeable
difference between the numerical results obtained on the different meshes, indicating that no
further refinement is required there. In the same pictures, a mismatch is however observed
between the numerical velocity profiles and the measurements. Given the velocity profile at
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each section and assuming axial symmetry, we can calculate the associated flow rate. By
comparing this flow rate with the theoretical flow rate needed to have Ret = 500, we find
that the flow rate computed from the measured velocity profiles underestimates the
theoretical flow rate by at least 3%, while the flow rate computed from the simulated
velocity profiles retrieves the correct value within an error of 0.019% (using the fine mesh).
For this reason, we conclude that the mismatch observed in Fig. 4(a) and (b) is due to
measurement errors. Downstream of the sudden expansion (Fig. 4(c) and (d)), the simulated
velocity profiles on meshes medium15D and fine15D coincide, they match the experimental
data and are able to correctly capture the negative velocities within the recirculation zones.
Results obtained on mesh coarse15D, although within the range of variability of the
experimental data, do not accurately represent the velocity profile. In particular, the velocity
profile is not axisymmetric, as can be clearly appreciated on the axis of the nozzle. These
results are consistent with those presented in Fig. 3(a).

Remark 3.1: As mentioned in Sec. 3.1, the mesh plays a central role in DNS. At Ret = 500,
the flow is axially symmetric for −0.088 ≤ z ≤ 0.08. It is important that the mesh is close to
uniform on each axial section to respect the symmetry of the problem. A mesh that does not
have such a feature would give unphysical asymmetric velocity profile.

3.1.2. Case Ret = 2000—The transitional regime (Ret = 2000) proved to be a tough test
both from the experimental and numerical point of view.

From the experimental side, the interlaboratory velocity data agreed with each other within
15% error at the entrance, convergent, throat, and right after the sudden expansion.
However, farther downstream of the sudden expansion the velocity profiles from the
laboratories are significantly different from one another. In particular, the experimental jet
breakdown point varied among the laboratories. This was attributed mainly to a 10% higher
flow rate (and consequently higher Ret) which caused premature jet breakdown in two
experiments out of five [12]. However, minor differences in the fabricated geometrical
models and inlet perturbation levels played a role also. From the numerical point of view,
we found the results to be very sensitive to mesh size and time step.

We selected Li = 10Di and Lo = 12Di (see Fig. 1). After several numerical experiments, we
managed to identify a mesh sufficiently refined in the different regions of the domain:
average element diameter havg = 7.1 · 10−4, maximum element diameter hmax = 4.5 · 10−3

and minumum element diameter hmin = 2.1 · 10−4. Also in this case the mesh was selectively
refined in the convergent and in the throat, where hmin was obtained. The final mesh has a
total of 4.6 · 105 nodes and 2.5 · 106 tetrahedra.

We set time step Δt = 10−4 and used ℙ2-ℙ1 finite elements. Around time t = 0.45 s, the
turbulent regime is fully developed. The mesh viscous length scale evaluated at this time has
a maximum value l+ ≃ 2 over the entire domain.

We start by reporting the comparison for the normalized axial velocity (30) along the z axis
(Fig. 5(a)) and the normalized pressure difference (31) along the z axis (Fig. 5(b)). In Fig. 5,
we see that the simulated axial velocities and pressure differences match very well with the
sets of data showing a longer jet.

Fig. 6 shows the profiles of the normalized axial velocity (30) at four different radial
sections. As for the Ret = 500 case, all the sets of measurements slightly underestimate the
axial velocity at z = −0.064; see Fig. 6(a). Inside the throat (Fig. 6(b)), the velocity profile is
plug-like. The peak velocity found by the simulation is slightly less than the ones found
experimentally. In this case, the measured velocity profiles overestimate the theoretical flow
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rate by at least 2%, while the simulated velocity profiles underestimate it by 0.41% (See Fig.
9(b)). Immediately downstream of the sudden expansion (Fig. 6(c)), the simulated profiles
have peak values that fall within the measurements sets and the recirculation zones are
pretty well captured. Section z = 0.06 (Fig. 6(d)) is close to the jet breakdown point for three
sets of measurements, while it is past the breakdown point for the other two sets. The
simulated velocity is closer to the former, as already seen in Fig. 5(a).

Remark 3.2: The  finite elements, which performed well for Ret = 500, failed to give
results comparable to the experimental data for Ret = 2000. In the simulation at Ret = 2000

with a mesh and time step similar to those used for the results in Fig. 5 and 6, the 
finite elements gave a numerical jet breakdown point much farther downstream than
observed in the experiments. A possible cause of the mismatch with the experimental data is

the accuracy of the numerical integration performed by LifeV.  finite elements
require the accurate evaluation of the integral of high order polynomials on the
computational domain. The use of numerical methods unable to guarantee the desired
accuracy may have caused the artificial damping of high frequency modes in the solution
and consequently enhanced its laminar behavior. It is however worth pointing out that the
introduction of high order quadrature formulas may significantly affect the computational
costs.

3.1.3. Case Ret = 3500—The third flow regime we consider features a throat Reynolds
number Ret = 3500 which is well above the transitional Reynolds number in a straight
channel. In fact, turbulence downstream of the sudden expansion was observed in all the
experiments with a reproducible jet breakdown point, which indicates a fully turbulent flow
regime.

We selected Li = 10Di and Lo = 15Di (see Fig. 1). After numerical studies in the throat-
expansion region and convergent-throat-expansion region, we managed to identify a
sufficient level of refinement for the different regions of the domain. The final mesh has
average element diameter havg = 8.4 · 10−4, maximum element diameter hmax = 2.5 · 10−3,
minumum element diameter hmin = 1.4 · 10−4 for a total of 5.6 · 105 nodes and 3.2 · 106

tetrahedra.

We set time step Δt = 10−4 and used ℙ2-ℙ1 finite elements. Already around time t = 0.4 s, the
turbulent regime is fully developed. The mesh viscous length scale evaluated at this time has
a maximum value l+ ≃ 4 over the entire domain. The simulation of 0.4 s of flow took 336
hours on 256 CPUs.

In [19], none of the presented CFD results was able to catch the jet breakdown point,
because DNS predicted a longer jet (likely due to a coarse mesh) while simulations with
turbulence models under-predicted the jet length. In Fig. 7(a), we see that DNS with a
properly refined mesh is able to capture with precision the jet breakdown observed in the
experiments. Actually, the simulated axial velocities matched with the measurements all
along the portion of the z axis under consideration. As shown in Fig. 7(b), also the simulated
pressure difference is in very good agreement with the experimental data, except in the
convergent where the simulated pressure difference overestimates almost all the
measurements.

Fig. 8 shows the profiles of the normalized axial velocity (30) at four different radial
sections. The velocity profile upstream of the throat (Fig. 8(a)) is of Poiseuille type, as
expected (see Rei in table I). The simulation results are in very good agreement in particular
with one of the five data sets. Inside the throat (Fig. 8(b)), the velocity profile is plug-like.
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As for Ret = 2000, the peak velocity found by the simulation is a little lower than the ones
found experimentally. Immediately downstream of the sudden expansion (Fig. 8(c)), the
velocity profile still shows a plateau and recirculation zones appear. Here, the simulated
profile has a peak that falls within the measurements sets, whereas the measurements and
numerical results differ at the recirculation zones. However, it was noted in [19] that
measuring velocities accurately at the wall is very hard, especially in recirculation zones
downstream of the sudden expansion where velocities near the wall are low. Any conclusion
about the accuracy of numerical results in that region, drawn by comparison with
experimental data, has to be considered purely speculative. Section z = 0.06 (Fig. 8(d)) is
past the jet breakdown point, thus the axial component of the velocity is much reduced. The
simulated velocity captures well the magnitude of measured velocity and part of the profile.

Remark 3.3: Since the measurements of a turbulent flow are averaged over time [12], we
averaged the numerical results. All the results presented in Fig. 7 and 8 have been averaged
over 10 time steps. We noticed that averaging over more than 10 would not change the
average value.

Remark 3.4: Using DNS has a major limitation in the high computational costs. To fully
resolve the flow features at high Reynolds number, it is necessary to consider simulations
with a huge number of degrees of freedom [51]. Since the tests that we presented so far
already show that our computational framework can simulate adequately flow in laminar,
transitional and turbulent regimes, we limit our analysis of the FDA problem to Reynolds
number Ret ≤ 3500. Possible alternatives to DNS are represented by filtering techniques
such as the ones considered in Large Eddy Simulations - see, e.g., [52, 53, 54]. In the future
we plan to work on those models to reduce the computational costs of flow simulations in
the turbulent regime.

3.1.4. Quantitative analysis—In order to quantify the agreement between the results of a
simulation and the experimental data, in [19] a generic validation metric Ez was proposed

(32)

where ūe,i is the average of the experimental velocity data at one discrete point i along the z
axis, uc,i is the computational data at the same point i, and n is the total number of discrete
points.

In tables II and III, we report validation metric Ez (32) at each of the twelve radial sections
in Fig. 2 taken separately for Ret = 500, 2000, 3500. The corresponding graphs in semi-
logarithmic scale are shown in Fig. 9(a). For Ret = 500, the numerical results obtained with
mesh fine15D were considered (see Sec. 3.1.1).

From Fig. 9(a), we see that in the Ret = 500 case the value of Ez decreases in the entrance
region and in the throat, while it increases (not monotonically) in the expansion region, the
maximum value being 0.3941 at z = 0.08 (see table III). In the entrance region and in the
throat, Ez for Ret = 2000 is comparable to the one for Ret = 500. The value of Ez increases
downstream of the sudden expansion, with maximum value equal to 2.0609 at z = 0.06. This
large value is mainly due to substantial inter laboratory variations (see Fig. 6(d)). In the Ret
= 3500 case, we see that the value of Ez is low in the entrance region. Then, it increases by
nearly two orders of magnitude immediately downstream of the sudden expansion, with
maximum value equal to 1.0648 at z = 0.016. It is worth stressing that a large value of Ez
does not necessarily reflect a significant discrepancy between computations and
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measurements: Fig. 8(c) shows that the computed and measured velocity values at z = 0.016
are closer than suggested by the metric. Since the metric is a sum of normalized absolute
values, the error is in general large in low-velocity regions such as recirculation zones. In
this sense, validation metric (32) may be not the best possible. Nonetheless, we decided to
show how our results perform in this metric, so that we can more directly compare our
results with the results in [19]. This direct comparison allows us to conclude that the results
presented in Sec. 3.1.1, 3.1.2, and 3.1.3 are in excellent agreement with the measurements.

For all the simulations, we evaluated also the conservation of mass at the axial positions z in
Fig. 2 using the conservation of mass error metric proposed by [19], that is:

(33)

where QCFD is the volumetric flow rate computed from the numerical axial velocity profiles.
Higher values of this metric identify worse performances of the computational model.

Fig. 9(b) shows the conservation of mass error metric as a a function of z for Ret = 500,
2000, 3500. For Ret = 500, the maximum error is less than 0.06%, which appears to be
excellent when compared to the results reported in [19]. Thanks to the fact that the
simulation on mesh fine15D features good mass conservation properties, we are confident
that the simulated pressures in Fig. 3(b) are not far from the real pressures despite the
mismatch with the experimental data. For Ret = 2000, largest error (in absolute value) is
inside the convergent. There, the mesh quality seems to be the key responsible, as we
systematically observe some stretched elements around z = −0.048 in our meshes. The
combination of stretched mesh elements with finite elements that are only weakly
divergence-free (like the ℙ2 – ℙ1 elements we used, [55]) results in a poor approximation of
the flow rate locally. Nonetheless, notice that the local validation metric Ez at z = −0.048
(see table II) is satisfactory. For Ret = 3500, the error (in absolute value) is below 0.3% on
the whole domain. Also in this case though, we observed stretched elements in the
convergent and the mesh could not be significantly improved without drastically increasing
the number of degrees of freedom. A more careful mesh design seems to be required in
regions of the domain featuring axial tapering.

3.2. The Greenshields-Weller numerical benchmark
The numerical fluid-structure interaction benchmark we are going to consider is taken from
a paper by Greenshields and Weller [20]. It deals with the propagation of a pressure wave in
a fluid-filled elastic tube. The geometry is selected to be representative of blood flow in
large arteries: it is a straight cylindrical pipe with circular section, with length L = 10 cm,
diameter D = 2 cm, and a shell of thickness hs = 0.2 cm (see Fig. 10(a)).

The motion of the fluid filling the deformable tube is described by the incompressible
Navier-Stokes equations in ALE formulation (22)–(23), with ρf = 1000 kg/m3 and μf = 0.004
Pa·s. The motion of the elastic shell is described by the elastodynamics equations (12), with
μs = 5.77 · 105 Pa and λs = 3.85 · 105 Pa (correspondingly, E = 105 Pa and νs = 0.3). The
coupled fluid-structure system is initially at rest and the wave propagation is initiated by
setting p = 500 Pa at the fluid domain inlet for all t > 0. At the fluid domain outlet and on the
outer structure wall, a stress-free boundary condition is imposed. Axial movements of the
structure are prevented by prescribing a zero velocity in the axial direction on the inlet
section.

The pressure step applied at the inlet causes a pressure wave to propagate down the tube.
This induces a radial motion of the elastic structure, that shows a time history of damped
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oscillations around an asymptotic steady state. The frequency f of the oscillations and the
steady state value of the radial displacement d̄r can be quantified as

In the definition of f we use the ratio of equivalent fluid mass to solid mass Mfs, that depends
on the mass of fluid contributing to the radial motion. For the problem at hand, we assume
that only a fraction of the fluid mass contributes to the radial motion, and we set Mfs = D/
(8hs) ρf/ρs [20]. This value for the equivalent mass assumes a linear distribution of the radial
fluid velocity. Finally, we obtain Mfs = 1.67, f = 106.1 Hz and d̄r = 0.25 mm.

An analytical solution for wave speed c can be given as a function of the geometric features,
fluid and structure physical parameters of the system:

(34)

with

To the purpose of finding an analytical solution, the fluid was considered slightly
compressible, with bulk modulus Kf = 2.2 · 109 Pa. For the test case, φ = 0.95 and c = 2.77
m/s.

The velocity of the fluid along the tube axis is predicted by Joukowsky’s equation [56]

where p is the pressure gradient. In the case at hand ux = 18.02 cm/s.

We present the comparison between the computed and analytical solutions of the proposed
benchmark problem, evaluating the mismatch with respect to each quantity of interest.
Following [20], we perform a series of numerical experiments, incrementally reducing the
mesh size in the radial and axial directions. We identify the different meshes with a triplet of
numbers, corresponding to the number of subdivisions in the axial direction, in the radial
direction within the fluid domain, and in the thickness of the tube wall. We construct four
meshes with the software GMSH, guaranteeing axial symmetry of the position of the mesh
nodes. Each mesh contains an unstructured region, bounded by a cylinder of radius 1cm;
outside that cylinder the mesh is structured, and the number of subdivisions in the
circumferential direction is such that mesh elements at the interface between the structured
and unstructured regions have a small shape factor (see Fig. 10(b)). Here follows the list of
considered meshes:
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• mesh 20-10-2, yielding a total number of degrees of freedom of about 1.5 · 103.

• mesh 30-20-3, yielding a total number of degrees of freedom of about 3.2 · 103.

• mesh 50-30-5, yielding a total number of degrees of freedom of 1.2 · 106.

• mesh 70-40-7, yielding a total number of degrees of freedom of about 2.9 · 106.

To compare the computed features of the propagating wave with the theoretical predictions,
we limit our analysis to a time interval in which we can neglect the effects of reflected
pressure waves from the outlet section. This limitation can be in principle removed, for
instance by devising non-reflective boundary conditions (see e.g. [57]). However, we did not
investigate this. As shown in Fig. 11, the wave has reached the outlet section at t = 20 ms.
We therefore consider the results of our numerical experiments only in the time range t ∈ (0,
20) ms.

Fig. 12 shows the time history of the radial displacement of the structure computed with the
finest mesh. The oscillations tend to damp to a constant steady state close to the value
predicted by the analytical solution (≃ 0.25 mm).

To compute the average pressure wave speed we first define the wave front at the half-
height of the pressure step, or 250 Pa (see [20]); then we fit a first order polynomial to the
position of the wave front in the time range t ∈ (0, 20) ms and compute its (constant)
derivative. The resulting estimate is not sensitive to the mesh size (see Fig. 13), and
approximates the exact value of 2.77 m/s within a 1% error margin. Table IV shows the
predicted wave speed from different numerical simulations with different grid sizes.

As a measure of the half-period of the wave we consider the distance between the first peak
and the first valley in the pressure time plot. From the results obtained on the finest mesh we
obtain for this value an estimate of 26 mm. Knowing the wave speed, we compute the wave
frequency as 106.5 Hz, within 1% error from the analytical prediction.

We noted before that the theoretical value for the wave frequency depends on Mfs. The
validity of our choice of Mfs can be checked on the computed results. Consistently with our
assumption, Fig. 14 (a) shows in fact that the radial velocity of the fluid is a linear function
of the radial position on a cross section at abscissa 5 cm, apart from a thin layer close to the
wall (radius larger than 0.8 cm).

Finally, the axial velocity of the fluid, evaluated on the tube axis, is also a good
approximation of the value predicted by Joukowsky’s equation, as shown in Fig. 14 (b).

4. CONCLUSIONS
The main goal of this work is to describe an open source framework for the solution of flow
problems relevant to biomechanics. At the core of this framework we place the software
tools that we use to build the computational mesh (pre-processing phase); LifeV, the library
of algorithms and data structures that we use to solve the differential problems (processing
phase); software for the postprocessing of the results of the numerical experiments.

Crucial aspects for a CFD framework are its verification and validation. We show in this
paper how our tools can be tested against published benchmark problems for flow in rigid
and deformable domains. Within this context, we also believe that it is important to provide
a detailed account on the methods that we used, discussing where possible their merits and
shortcomings.
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In the simulation of flow in transitional and turbulent regimes, we addressed the issue of
accuracy in the numerical integration performed by our code, pointing out the potential
dramatic effect on the quality of the solution. The importance of the mesh has also been
discussed, in particular its consistency with the symmetry of the physical problem. The
flexibility of the mesh generator is therefore a key factor. Computational costs have been
shown to be significant, as expected, in particular for flow regimes characterized by high
values of the Reynolds number. While this is not an intrinsic limitation of the proposed
framework, it is certainly an area of possible improvement, for instance through the
implementation of effective turbulence models.

An important outcome of this work is the production of a suite of scripts and codes that are
based on a completely open-source set of tools, and therefore can be readily shared with the
community. As a matter of fact, we will prepare a distribution of our software that will be
published through the web portal www.lifev.org and will allow the reproduction of the
results presented in this paper.
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Figure 1.
Computational domain. The units are meter.
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Figure 2.
Radial sections at which the numerical results are compared against the experimental
measurements.
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Figure 3.
Case Ret = 500: comparison between experimental data (solid lines) and numerical results
(dashed lines) for (a) normalized axial velocity (30) along the z axis and (b) normalized
pressure difference (31) along the z axis. The legend in (a) is common to the two subfigures.

Passerini et al. Page 24

Int j numer method biomed eng. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Case Ret = 500: comparison between experimental data (solid lines) and numerical results
(dashed lines) for normalized axial velocity (30) at (a) z = −0.064, (b) z = −0.008, (c) z =
0.016, and (d) z = 0.06. The legend in (a) is common to all four subfigures.
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Figure 5.
Case Ret = 2000: comparison between experimental data (solid lines) and numerical results
(dashed line) for (a) normalized axial velocity (30) along the z axis and (b) normalized
pressure difference (31) along the z axis. The legend in (a) is common to both subfigures.
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Figure 6.
Case Ret = 2000: comparison between experimental data (solid lines) and numerical results
(dashed line) for normalized axial velocity (30) at (a) z = −0.064, (b) z = −0.008, (c) z =
0.016, and (d) z = 0.06. The legend in (a) is common to all four subfigures.
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Figure 7.
Case Ret = 3500: comparison between experimental data (solid lines) and numerical results
(dashed line) for (a) normalized axial velocity (30) along the z axis and (b) normalized
pressure difference (31) along the z axis. The legend in (a) is common to both subfigures.
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Figure 8.
Case Ret = 3500: comparison between experimental data (solid lines) and numerical results
(dashed line) for normalized axial velocity (30) at (a) z = −0.064, (b) z = −0.008, (c) z =
0.016, and (d) z = 0.06. The legend in (a) is common to all four subfigures.
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Figure 9.
(a) Validation metric Ez (32) in semi-logarithmic scale and (b) conservation of mass error
metric EQ (33) as a function of the position along the z axis for Ret = 500, 2000, 3500. The
legend in (a) is common to both subfigures.
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Figure 10.
Computational domain for the FSI benchmark.
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Figure 11.
Time history at the outlet section (abscissa = 10 cm) of the (a) radial displacement of the
outer wall and (b) fluid pressure on the tube axis. Around t = 0.02 s the propagating wave
reaches the outlet section and wave reflections take place. Results obtained on the finest
mesh were processed to generate these images.
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Figure 12.
The wave propagation in the fluid and solid domains. Snapshots at different times of (a) the
radial displacement of the outer wall surface (b) the fluid pressure along the tube centerline.
Results obtained on the finest mesh were processed to generate these images.
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Figure 13.
The fluid pressure along the tube centerline at t = 20 ms, as computed using the four
different meshes. The small discrepancies in the computed values show that substantial
mesh independence is achieved using the two finest meshes.
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Figure 14.
The simulated wave propagation phenomenon matches closely theoretical predictions.
Consistently with our assumptions on the model, the radial velocity of the fluid is a linear
function of the radial position apart from a thin layer near the tube wall. The fluid velocity
on the axis of the pipe approximates the value predicted by Joukowsky’s equation. Results
obtained on the finest mesh were processed to generate these images.
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Table I

Throat Reynolds number Ret, inlet Reynolds number Rei, and flow rate for the flow regimes under
consideration.

Ret Rei flow rate Q (m3/s)

500 167 5.2062e-6

2000 667 2.0825e-5

3500 1167 3.6444e-5

Int j numer method biomed eng. Author manuscript; available in PMC 2014 November 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Passerini et al. Page 37

Ta
bl

e 
II

V
al

id
at

io
n 

m
et

ri
c 

E
z 

(3
2)

 a
t s

ix
 r

ad
ia

l s
ec

tio
ns

 u
ps

tr
ea

m
 a

nd
 in

si
de

 th
e 

th
ro

at
. S

m
al

le
r 

va
lu

es
 o

f 
th

e 
m

et
ri

c 
id

en
tif

y 
a 

be
tte

r 
ag

re
em

en
t w

ith
 th

e 
av

ai
la

bl
e

da
ta

.

z 
= 

−0
.0

88
z 

= 
−0

.0
64

z 
= 

−0
.0

48
z 

= 
−0

.0
2

z 
= 

−0
.0

08
z 

= 
0

R
e 

=
 5

00
0.

05
94

0.
05

22
0.

05
65

0.
01

16
0.

01
00

0.
02

17

R
e 

=
 2

00
0

0.
04

33
0.

03
84

0.
06

92
0.

01
64

0.
01

16
0.

01
27

R
e 

=
 3

50
0

0.
03

43
0.

02
67

0.
08

25
0.

03
16

0.
02

12
0.

01
23

Int j numer method biomed eng. Author manuscript; available in PMC 2014 November 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Passerini et al. Page 38

Ta
bl

e 
III

V
al

id
at

io
n 

m
et

ri
c 

E
z 

(3
2)

 a
t s

ix
 r

ad
ia

l s
ec

tio
ns

 d
ow

ns
tr

ea
m

 o
f 

th
e 

th
ro

at

z 
= 

0.
00

8
z 

= 
0.

01
6

z 
= 

0.
02

4
z 

= 
0.

03
2

z 
= 

0.
06

z 
= 

0.
08

R
e 

=
 5

00
0.

17
93

0.
31

03
0.

20
96

0.
16

22
0.

33
64

0.
39

41

R
e 

=
 2

00
0

0.
26

62
0.

45
95

0.
69

59
1.

00
05

2.
06

09
1.

13
55

R
e 

=
 3

50
0

0.
72

31
1.

06
48

0.
44

69
0.

87
29

0.
42

47
0.

16
98

Int j numer method biomed eng. Author manuscript; available in PMC 2014 November 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Passerini et al. Page 39

Table IV

Predicted pressure wave speed from numerical experiments with different mesh size.

mesh 20-10-2 30-20-3 50-30-5 70-40-7

pressure wave speed (cm/s) 274.1983 275.3064 276.4382 276.6159
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